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Abstract

We have proposed the use of symmetry theories as the basis forthe interpretation of senso-
rimotor data and the creation of more abstract representations. Here we outline a cognitive
architecture to implement such an approach and provide a setof specific mechanisms for 1-
D and 2-D sensorimotor processing. The overall goal is to integrate low-level sensorimotor
data analysis and behavior with more abstract affordance representations.
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1 Introduction

Here we provide a description of the basic mechanisms that permit the parsing of signals
into symbolic representations of the symmetries present inthe data. The representation per-
mits the synthesis of motor commands which are coordinated with expected sensory data
streams. In addition, this representation provides a basisfor robots to share concepts, even
if that requires some form of sensorimotor calibration. In particular, this paper describes:

• an architecture for cognitive processing,

• 1-D sensorimotor stream symmetry operators, and

• 2-D visual stream symmetry operators.

The ultimate goal is the integration of these into an active autonomous embedded agent.

In previous work [7, 10, 15, 16], we have described the role ofsymmetry in cognition, as
well as more specifically theSymmetry Engine(see Figure 1). In this approach, signal and

Figure 1: The Symmetry Engine.Perceptionrequires an appropriate set of operators to
construct group-theoretic representation (G-reps); this includes vector constructors, sym-
metry detectors, and symmetry-based data indexing and variance operators.Control action
requires the ability to mapG-repsonto action sequences to achieve desired results in the
world. Concept Formationoperators allow the exchange ofG-repswith other agents.
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motor command streams are characterized by their symmetries, and then more abstract rep-
resentations (parameterized strings) are produced. Several advantages accrue from this: (1)
compression into a more compact representation, (2) computational efficiency in matching,
and (3) ease of sharing the representations. E.g., communicating ”a redO(3) symmetry”
is better than sending all the 2D images, 3D surface data, andmotor commands that were
used to obtain the data. Moreover, long-term knowledge maintenance requires efficient
storage and retrieval, especially as the body of knowledge grows over time.

Hypothesis: We propose that robot affordance knowledge acquisition and perceptual fu-
sion can be enabled by means of a common sensorimotor semantics which is provided by
a set of group symmetry theories embedded a priori in each robot. These theories inform
the production of structural representations of sensorimotor processes, and these represen-
tations, in turn, permit perceptual fusion to broaden categories of activity.

Symmetry here means an invariant, and involves finding data sets with associated operators
that map the set to itself (see Weyl [43]). Viana’s characterization fits well with our view
[39]: “Symmetry provides a set of rules with which we may describe certain regularities
among experimental objects.” Our goal is therefore to find operators which leave certain
aspects of state invariant.

2 Related Work

A good deal of recent research activity has focused on the acquisition and representation of
robot behavioral knowledge, ranging from multi-media databases ([8, 11, 13]) and ontolo-
gies ([1, 3, 36, 37, 38, 41]), to web-based robot knowledge repositories (e.g., RoboEarth
[40]). Elsewhere ([15]) we have discussed how the cognitivist and dynamical systems ap-
proaches impact this problem, as well as the role of innate knowledge in robotics (see
[12, 14]). While this is a grand enterprise that may indeed lead to affordance construction
and sharing at the knowledge level, it is unclear that there is an adequate semantic basis for
robots to exploit or share such knowledge. There is evidencethat even sharing standard ob-
ject representation models across robot platforms is difficult [18]. Moreover, great reliance
is placed on human programmers to provide ontologies, as well as the frameworks for any
form of sharing (e.g., sensor models, maps, coordinate frames, etc.).

Note that there has been some recent move to include low-level continuous representations
in the more standard symbolic cognitive architectures (seeLaird [20, 44] who add a contin-
uous representation to Soar, and also Choi [6] who propose ICARUS, a symbolic cognitive
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architecture for their humanoid robot; however, the high-level concepts of these systems
do not arise through the sensorimotor process). One of our goals is to promote a broader
dialog between the AI, cognitive systems, and robotics communities.

