From Sensorimotor Data to
Concepts: The Role of Symmetry

Thomas C. Henderson and Anshul Joshi
University of Utah
Edward Grant
North Carolina State University

UUCS-12-005

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

5 October 2012

Abstract

We have proposed the use of symmetry theories as the basiefmterpretation of senso-
rimotor data and the creation of more abstract representatHere we outline a cognitive
architecture to implement such an approach and provided spéecific mechanisms for 1-
D and 2-D sensorimotor processing. The overall goal is t&girgte low-level sensorimotor
data analysis and behavior with more abstract affordamresentations.



1 Introduction

Here we provide a description of the basic mechanisms thatipthe parsing of signals
into symbolic representations of the symmetries presaheinlata. The representation per-
mits the synthesis of motor commands which are coordinatddexpected sensory data
streams. In addition, this representation provides a hasi®bots to share concepts, even
if that requires some form of sensorimotor calibration. émtggular, this paper describes:

e an architecture for cognitive processing,
¢ 1-D sensorimotor stream symmetry operators, and

e 2-D visual stream symmetry operators.

The ultimate goal is the integration of these into an activ®@omous embedded agent.

In previous work [7, 10, 15, 16], we have described the rolsyohmetry in cognition, as
well as more specifically thBymmetry Enginésee Figure 1). In this approach, signal and
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Figure 1. The Symmetry EnginePerceptionrequires an appropriate set of operators to
construct group-theoretic representati@repg; this includes vector constructors, sym-
metry detectors, and symmetry-based data indexing ana@ngaioperatorsControl action
requires the ability to mafs-repsonto action sequences to achieve desired results in the
world. Concept Formatiomperators allow the exchange @frepswith other agents.



motor command streams are characterized by their symmmedne then more abstract rep-
resentations (parameterized strings) are produced. &awbrantages accrue from this: (1)
compression into a more compact representation, (2) catipnal efficiency in matching,
and (3) ease of sharing the representations. E.g., comatiumgc’a redO(3) symmetry”

is better than sending all the 2D images, 3D surface datamendr commands that were
used to obtain the data. Moreover, long-term knowledge t@aance requires efficient
storage and retrieval, especially as the body of knowledgegover time.

Hypothesis We propose that robot affordance knowledge acquisitiah@erceptual fu-
sion can be enabled by means of a common sensorimotor sesaich is provided by

a set of group symmetry theories embedded a priori in eaabt.rdthese theories inform
the production of structural representations of sensdomarocesses, and these represen-
tations, in turn, permit perceptual fusion to broaden acatieg of activity.

Symmetry here means an invariant, and involves finding ddsasth associated operators
that map the set to itself (see Weyl [43]). Viana's charaz#gion fits well with our view
[39]: “Symmetry provides a set of rules with which we may dés certain regularities
among experimental objects.” Our goal is therefore to findrafrs which leave certain
aspects of state invariant.

2 Related Work

A good deal of recent research activity has focused on theisiiqn and representation of
robot behavioral knowledge, ranging from multi-media 8ases ([8, 11, 13]) and ontolo-
gies ([1, 3, 36, 37, 38, 41]), to web-based robot knowledgestories (e.g., RoboEarth
[40]). Elsewhere ([15]) we have discussed how the cogsiti@nd dynamical systems ap-
proaches impact this problem, as well as the role of innatevladge in robotics (see
[12, 14]). While this is a grand enterprise that may indeed teaaffordance construction
and sharing at the knowledge level, it is unclear that threemiadequate semantic basis for
robots to exploit or share such knowledge. There is eviddrateeven sharing standard ob-
ject representation models across robot platforms is diffjt8]. Moreover, great reliance
is placed on human programmers to provide ontologies, dsas¢he frameworks for any
form of sharing (e.g., sensor models, maps, coordinateefsagtc.).

Note that there has been some recent move to include lowdeménuous representations
in the more standard symbolic cognitive architectures (sée [20, 44] who add a contin-
uous representation to Soar, and also Choi [6] who propose L3R symbolic cognitive
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architecture for their humanoid robot; however, the hig¥el concepts of these systems
do not arise through the sensorimotor process). One of aals@®to promote a broader
dialog between the Al, cognitive systems, and robotics canities.

