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Abstract Robots will play an increasing role in society as they arelae as
co-workers, co-protectors and co-inhabitants among hsiremd it is crucial that
their knowledge be acquired efficiently and be as correctedfettive as possible,
and permit planning and rational behavior selection. Taeaehthis, robot knowl-
edge needs to span several levels (from perception-actimegses to concepts).
There are several major issues to be addressed in order ievadhis. First, the
fundamentally different paradigms for cognitive robofiieslude Turing machines,
neural networks and dynamical systems. Each has starkretift views on what
constitutes a concept or perception-actuation mechariibere may also be a de-
velopmental stage in which the robot agent discovers, tiir@elf-exploration, its
own sensorimotor structure; its representations are titeinsic to its embodiment.
All these factors make well-founded conceptualizatiofidift. Given the scale of
this problem, human specification of cognitive content sepracluded, but general
learning structures and dynamical systems approaches mdyqe idiosyncratic
results. What is clear is that constraints from these issues mform any knowl-
edge representation methodology. We describe a set of gonastry-based repre-
sentations and processes for structural bootstrappinghwiill permit this deeper
kind of knowledge representation, and specifically addnegslow-level symmetry
detectors in 1-D, 2-D, and 3-D data can help solve the senstor reconstruction
problem.
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1 Introduction

Physical robot systems have been steadily improving forynyaars now in terms
of their capabilities, robustness, compliance, etc., hatktis a strong push to intro-
duce these systems into human environments as coopergéméseo assist people
in their daily activities. A major roadblock to this goal iset lack of strong and
robust cognitive abilities in robots, and more specificalgdequate knowledge ac-
quisition, representation and manipulation. Robots negidws kinds of knowledge
to perform effectively in real applications, and the cutrapproaches to providing
that knowledge are to: (1) have the robot learn from scrg@hspoon feed the
knowledge by human programming, or (3) have the robot usevéteto find the
appropriate knowledge.

Our goal is to explore the use of symmetry analysis as a basthé semantic
grounding of sensorimotor affordance knowledge; thislides symmetry detection
in signals, symmetry parsing in knowledge representatiod, symmetry exploita-
tion in structural bootstrapping and knowledge sharing.aie working in close
cooperation with our colleagues (Profs. R. Dillmann and $folir at the Karl-
sruhe Institute of Technology) involved in the EuropeandunXperience project
(http://www.xperience.org/). The overview they give oé tkiperience project is:

Current research in enactive, embodied cognition is builtndentral ideas: 1) Physical
interaction with and exploration of the world allows an ag@nacquire and extend intrin-
sically grounded, cognitive representations and, 2) reptasens built from such interac-
tions are much better adapted to guiding behavior than hunadtedmules or control logic.
The Xperience project will address this problemstguctural bootstrappingan idea taken
from child language acquisition research. Structural bagiging is a method of building
generative models, leveraging existing experience to prediexplored action effects and
to focus the hypothesis space for learning novel concepts devilopmental approach en-
ables rapid generalization and acquisition of new knowledgeskills from little additional
training data.

This gives us a larger context within which to test our hypstk that symmetry-
based structuring of knowledge provides a more robust seertzasis than current
methods, and in particular symmetry as applied to: the adgpn of affordances
from signals, representation as Object-Action Complef®sds provide a frame-
work for modeling actions and their effects), and explodtain generative action
discovery (structural bootstrapping). We aim to directhymnpare our results with
those of the Xperience team in terms of specific cognitivecherarks.

In order to achieve structural bootstrapping, it is neagsgahave a structure
with identifiable elements and relations which can be ex@tbto attain greater
knowledge. This can occur by broadening the domain of agjtin of knowledge
(e.g., from knowing how to open a specific bottle to knowingvhio open any
bottle of that type), or by recognizing an instance of a maesggal structure (e.g.,
recognizing a rotary joint). We describe here how both camdbéeved in the context
of the sensorimotor reconstruction problem.

In order to solve this problem, one form of knowledge of matar interest is
self-knowledge about the robot’s own structure and caji@sil this includes sen-
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sors, actuators, kinematic and dynamic structure, enesggumption and replen-
ishment, and computational capabilities (speed, spacall@aprocessing, signal
processing, internet connectivity, etc.). This providdsaais for knowledge of af-
fordances in the external world, i.e., the recognition dftexs appropriate for the
performance of a task. Working knowledge is also neededniiiriteractions be-
tween the robot and the environment for both physical astéord social interactions
(communication, cooperation, empathy, etc.). Of coursebat will also need to be
able to understand and formulate goals and the plans negdssachieve those
goals, but we do not address this aspect of cognition here.

