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Abstract— Several methods for the estimation of thermal dif-
fusivity are studied in this work. In many application scenarios,
the thermal diffusivity is unknown and must be estimated in
order to perform other estimation functions (e.g., tracking of
the physical phenomenon, or solving other inverse problems like
localization or sensor variance, etc.). In particular, we describe:

1) The use of minimization methods (the Golden Mean and
Lagarias’ simplex) to determine the thermal diffusivity
coefficient which when used in a forward heat flow
simulation results in the least (vector) distance between
the sampled data and the simulated data.

2) The Maximum Likelihood Estimate for thermal diffusiv-
ity.

3) The Extended Kalman Filter to recover the thermal
diffusivity.

We apply these methods to the determination of thermal
diffusivity in snow.

I. INTRODUCTION AND BACKGROUND

The incorporation of efficient and scalable probabilistic
methods into model-based simultaneous state estimation and
parameter identification may have a large impact on the
exploitation of spatially distributed sensing and computation
systems throughout a wide range of scientific domains.
Spatially distributed physical phenomena such as tempera-
ture, wave propagation, etc., require observation with dy-
namically located sensors in order to achieve better tuned
computational models and simulations. Methods developed
here allow for online validation of models through direct
sensor observation. Significant problems which must be
overcome include the interpolation between measurement
data, as well as the estimation of quantities which cannot be
directly measured (e.g., thermal diffusivity coefficients). The
demonstration of how stochastic partial differential equations
can be used to this end should have strong impact on practice
in many applications, including the aircraft Structural Health
Monitoring (SHM) problem among others.

We describe computational models and sensor networks
exploiting appropriate sensing technology for structural
health monitoring. We study active monitoring for events
requiring damage localization estimation. The structure is
excited with heat (or eventually, ultrasound), the signals
recorded by distributed sensors, and parameters determined
through a reconstruction process.

Our major goal is to provide rigorous Bayesian Computa-
tional Sensor Networks to quantify uncertainty in (1) model-
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based state estimates incorporating sensor data, (2) modelpa-
rameters (e.g., diffusion coefficients), (3) sensor node model
parameter values (e.g., location, bias), and input source
properties (e.g., locations and extent of cracks). This will
be achieved in terms of extensions to our recently developed
techniques [4], [13], [14]. We call this approachBayesian
Computational Sensor Networks (BCSN). These decentral-
ized methods have reasonable computational complexity and
perform Bayesian estimation in general distributed mea-
surement systems (i.e., sensor networks). A model of the
dynamic behavior and distribution of the underlying physical
phenomenon may be used to obtain a continuous form from
the discrete time and space samples provided by a sensor
network. Others have recently begun to explore the Bayesian
approach for computational simulation; for example, Tins-
ley [3], [12] who proposes ”the systematic treatment of
model and data uncertainties and their propagation througha
computational model to produce predictions of quantities of
interest with quantified uncertainty.” The approach is applied
to tumor modeling and analysis. Another related work is that
of Furukawa [2] who takes location uncertainty into account
when localizing defects and ”formulates the uncertaintiesof
sensor states stemming from both motion and measurement
and allows stochastic identification of defects using recursive
Bayesian estimation.”

In his detailed analysis of this problem, Sawo considered
physical phenomena as either lumped-parameter systems
(i.e., depending only on time and described by ODEs) or
distributed- parameter systems (i.e., depending on space and
time and described by PDEs). His work mainly considered
one-dimensional linear PDEs which have the form:
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where the system state is given byp(r, t) with r the location
and t the time. The Bayesian estimation ofp(r, t) in terms
of (1) requires the conversion of the PDE into a nonlinear
finite dimensional model. See Sawo [13] for details.

In several papers, Monde et al. [8], [9], [10], [11] develop
analytical methods based on the Laplace transform to obtain
a closed form solution for transient temperatures throughout
a body using temperature measurements from two locations,
estimate thermal diffusivity and conductivity. Woodfield im-
proved these techniques to handle less smooth temperature
changes. Closer to our work here, Ukrainczyk [16] minimizes
the objective function:

S(a) = [T − u(a)]T [T − u(a)]

where a is the unknown thermal diffusivity,T and n



Fig. 1. Heat Flow in a Uniform Rod (adapted from [5]).

are the measured and estimated (based on a guess for
a) temperatures, anda is estimated using the Lavenberg-
Marquardt algorithm. Also related to our work is that of
Wang et al. [17], [18] who develops a hierarchical Bayesian
framework for stochastic inverse heat conduction problems.
This includes ”(1) stochastic thermal property estimation, (2)
automatic selection of the optimal regularization parameter
in thermal history reconstruction problems, (3) solution to
the IHCP in the presence of uncertainties including errors in
thermophysical properties and temperature sensor locations
besides temperature measurement noise, and (4) two-scale
prior modeling in the estimation of quantities varying in time
and space.” They use Monte Carlo techniques to estimate
the distributions. Our approach differs in that we use the
extended Kalman filter. Another closely related work is that
of Massard et al. [7] who use a nodal predictive error model
with a Bayesian approach.

II. MINIMIZATION METHODS

First, we consider a simple approach to the estimation of
the thermal diffusivity coefficient. Consider a rod of uniform
cross-section and length 1 that is completely isolated except
at the ends (see Figure 1). The heat flow is therefore limited
to the x direction and the development of the temperature
y over time can be described by the following partial
differential equation (known as thediffusion equation):

∂y

∂t
= D · ∂

2y

∂x2
with D =

κ

C · ρ
whereκ denotes the thermal conductivity,C the specific heat
capacity andρ the density of the rod.