We explore the use of symmetry analysis as a basis for the semantic grounding of sen-
sorimotor affordance knowledge; this includes symmetry detection in signals, symmetry
parsing in knowledge representation, and symmetry exploitation in structural bootstrap-
ping and knowledge sharing. We are working in close cooperation with our colleagues,
Profs. R. Dillmann and T. Asfour at the Karlsruhe Institute ofTechnology, involved in the
European Union Xperience project (http://www.xperience.org/). The overview they give of
the Xperience project is:

Current research in enactive, embodied cognition is built ontwo central
ideas: 1) Physical interaction with and exploration of the world allows an agent
to acquire and extend intrinsically grounded, cognitive representations and, 2)
representations built from such interactions are much better adapted to guiding
behavior than human crafted rules or control logic. The Xperience project
will address this problem bystructural bootstrapping, an idea taken from child
language acquisition research. Structural bootstrappingis a method of building
generative models, leveraging existing experience to predict unexplored action
effects and to focus the hypothesis space for learning novelconcepts. This
developmental approach enables rapid generalization and acquisition of new
knowledge and skills from little additional training data.

This gives us a larger context within which to test our hypothesis that symmetry-based
structuring of knowledge provides a more robust semantic basis than current methods, and
in particular symmetry as applied to: the acquisition of affordances from signals, repre-
sentation as Object-Action Complexes (OACs provide a framework for modeling actions
and their effects), and exploitation in generative action discovery (structural bootstrapping).
The Xperience team is developing a set of cognitive benchmarks for robotic systems.

Symmetry plays a deep role in our understanding of the world in that it addresses key issues
of invariance. By determining operators which leave certainaspects of state invariant,
it is possible to either identify similar objects or to maintain specific constraints while
performing other operations. We have shown how to use symmetry in range data analysis
for grasping [9]. Popplestone and Liu showed the value of this approach in assembly
planning [25], while Selig has provided a geometric basis for many aspects of advanced
robotics using Lie algebras [34, 35]. Recently, Popplestoneand Grupen [31] gave a formal
description of general transfer functions (GTF’s) and their symmetries. In computer vision,
Michael Leyton has described the exploitation of symmetry [22] and the use of group theory
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as a basis for cognition [23], and we expand on his approach here. Leyton [23] argues that
thewreath group productis a basic representation for cognition as stated in theGrouping
Principle: “Any perceptual organization is structured as an n-fold wreath productG1 ≀ . . . ≀

Gn” and argues that “human perceptual and motor systems are both structured as wreath
products.” For a more biologically motivated cognitive architecture which learns features
for hierarchical models to recognize invariant objects, see [42] as well as other papers from
the Honda research group on their approach to cognitive architecture [4, 5, 32]. Of course,
many researchers in computer vision and graphics have proposed symmetry detection and
analysis methods [17, 21, 24, 26, 27, 28, 29, 30]. We integrate several of these methods
and describe improvements on them in the 2-D image analysis given method below.

3 Cognitive Architecture

Figure 2 provides a more detailed view of the general cognitive architectural framework
proposed for theSymmetry Engine. A particularly important feature is the Behavior Unit

Figure 2: General Cognitive Framework Architecture.

(in the middle of the figure). Behavior is encoded asObject-Action Complexes. TheBe-
havior Selectionfunction chooses the next OAC sequence based on the current OAC, the
current states of theShort-Term Perception Memoryand theShort-Term Motor Memory, as
well as the available behaviors in theLong-Term Memory. As an OAC executes, it provides
context to both the perception and motor pipelines. Data arrives continuously from the sen-
sors and first undergoes specific packaging and transformation procedures, then is formed
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into percepts (symmetry characterizations), and finally, results are stored in theShort-Term
Memory. Similarly, motor commands are moved to theShort-Term Motor memorywhere
they are then interpreted according to modality and the specific qualities desired, and fi-
nally, these more symbolic representations are decoded into specific motor commands for
the actuators. In the work reported here, we deal mainly withthe perception side of the
architecture and describe the mechanisms for symmetry detection, classification and en-
coding.

As a simple example of the perceptual-motor duality of the architecture, consider a square
shape. As described in more detail below, the boundary of theshape can be represented as
a point which undergoes a specific sequence of symmetry transforms: translation (half the
side length), reflection (about the line perpendicular to the endpoint), and rotation (4-fold
about the z-axis). This same representation can be used to issue motor commands to trace
out the shape or to circumnavigate it (e.g., go around a table).

4 1-D Sensorimotor Data Stream Symmetry Operators

We have shown that symmetries can significantly increase theefficiency of solving the
sensorimotor reconstruction problem [16]. This is done by means of building models for
theories (see Figure 3) in terms of sets and operators that are discovered in the world, and
then fit to a specific theory. Moreover, relations over these objects must be determined.