Although the specific knowledge required by a robot will deghen the particu-
lar application domain (e.g., security, surgery, manufiac, home services, etc.),
there is a need for fundamental mechanisms which allow eatiidual robot to
obtain the requisite knowledge. Our view is that currentirods are too brittle and
do not scale very well, and that a new approach to knowledgeisition and shar-
ing is necessary. This new approach should provide firm sgengmounding in the
real world, provide for robust dynamic performance in riqale environments and
allow for communication of acquired knowledge in a broad nomity of other
robots and agents, including humans. We thus formulateoitening hypothesis:

Robot affordance knowledge acquisition and sharing can ddeshby means of a common
sensorimotor semantics which is provided by a set of group symmemwyi¢seembedded
a priori in each robot. These theories inform the productitstrmictural representations of
sensorimotor processes which, in turn, permit structural bootstrgp

2 Robot Knowledge Sharing

Much previous work on robot knowledge sharing has focusethimgs like multi-
media databases ([9, 14, 15]), ontologies ([1, 2, 40, 42448, etc. For example,
our work on RobotShare envisioned a kind of Google for robets humans, the
web allows a couple of major types of knowledge sharing: (peeson provides
some description of the topic of interest (generally teljfizand the system provides
URLSs related to the topic, and (2) a person can activate arredtprogram which
is run on a local Java interpreter. For a robot this corredpdm: (1) providing some
key information based on text, images, or other sensed fyopiehe entity, and this
results in some robot digestible form of related informatiand (2) a robot should
be able to obtain physical behavior information (e.g., howitk up a book), prob-
ably in the form of some standard reference language whitittbevinterpreted on
the robot’s body. More recently, major efforts along thesed have been initiated,
the most notable being RoboEarth [46] which is describedkmas:

At its core, RoboEarth is a World Wide Web for robots: a giaritwoek and database repos-
itory where robots can share information and learn from eauwératbout their behavior and
their environment. Bringing a new meaning to the phrase “erpes is the best teacher,”
the goal of RoboEarth is to allow robotic systems to benefit froenexperience of other
robots, paving the way for rapid advances in machine cogndiwth behavior, and ulti-

mately, for more subtle and sophisticated human-machine intenacti
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While this is a grand enterprise that may indeed lead to shairthe knowledge
level, and may well provide access to human knowledge, ih@aar that there is
an adequate semantic basis for robots to share such knavl&€tgre is evidence
that even sharing standard object representation modaissamobot platforms is
difficult [18]. Moreover, great reliance is placed on humaogsammers to provide
ontologies, as well as the frameworks for any form of shafeg., sensor models,
maps, coordinate frames, etc.).

Another major issue for robot knowledge sharing is the digsi vs. dynam-
ical systems divide. (See Vernon et al. [44] for a survey afritive architectures
for robots.) Cognitivist robot architectures determintas based on syntactic ma-
nipulation of symbol tokens derived from perception; ad#ph is the acquisition
of knowledge; motivation is derived from some impasse todsslved, and inter-
agent actions depend on the ontology. Dynamical systerhgectures, on the other
hand, are some form of concurrent self-organizing netwatlk global system states
which construct skills in response to (or to cause) pertishs; motivation consists
of expanding the interaction space, and inter-agent axti@pend on the embodi-
ment of the robot. Each approach has its own pros and conshisesirvey!), but
here the issue is that it is desirable that robots of all ddgniypes be able to share
knowledge with each other and with humans. Moreover, mdsitsomay eventu-
ally be some mix of these, with dynamical systems at the laoetrol levels, and
symbolic representations at the higher planning levelsowkedge sharing in some
form is needed across these levels as well.

