Multisensor Methods to Estimate Thermal Diffusivity

Thomas C. HendersénGwen Knight and Edward Gra#At

Abstract— Several methods for the estimation of thermal dif- ~ based state estimates incorporating sensor data, (2) ipadel
fusivity are studied in this work. In many application scenarios, rameters (e.g., diffusion coefficients), (3) sensor noddeho
the thermal diffusivity is unknown and must be estimated in - yaameter values (e.g., location, bias), and input source
order to perform other estimation functions (e.g., tracking of . ; . .

properties (e.g., locations and extent of cracks). Thid wil

the physical phenomenon, or solving other inverse problems like - . .
localization or sensor variance, etc.). In particular, we describe: e achieved in terms of extensions to our recently developed

1) The use of minimization methods (the Golden Mean and techniques [4], [13], [14]. We call this approa&ayesian
Lagarias’ simplex) to determine the thermal diffusivity =~ Computational Sensor Networks (BCSN). These decentral-
coefficient which when used in a forward heat flow jzed methods have reasonable computational complexity and
simulation results in the least (vector) distance between perform Bayesian estimation in general distributed mea-

the sampled data and the simulated data. t ¢ . tworks). A del of th
2) The Maximum Likelihood Estimate for thermal diffusiv- surement systems (i.e., sensor networks). model of the

ity. dynamic behavior and distribution of the underlying phgsic
3) The Extended Kalman Filter to recover the thermal phenomenon may be used to obtain a continuous form from
diffusivity. the discrete time and space samples provided by a sensor
We apply these methods to the determination of thermal network. Others have recently begun to explore the Bayesian
diffusivity in snow. approach for computational simulation; for example, Tins-
. INTRODUCTION AND BACKGROUND ley [3], [12] who proposes "the systematic treatment of

: . - .. .. model and data uncertainties and their propagation thraugh
The incorporation of efficient and scalable probab|I|st|cCornputational model to produce predictions of quantities o

methodf |nt% m?(fjel-tk? ased smaltaneouls statg eSt'Tatmnttherest with quantified uncertainty.” The approach is apl
parameter igentification may have a ‘argeé impact on ht% tumor modeling and analysis. Another related work is that

exploitation of spatially distributed sensing and compiata of Furukawa [2] who takes location uncertainty into account

systems throughout a wide range of scientific domaln%hen localizing defects and "formulates the uncertainties

Spatially distributed physical phenomena such as teMPeIgshsor states stemming from both motion and measurement

ture,_ wave propagation, et_c., require obsgrvatlon with dyaind allows stochastic identification of defects using reiwer
namically located sensors in order to achieve better tuneédia

. ) . yesian estimation.”
computational models and simulations. Methods develope In his detailed analysis of this problem, Sawo considered
here allow for online validation of models through direct '

. N ) bphysical phenomena as either lumped-parameter systems
sensor observation. Significant problems which must e., depending only on time and described by ODES) or
overcome include the interpolation between measureme 'tst.r'ibuted- parameter systems (i.e., depending on spate a
data, as well as the estimation of quantities which cannot t?l?ne and described by PDES). His ,work mainly considered
directly measured (e.g., thermal diffusivity coefficionthe )

demonstration of how stochastic partial differential eopres one-dimensional finear PDEs ,WhICh have the form:
can be used to this end should have strong impact on practicey, <p(r7 t), s(r, 1), 87?’ o @ 871’7 o W) -0, (1)
in many applications, including the aircraft Structuralate ’ ot ot or ort
Monitoring (SHM) problem among others. where the system state is given pfr-, t) with r the location
We describe computational models and sensor networks,+ the time. The Bayesian estimation pfr, ¢) in terms
exploiting appropriate sensing technology for structurght (1) requires the conversion of the PDE into a nonlinear
health monitoring. We study active monitoring for eventsinite dimensional model. See Sawo [13] for detalils.
requiring damage localization estimation. The structise i | several papers, Monde et al. [8], [9], [10], [11] develop
excited with heat (or eventually, ultrasound), the signalgnaytical methods based on the Laplace transform to obtain
recorded by distributed sensors, and parameters det&fmingcjosed form solution for transient temperatures througho
through a reconstruction process. _ a body using temperature measurements from two locations,
~ Our major goal is to provide rigorous Bayesian Computdastimate thermal diffusivity and conductivity. Woodfield-i
tional Sensor Networks to quantify uncertainty in (1) medelpoyeqd these techniques to handle less smooth temperature
*This work was supported by AFOSR-FA9550-12-1-0201 changes. Closer to our work here, Ukrainczyk [16] minimizes
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gkni ght at cs. utah. edu S(a) = [T — u(a)]* [T — u(a)]
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Fig. 1. Heat Flow in a Uniform Rod (adapted from [5]).
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Thermal Diffusivity Estimate (Actual is 0.835)
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are the measured and estimated (based on a guess for
a) temperatures, and is estimated using the Lavenberg- o 2 J o e 10 12 1
Marquardt algorithm. Also related to our work is that of Nose (=00 1 sepselo)

Wang et al. [17], [18] who develops a hierarchical Bayesian Fig. 2. Golden Mean Thermal Diffusivity Estimate using.
framework for stochastic inverse heat conduction problems

This includes "(1) stochastic thermal property estimati@) 2
automatic selection of the optimal regularization paramnet
in thermal history reconstruction problems, (3) solution t
the IHCP in the presence of uncertainties including ernors i
thermophysical properties and temperature sensor losatio
besides temperature measurement noise, and (4) two-scale g
prior modeling in the estimation of quantities varying imé

and space.” They use Monte Carlo techniques to estimate
the distributions. Our approach differs in that we use the

extended Kalman filter. Another closely related work is that

of Massard et al. [7] who use a nodal predictive error model ok
with a Bayesian approach.