We have developed the following specific mechanisms to discover, characterize and exploit
symmetries in sensorimotor data:

• Similarity Characterization : Generally speaking, this includes correlation and dis-
tance functions, but more particularly in our case, is mainly a check as to whether
the same symmetry is present. The latter is done hierarchically, first assuring that the
symmetry type is the same (e.g., periodic), and then that thesymmetry parameters
match (e.g., period and basic shape).

• Sets: The basic sets are the streams of sensor and motor signal data. Other examples
of sets include things like data sequences from similar sensors (e.g., range finders,
cameras, etc.), or data sequences that satisfy some symmetry (e.g., pixel data which
is all the same color). A basic operator here is the discoveryof equivalence classes.

• Operators: These are typically the result of a motor command sequence which effect
some change in the world (e.g., rotate byθ).
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Figure 3: Building Models by Mapping Perceptions onto Theories. (1) Axioms are defined
for the theory; (2) Perceptions are formed into sets and operator hypotheses; (3) A deter-
mination is made as to whether the specific sets and operatorsmodel the theory; (4) The
theory may be applied to these sets and operators to achieve action.

• Symmetry Classification: Symmetries must be discovered in the sensor and motor
data streams, starting at the 1D level, and working on up through 2D and 3D, as well
at the various levels of representation. For example, at the1D level this includes
finding constant functions, lines, periodic, reflective sequences; we also seek to char-
acterize data that is really just noise (Gaussian). The output here is a token such
asSn, the symmetric group of ordern which can represent a constant signal (any
sample can be mapped to any other sample).

• Morphisms: Determine for a given set,X, and function,f , whether∀x1, x2 ∈

X, x1 ∼ x2 → f(x1) ∼ f(x2), wherex ∼ y means thatx is similar toy.

• Groups: Determine if a given set,X, and operator, +, satisfy the group axioms:

1. Closure:∀x, y ∈ X, x+ y ∈ X

2. Identity:∃e ∈ X ∋ ∀x ∈ X, x+ e = x

3. Inverse:∀x ∈ X, ∃x−1 ∈ X ∋ x+ x−1 = e

4. Assoc.:∀x, y, z ∈ X, (x+ y) + z = x+ (y + z)

Details of these mechanisms may be found elsewhere [10].
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5 2-D Imagery Symmetry Operators

We have begun developing symmetry operators for 2-D imageryas well. The goal is to
produce collections of abstractions culled from a scene; Figure 4 shows an example of
the group representations of segments in an office scene. Although wreath products were

Figure 4: Group Representations Discovered in an Office Scene.

proposed for this by Leyton as it accounts for the combinatorics of the group action, we
believe that a lower cost representation is possible and necessary; we call this theG-rep
(Group Representation), and is a sequence of groups which describe the shape creation
process augmented by detailed shape basis, color, scale, etc. information for the specific
object. Note that these representations may also be createdfor temporal objects.

Given a set of symmetry elements and axes, it is necessary to determine how they are
best combined intoG-reps. Little detail on this process has been given in the literature.
Consider, for example, Leyton’s favorite example, the square. While it is true thatℜ ≀ Z4

captures the symmetries of the square, it also characterizes all the diverse shapes shown in
Figure 5.

We associate a set of properties with symmetry elements and theG-repsconstructed from
them as described above. As for the shape itself, the essential characterization can be given
in terms of what we call theshape basis; this is the smallest part of the shape that informs
the reflection and/or rotation symmetries. Figure 6 shows the shape basis circled in the
shapes given in Figure 5.
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Figure 5: Four Shapes with the Same Wreath Product Representation.

Figure 6:Shape Basisfor Each of Four Shapes.

Several symmetry detectors reported in the literature havebeen implemented (e.g., the
planar reflective symmetry transform [30], rotation symmetry group detectors [21], etc.).
For example, given the image in Figure 7, the following symmetries are found:

type: ’continuous’
num_lobes: 0

type: ’dihedral’
num_lobes: 4

type: ’continuous’
num_lobes: 0

type: ’cyclic’
num_lobes: 5

Figure 8 shows the 4 symmetry sets found in the image.