We explore the use of symmetry analysis as a basis for therdengaounding of sen-
sorimotor affordance knowledge; this includes symmetrgcteon in signals, symmetry
parsing in knowledge representation, and symmetry exgtioit in structural bootstrap-
ping and knowledge sharing. We are working in close cooperavith our colleagues,
Profs. R. Dillmann and T. Asfour at the Karlsruhe Institutefe€hnology, involved in the
European Union Xperience project (http://www.xperienog). The overview they give of
the Xperience projectis:

Current research in enactive, embodied cognition is builtvam central
ideas: 1) Physical interaction with and exploration of tleeld/allows an agent
to acquire and extend intrinsically grounded, cognitiygresentations and, 2)
representations built from such interactions are muctebattapted to guiding
behavior than human crafted rules or control logic. The ¥gyere project
will address this problem bstructural bootstrappingan idea taken from child
language acquisition research. Structural bootstrapgpiagnethod of building
generative models, leveraging existing experience toigiradexplored action
effects and to focus the hypothesis space for learning numetepts. This
developmental approach enables rapid generalization egasition of new
knowledge and skills from little additional training data.

This gives us a larger context within which to test our hypsth that symmetry-based
structuring of knowledge provides a more robust semanscstihan current methods, and
in particular symmetry as applied to: the acquisition obafnces from signals, repre-
sentation as Object-Action Complexes (OACs provide a framleviar modeling actions
and their effects), and exploitation in generative actiscavery (structural bootstrapping).
The Xperience team is developing a set of cognitive bencksrfar robotic systems.

Symmetry plays a deep role in our understanding of the warldat it addresses key issues
of invariance. By determining operators which leave certspects of state invariant,
it is possible to either identify similar objects or to maimt specific constraints while
performing other operations. We have shown how to use symgriretange data analysis
for grasping [9]. Popplestone and Liu showed the value of #pproach in assembly
planning [25], while Selig has provided a geometric basrsnfiany aspects of advanced
robotics using Lie algebras [34, 35]. Recently, PopplestomeGrupen [31] gave a formal
description of general transfer functions (GTF’s) andriteginmetries. In computer vision,
Michael Leyton has described the exploitation of symme28} and the use of group theory
4



as a basis for cognition [23], and we expand on his approah heyton [23] argues that
thewreath group producis a basic representation for cognition as stated inGhauping
Principle: “Any perceptual organization is structured as an n-foléath product:; ¢ .. .2
G,” and argues that “human perceptual and motor systems ahneshoictured as wreath
products.” For a more biologically motivated cognitive latecture which learns features
for hierarchical models to recognize invariant objects,[d2] as well as other papers from
the Honda research group on their approach to cognitivetacthre [4, 5, 32]. Of course,
many researchers in computer vision and graphics have pedpgymmetry detection and
analysis methods [17, 21, 24, 26, 27, 28, 29, 30]. We integsaveral of these methods
and describe improvements on them in the 2-D image analix@s ghnethod below.

3 Cognitive Architecture

Figure 2 provides a more detailed view of the general cognéirchitectural framework
proposed for th&ymmetry EngineA particularly important feature is the Behavior Unit
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Figure 2: General Cognitive Framework Architecture.

(in the middle of the figure). Behavior is encoded@gject-Action ComplexesThe Be-
havior Selectiorfunction chooses the next OAC sequence based on the curfghittBe
current states of th8hort-Term Perception Memoand theShort-Term Motor Memoras
well as the available behaviors in theng-Term MemoryAs an OAC executes, it provides
context to both the perception and motor pipelines. Dataesrcontinuously from the sen-
sors and first undergoes specific packaging and transfamptocedures, then is formed
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into percepts (symmetry characterizations), and finadisults are stored in tHghort-Term
Memory Similarly, motor commands are moved to tBkeort-Term Motor memornyhere
they are then interpreted according to modality and theipeqalities desired, and fi-
nally, these more symbolic representations are decodedp®cific motor commands for
the actuators. In the work reported here, we deal mainly Whiéhperception side of the
architecture and describe the mechanisms for symmetrgtitate classification and en-
coding.

As a simple example of the perceptual-motor duality of ttehisecture, consider a square
shape. As described in more detail below, the boundary dfltpe can be represented as
a point which undergoes a specific sequence of symmetryforans: translation (half the
side length), reflection (about the line perpendicular ®e&hdpoint), and rotation (4-fold
about the z-axis). This same representation can be usesu® msotor commands to trace
out the shape or to circumnavigate it (e.g., go around a}able

4 1-D Sensorimotor Data Stream Symmetry Operators

We have shown that symmetries can significantly increaseeffi@ency of solving the
sensorimotor reconstruction problem [16]. This is done ®ans of building models for
theories (see Figure 3) in terms of sets and operators tbatiscovered in the world, and
then fit to a specific theory. Moreover, relations over thdgeas must be determined.