1. MINIMIZATION METHODS ‘ ‘ ‘ ‘ ‘

0
First, we consider a simple approach to the estimation of Noise (=010 1n steps of 0.1)
the thermal diffusivity coeff|C|ent: Consider a r(.)d of unifo Fig. 3. Thermal Diffusivity Estimate using (a) Golden Mean Nkt and
cross-section and length 1 that is completely isolated EXcep) fminsearch.
at the ends (see Figure 1). The heat flow is therefore limited
to the z direction and the development of the temperature
y over time can be described by the following partial get next interval using norn(Zz-S)

Thermal Diffusivity Estimate (Actual is 0.835;
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differential equation (known as theffusion equation): until (norn(Zz-S)<err) or
2 (interval |ength<m n_|en)
W_p %Y yithp= " _ _ .
ot ox C-p Figure 2 shows the robustness of this method over a wide
wherex denotes the thermal conductivity, the specific heat range of noise (variance) in the temperature data; each
capacity andp the density of the rod. estimate is the average of 10 simulation runs. Results with

As mentioned above, Ukrainczyk proposed minimizinghe fminsearch method are shown in Figure 3. As can be
the distance between the measurement data samples andS@@", the Golden Mean method provides less variance, but
simulation data produced with an estimate of the thermé&he estimate is not as good as withinsearch.
diffusivity. His method is based on the Levenberg-Marqtiard
algorithm. We propose the same norm, but two different . MAXIMUM LIKELIHOOD ESTIMATE
minimization methods: the Golden Mean method (see [1]) Given a set of sample temperaturég, with time index
and Matlab’'ssminsearch (based on Lagarias’ simplex method¢ and space index, along a rod, withS} = Ty, a fixed
[6]). The first method gets its efficiency from the fact that itemperature, andy; 41 = Tnya1, a fixed temperature, and
uses three points whose endpoints to middle point distance8 = 7, for j = 1...N. Let T} = S! + ¢ wheree ~
form a golden ratio; this ensures that the interval undek/(0,02) From the heat equation approximation, we have
consideration is reduced by a constant proportion at eaghat;

step. The method is then:

. o Si=8i" + (S — 2857 + 8i01)
initialize 3-point interval

do fort=1...M andi=1...N.



The probability of a specific temperaturé;, given the
data and a parameter estimakeis given by the assumption

that a sample is normally distributed about the process mode

value:
p(T} | S, A, 0%) = N(S},07)

Then the likelihood function of the given samples is:

M,N
L= H N (St 0?)
ti=1
M,N 1
L=11 (Tf = 57)*}
t,i=1 \/2* 2 20°
and the log likelihood function is:
M,N 1
logL = Z log exp{— o0 2( St) )
M,N 1 1
= Y (—3log(2m) = log(o) — = (T} — 5})%)
2 202

ti=1

MN
=- log(2m) — M Nlog(o ~ 5,2 Z
t,i=1
M,N
MN 1 : _
= log(2m) = MNlog(0) — 5 — > (T =57
ti=1
—MSi — 28+ 870)?
M,N
MN
=— log(2m) — M Nlog(c ~ 357 Z -8
t,i=1
y\ M
+3 (T =SS - 250+ 5101)
t,i=1
\2 M
552 (Sim1 — 287 ' +570)?

ti=1

Then taking the derivative and setting to zero yields:

=3 Z =SS =287+ 50))
t,i=1
M,N
A -
—=5 D (Si 28+ 8)”

ti=1

Setting equal to zero and solving fargives:

((

M,N
t,i=1

- SO — 28+ 51

tl 1(Sf+11_25t 1+Szt 11)

1)
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Fig. 4. Thermal Diffusivity Estimate (and variance) using MeE.

IV. EXTENDED KALMAN FILTER ESTIMATION

OF HEAT DIFFUSIVITY

The Extended Kalman Filter is widely used in estimation;
see [15] for an introduction. We use it here to solve for the
thermal diffusivity by adding it to the state variable. The
heat equation gives rise to the following relatiorf {s the
temperature at locatiohat time t):

t_ -1 t—1 =1 -1
rp = My - 2w+ asy) Fe

at locations where the temperature changes, and:

t_ -1
T, =x;,  +E€

where the temperature is constant- A'(0,
Thus:

o2) distribution.

zt= Azt + &

and

A 1—=2X A

1

Temperature can then be tracked with a standard Kalman
filter since this is a linear relation. However, an Extended
Kalman Filter is needed once we estimate the thermal diffu-
sivity parameter\. This requires adding a state parameter,
x5, for A and providing the nonlinear update functions.
This gives us the two prediction equations:

St(ats 1 th 1 +x1§—1)xt—1
—1 t—1 i+1 -1
91(952 )=z + “ 52 : -
gz ) ="

wherez! is the temperature estimate at timand location

ifori=1...N, andz!"! is the temperature at the ends

Figure 4 shows the ML estimate for a range of noise valuesf the rod (i.e.,; = 0 andj = N + 1), and the thermal

diffusivity estimate (i.e.,j = N + 2) at time¢; this assumes
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EKF Thermal Diffusivity Estimate (Actual is 0.835)
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Fig. 7. Data from Temperature Sensors for Multi-Day Period.
Fig. 5. Tracking Thermal Diffusivity Estimate using the EKF.
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Fig. 6. Thermal Diffusivity Estimate (and Variance) using ti€F. VI. CONCLUSIONS AND FUTURE WORK

We are extending the work (1) to handle 2D and other
that there areN locations where the temperature is to bearameters, and (2) to extend the method to use an ultrasound

estimated. This leads to the following Jacobian: model.
891’ 2
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