Several symmetry detectors use the Frieze Expansion Pattern (FEP) to recover symmetries,
where the FEP is the image formed by taking a specific pixel,p, as the origin, then taking
the line at orientationθ degrees (θ = [1, 2, . . . , 180]) throughp and forming columnθ in the
FEP image such thatp is located at the center row of the image and the part of the object
from p out in directionθ goes in the upper half of the image, while the opposite direction
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Figure 7: Example Image for Symmetry Detection.

from p goes in the bottom half of the image (see Figure 9 (upper right) for the FEP of a
square). In studying this more closely, we have found some additional useful properties of
the FEP:

1. Reflective 2-D Symmetries can be found as 1-D translationalsymmetries.

2. Certain features in the 1-D curves found in an FEP can be usedto identify the shape
basis for aG-rep.

5.1 Reflective 2-D Symmetries in the FEP

A 2-D reflective symmetry is a set of points in the plane that are invariant under reflection
across a symmetry axis line through the set. Podolak’s method considers every orientation
at every pixel. However, reflective axes can be found as follows: For every segmented
object with center of massCM and FEPF at cm, then ifF1 is the top half ofF andF2

is the bottom half ofF , then letF ′ beF2 flipped left right and then flipped up-down; next
check for translational similarity betweenF1 andF ′, and where the similarity is high, there
is a reflective axis. Figure 9(lower left) shows the 1-D similarity measure for the square (as
a probability of a reflective axis versus angle).
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O(2) Continuous Rotation Group Dihedral 4 Group

O(2) Continuous Rotation Group Cyclic 5 Group

Figure 8: Symmetries Found in Chaos Image.

5.2 Identifying the G-repShape Basis in the FEP

Given an FEP, if there are reflective axes, then the shape basis for the full figure must be
found between two successive reflective axes. This is shown in Figure 9 (lower right). In
this case for the square, this is any of the half side segments.

6 Conclusions and Future Work

We have described our vision of a cognitive architecture based on symmetry detection and
classification. 1-D and 2-D symmetries have been described,and results on sensorimotor
data given. In future work we must address many issues, including:

G-rep Grammar Two levels of representation are required forG-reps, one for group rep-
resentations and one for associated properties. A standardnotational grammar and parser
will be developed forG-reps. For properties, one way to proceed is to declare them in
terms of standard sensor and actuator categories (e.g., camera, range device, etc.). It is
preferred, however, to express properties in terms of the robot’s own sensors and actuators,

11



Square FEP of Square

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

Angle (Degrees/2)

P
ro

b.
 o

f R
ef

le
ct

iv
e 

A
xi

s

Shape Basis Found Here

Figure 9: FEP of Square.

and then provide mechanisms by which a robot can provide the appropriate information so
that another robot can determine the relation, if any, to itsown sensor and actuators (i.e., it
may need to solve the sensorimotor problem for another robot).

G-rep Indexing and Storage Once a repertoire ofG-repsis available, suitable storage
and indexing schemes must be developed. This is crucial for the effcient working of the
Short and Long Term Memories. One approach is to achieve someform of prime factor-
ization in the group representation. Although the work of Rhodes [33] indicates that this
is possible for semi-group representations of automata, the details remain to be worked out
for shapes and sensorimotor processes.

Control in G-reps We also seek to produce structural descriptions of completebehaviors,
including control aspects, and we intend to pursue two strategies. First is to useG-repsto
specify perceptual entities and embed these in some form of affordance representation. The
second approach is to incorporate control directly into theG-rep. We propose to pursue
both, and with respect to the first, will use the Object-Action Complexes representation
which has been developed by the Xperience team [2, 19]. As forthe second option, one
approach is to encode control signals into basic behavior units related to trajectories or
configurations inSE(3) using standard matrix representations. Selig [34, 35] has provided
an in-depth description of group theoretical representations in robot control. In addition,
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shared control will be studied as suggested by [35] in which movement is limited by (group)
constraints. Scleronomic constraints are represented by functions defined on the groups.

Structural Bootstrapping OnceG-repscan be synthesized for affordances, then boot-
strapping can be accomplished as follows. Given aG-rep with group sequenceG1 ≀ G2 ≀

. . . ≀Gi ≀ . . . ≀Gn, then it is abstractly the case that any group equivalent entity to Ge may be
substituted in its place as a hypothesized newG-rep: G1 ≀G2 ≀ . . . ≀Ge ≀ . . . ≀Gn. Of course,
this will need to be checked in the real world. E.g., a young child knows that it can get into
a full-sized car; when presented with a toy car, the child maytry to get into it, not realizing
that there is a problem with scale.

Symmetry Engine Architecture Another major goal is to work out the details of the
cognitive architecture and to implement a prototype, and test these ideas on physical robots.
We plan to have working versions running on a variety of robots in the near future.
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