We have developed the following specific mechanisms to desgceharacterize and exploit
symmetries in sensorimotor data:

e Similarity Characterization : Generally speaking, this includes correlation and dis-
tance functions, but more particularly in our case, is nyamtcheck as to whether
the same symmetry is present. The latter is done hieratbhifiest assuring that the
symmetry type is the same (e.g., periodic), and then thasyhemetry parameters
match (e.g., period and basic shape).

e Sets The basic sets are the streams of sensor and motor sigaal@taier examples
of sets include things like data sequences from similar@sn®.g., range finders,
cameras, etc.), or data sequences that satisfy some syrieetr, pixel data which
is all the same color). A basic operator here is the discosteguivalence classes.

e Operators: These are typically the result of a motor command sequehashveffect
some change in the world (e.g., rotated)y

6



Representation of
Axioms of Theory
Sets <:>6 Q Perception

Y validModel? Ay
Operators @ <,©,>

O
@ Exploit in Action

N

Figure 3: Building Models by Mapping Perceptions onto Thesri1) Axioms are defined
for the theory; (2) Perceptions are formed into sets andatpehypotheses; (3) A deter-
mination is made as to whether the specific sets and operatmis! the theory; (4) The
theory may be applied to these sets and operators to acligga.a

o Symmetry Classification Symmetries must be discovered in the sensor and motor
data streams, starting at the 1D level, and working on uputiit@D and 3D, as well
at the various levels of representation. For example, atlihdevel this includes
finding constant functions, lines, periodic, reflectivelsaires; we also seek to char-
acterize data that is really just noise (Gaussian). Theubutpre is a token such
as.S,, the symmetric group of order which can represent a constant signal (any
sample can be mapped to any other sample).

e Morphisms: Determine for a given setX, and function, f, whetherVz,, zo, €
X,zy ~x9 — f(x1) ~ f(x2), Wwherex ~ y means that is similar toy.

e Groups: Determine if a given setY, and operator, +, satisfy the group axioms:

1. Closurevz,y e X,z +ye X

2. ldentity:de e X oVr e X,z +e==x

3. Inversevz e X,Jr e X +a=e

4. Assoc.Vz,y,z€ X, (v +y)+z=2+ (y+ 2)

Details of these mechanisms may be found elsewhere [10].



5 2-D Imagery Symmetry Operators

We have begun developing symmetry operators for 2-D imagsmyell. The goal is to
produce collections of abstractions culled from a scenguréi 4 shows an example of
the group representations of segments in an office scenkouwgh wreath products were

Figure 4: Group Representations Discovered in an Office Scene

proposed for this by Leyton as it accounts for the combinedasf the group action, we
believe that a lower cost representation is possible andssecy; we call this th&-rep
(Group Representation), and is a sequence of groups whidhmilgeshe shape creation
process augmented by detailed shape basis, color, saalanfgrmation for the specific
object. Note that these representations may also be crisateanporal objects.

Given a set of symmetry elements and axes, it is necessargtéontine how they are
best combined int@s-reps Little detail on this process has been given in the litegatu
Consider, for example, Leyton’s favorite example, the sgusvhile it is true thatt: Z,
captures the symmetries of the square, it also charactalkzthe diverse shapes shown in
Figure 5.

We associate a set of properties with symmetry elementshe@-tepsconstructed from
them as described above. As for the shape itself, the eabeiméiracterization can be given
in terms of what we call thehape basisthis is the smallest part of the shape that informs
the reflection and/or rotation symmetries. Figure 6 showsstiepe basis circled in the
shapes given in Figure 5.
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Figure 5: Four Shapes with the Same Wreath Product Reprasentat

R

Figure 6:Shape Basifor Each of Four Shapes.

Several symmetry detectors reported in the literature Heeen implemented (e.g., the
planar reflective symmetry transform [30], rotation symmefroup detectors [21], etc.).
For example, given the image in Figure 7, the following syrtriae are found:

type: ’continuous’
num | obes: 0

type: ’dihedral
num | obes: 4

type: ’continuous’
num | obes: 0

type: 'cyclic’
num | obes: 5

Figure 8 shows the 4 symmetry sets found in the image.