As mentioned above, Ukrainczyk proposed minimizing
the distance between the measurement data samples and the
simulation data produced with an estimate of the thermal
diffusivity. His method is based on the Levenberg-Marquardt
algorithm. We propose the same norm, but two different
minimization methods: the Golden Mean method (see [1])
and Matlab’sfminsearch (based on Lagarias’ simplex method
[6]). The first method gets its efficiency from the fact that it
uses three points whose endpoints to middle point distances
form a golden ratio; this ensures that the interval under
consideration is reduced by a constant proportion at each
step. The method is then:

initialize 3-point interval
do
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Fig. 2. Golden Mean Thermal Diffusivity Estimate using.
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Fig. 3. Thermal Diffusivity Estimate using (a) Golden Mean Method and
(b) fminsearch.

get next interval using norm(Z-S)
until (norm(Z-S)<err) or

(interval length<min_len)

Figure 2 shows the robustness of this method over a wide
range of noise (variance) in the temperature data; each
estimate is the average of 10 simulation runs. Results with
the fminsearch method are shown in Figure 3. As can be
seen, the Golden Mean method provides less variance, but
the estimate is not as good as withfminsearch.

III. MAXIMUM LIKELIHOOD ESTIMATE

Given a set of sample temperatures,St
i , with time index

t and space indexi, along a rod, withSt
0 = T0, a fixed

temperature, andSt
N+1

= TN+1, a fixed temperature, and
S0
i = Tinit for j = 1 . . . N . Let T t

i = St
i + ǫ where ǫ ∼

N (0, σ2) From the heat equation approximation, we have
that:

St
i = St−1

i + λ(St−1

i+1
− 2St−1

i + St−1

i−1
)

for t = 1 . . .M and i = 1 . . . N .



The probability of a specific temperature,T t
i , given the

data and a parameter estimate,λ is given by the assumption
that a sample is normally distributed about the process model
value:

p(T t
i | S, λ, σ2) = N (St

i , σ
2)

Then the likelihood function of the given samples is:
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and the log likelihood function is:
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Then taking the derivative and setting to zero yields:
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Setting equal to zero and solving forλ gives:
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Figure 4 shows the ML estimate for a range of noise values.
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Fig. 4. Thermal Diffusivity Estimate (and variance) using theMLE.

IV. EXTENDED KALMAN FILTER ESTIMATION
OF HEAT DIFFUSIVITY

The Extended Kalman Filter is widely used in estimation;
see [15] for an introduction. We use it here to solve for the
thermal diffusivity by adding it to the state variable. The
heat equation gives rise to the following relation (xt

i is the
temperature at locationi at time t):

xt
i = xt−1

i + λ(xt−1

i+1
− 2xt−1

i + xt−1

i−1
) + ǫ

at locations where the temperature changes, and:

xt
i = xt−1

i + ǫ

where the temperature is constant.ǫ ∼ N (0, σ2
p) distribution.

Thus:

x̄t = Ax̄t−1 + ǭ

and

A =















1
λ 1− 2λ λ

. . .
λ 1− 2λ λ

1















Temperature can then be tracked with a standard Kalman
filter since this is a linear relation. However, an Extended
Kalman Filter is needed once we estimate the thermal diffu-
sivity parameter,λ. This requires adding a state parameter,
xt
N+2

, for λ and providing the nonlinear update functions.
This gives us the two prediction equations:

gi(x
t−1

i ) = xt−1

i +
δt(xt−1

i+1
− 2xt−1

i + xt−1

i−1
)xt−1

n

δx2

gj(x
t−1

j ) = xt−1

j

wherext
i is the temperature estimate at timet and location

i for i = 1 . . . N , andxt−1

j is the temperature at the ends
of the rod (i.e.,j = 0 and j = N + 1), and the thermal
diffusivity estimate (i.e.,j = N + 2) at time t; this assumes
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Fig. 5. Tracking Thermal Diffusivity Estimate using the EKF.
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Fig. 6. Thermal Diffusivity Estimate (and Variance) using theEKF.

that there areN locations where the temperature is to be
estimated. This leads to the following Jacobian:

∂gi
∂xi

= 1− 2xN+2δt/δx
2

∂gi
∂xN+2

= δt(xi+1 − 2xi + xi−1)/δx
2

Figure 5 shows the convergence of the estimate for the
thermal diffusivity. Figure 6 shows the result of estimating
the thermal diffusivity in the presence of noise.

V. EXPERIMENTAL 1D DATA

We have also applied the method to some temperature
data that we recorded in the Wasatch Mountains in Utah
(the data was taken at the Crest Weather Station at Brighton
Ski Resort). There were a total of 23 temperature sensors;
see Figure 7. The values at one end stay pretty constant since
this is at the ground level, while the other end varies due to
the 24-hour temperature cycle in the air above the snow. We
have determined the thermal diffusivity, and Figure 8 shows
the fit of a simulated run (based on the thermal diffusivity
estimate) versus the measured data.

Fig. 7. Data from Temperature Sensors for Multi-Day Period.
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Fig. 8. Overlay of Snow Temperature Data with Simulation (Smooth Curve)
using Estimated Thermal Diffusivity.

VI. CONCLUSIONS AND FUTURE WORK

We are extending the work (1) to handle 2D and other
parameters, and (2) to extend the method to use an ultrasound
model.
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