Several symmetry detectors use the Frieze Expansion REREP) to recover symmetries,

where the FEP is the image formed by taking a specific pixeds the origin, then taking

the line at orientatiofl degrees = [1, 2, . .., 180]) throughp and forming columm in the

FEP image such thatis located at the center row of the image and the part of thecbbj

from p out in directiond goes in the upper half of the image, while the opposite doact
9



Figure 7. Example Image for Symmetry Detection.

from p goes in the bottom half of the image (see Figure 9 (upper)rigintthe FEP of a
square). In studying this more closely, we have found sordé@iadal useful properties of
the FEP:

1. Reflective 2-D Symmetries can be found as 1-D translatsyrametries.

2. Certain features in the 1-D curves found in an FEP can betogddntify the shape
basis for aG-rep.

5.1 Reflective 2-D Symmetries in the FEP

A 2-D reflective symmetry is a set of points in the plane thatiavariant under reflection
across a symmetry axis line through the set. Podolak’s rdetbosiders every orientation
at every pixel. However, reflective axes can be found asvislioFor every segmented
object with center of mas§'M and FEPE at cm, then if F7 is the top half of ' and F;

is the bottom half o, then letF'7 be F, flipped left right and then flipped up-down; next
check for translational similarity betweéfi and F'7, and where the similarity is high, there
is a reflective axis. Figure 9(lower left) shows the 1-D sarity measure for the square (as
a probability of a reflective axis versus angle).
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Figure 8: Symmetries Found in Chaos Image.

5.2 Identifying the G-repShape Basis in the FEP

Given an FEP, if there are reflective axes, then the shape fmghe full figure must be
found between two successive reflective axes. This is showagure 9 (lower right). In
this case for the square, this is any of the half side segments

6 Conclusions and Future Work

We have described our vision of a cognitive architecturetas symmetry detection and
classification. 1-D and 2-D symmetries have been descraduadiyesults on sensorimotor
data given. In future work we must address many issues,dimgju

G-rep Grammar Two levels of representation are required @reps one for group rep-
resentations and one for associated properties. A stamdéational grammar and parser
will be developed forG-reps For properties, one way to proceed is to declare them in
terms of standard sensor and actuator categories (e.geraamange device, etc.). Itis
preferred, however, to express properties in terms of thetiown sensors and actuators,
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Figure 9: FEP of Square.

and then provide mechanisms by which a robot can providegpeogriate information so
that another robot can determine the relation, if any, tows sensor and actuators (i.e., it
may need to solve the sensorimotor problem for another yobot

G-rep Indexing and Storage Once a repertoire oB-repsis available, suitable storage
and indexing schemes must be developed. This is cruciahtoeffcient working of the
Short and Long Term Memories. One approach is to achieve $ommeof prime factor-
ization in the group representation. Although the work of &w[33] indicates that this
is possible for semi-group representations of automagagdiiails remain to be worked out
for shapes and sensorimotor processes.

Controlin G-reps We also seek to produce structural descriptions of compleaviors,
including control aspects, and we intend to pursue twoesjras. First is to us&-repsto
specify perceptual entities and embed these in some forffooflance representation. The
second approach is to incorporate control directly into@eep. We propose to pursue
both, and with respect to the first, will use the Object-Agti©omplexes representation
which has been developed by the Xperience team [2, 19]. Athiosecond option, one
approach is to encode control signals into basic behaviis welated to trajectories or
configurations ir5 £(3) using standard matrix representations. Selig [34, 35] hagged
an in-depth description of group theoretical represemtatin robot control. In addition,
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shared control will be studied as suggested by [35] in whiokement is limited by (group)
constraints. Scleronomic constraints are representedrntions defined on the groups.

Structural Bootstrapping OnceG-repscan be synthesized for affordances, then boot-

strapping can be accomplished as follows. Giveh-eep with group sequencé’; ! G
.0G L  Gy, then it is abstractly the case that any group equivaleitydotG. may be

substituted in its place as a hypothesized &vep G11Gl...1Gel.. .1 G,. Of course,

this will need to be checked in the real world. E.g., a younifgldtnows that it can get into

a full-sized car; when presented with a toy car, the child imayo get into it, not realizing

that there is a problem with scale.

Symmetry Engine Architecture Another major goal is to work out the details of the
cognitive architecture and to implement a prototype, astthese ideas on physical robots.
We plan to have working versions running on a variety of relithe near future.

Acknowledgement: This work was support in part by NSF grants 10-21038 and 8:-54
and the rotational symmetry detection code was implemenydfivan Kroske during his
NSF IGERT internship at the University of Utah.
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