If robots are to share knowledge then, it is essential to kstaied how knowl-
edge is acquired and represented by robots. One approacsinsyly provide some
general learning mechanisms and let the robot gather serator data to discover
the world. Alternatively, some innate knowledge may be eshdieel in the robot and
this provides a description of all the entities of interesttte robot as well as how
to interact with them (e.g., generate control actions) thase sensor input. Most
systems lie somewhere in between these two extremes. Anoidjer decision is
whether or not to provide each robot with a description dalfter allow it to solve
the sensorimotor reconstruction problem to achieve thiglly, if new knowledge
can be acquired by the robot, then the nature of this learaimyits representa-
tion impacts the possibility of sharing. That is, physicahol systems can share
automata, formulas, etc., while artificial neural netwocks share topology and
weights, and dynamical systems can share equations andatims of information
(e.g., dominant frequencies, phase and gain values, eto.\Vithich phase or state
space symmetries can be detected and exploited).

This then leads to some of the key questions in robot knoveestring: (1)
How much knowledge, including how to acquire knowledgenisaite (i.e., provided
when built), and (2) what should this innate knowledge be@ddfse, Plato held that
all knowledge was innate and based on transcendent forwesi@nt and unitary ob-
jects which describe the invariant relations that conitndividual objects). More
recently, Chomsky [7], Pinker [36] and others have propdbkativarious aspects of
human cognitive ability are innate (provided for genetigaFortunately, we do not
need to solve the nativist vs. empiricist debate as it appbehumans. Moreover,
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almost all robot cognitive architectures include some tarkemowledge: subsump-
tion architectures have innate knowledge in the form ofrthardware: RoboEarth,
Armar lll, Soar, etc. have innate knowledge about sensotgators, object models,
planning, language, etc. Our view is that it is too cumbersénhumans to provide
all the necessary knowledge for a robot to perform robustihée world; however,

we do believe that the notion of invariance is key to prowdangrounded seman-
tics for robot knowledge. Note that there have been somenteneves to include

low-level continuous representations in the more stanshambolic cognitive archi-

tectures (see Laird [24, 50] who adds a continuous reprasentto Soar, and also
Choi [6] who propose ICARUS, a symbolic cognitive architeetfor a humanoid

robot); however, the high-level concepts of these systemnsad arise through the
sensorimotor process.

3 Symmetry in Cognition

Symmetry [49] plays a deep role in our understanding of thednia that it ad-

dresses key issues of invariance, and as noted by Viana“B¥ahmetry provides
a set of rules with which we may describe certain regulaiéimong experimental
objects.” Symmetry to us means an invariant, and by detengrioperators which
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Fig. 1 Wreath Product Descriptions of an Office Scene (squéregs, cone:d\ Z\ ©Zy, sphere:
0O(3), cylinder: 0\ ®Zz ® Z», grid: 022422V 1 ZH).

leave certain aspects of state invariant, it is possiblé@heeidentify similar objects
or to maintain specific constraints while performing othpemtions (e.g., move
forward while maintaining a constant distance from a war an excellent in-
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troduction to symmetry in physics, see [8]. We have shown towse symmetry

in range data analysis for grasping [10]. Popplestone andhowed the value of
this approach in assembly planning [27], while Selig hasided a geometric basis
for many aspects of advanced robotics using Lie algebras3®8 Recently, Pop-

plestone and Grupen [37] gave a formal description of gérexasfer functions

(GTF's) and their symmetries. In computer vision, Michaelyton has described
the exploitation of symmetry [25] and the use of group thexsya basis for cogni-
tion [26], and we expand on his approach here.

Leyton [26] argues that thereath group products a basic representation for
cognition as stated in tH8rouping Principle “Any perceptual organization is struc-
tured as an n-fold wreath produ@t...:G,” and argues that “human perceptual
and motor systems are both structured as wreath productsd €lear introduction
to wreath products see [5] or [29]; the latter defines the thrpeoduct as:

Given a groups and a permutation grougt” C S, (the symmetric group on objects), the

wreath product?.7 = {(g,h) | g € ¥",h € 2} is a group under the operation defined

by:

(d,h) = (ag,...,an,K)(bg,...,by,m) = (@b 11y, - -+ @nbymy -1 () kM)
(Of course, the unrestricted wreath product may also be.u$ee wreath product
essentially represents all possible group actiong#oon ¢. Figure 1 depicts our
goal of producing wreath product descriptions from a scengeneral, such struc-
tural descriptions can be recovered from 1-D, 2-D and 3-.d&tote that in this
figure: ZV denotes a translation in the vertical ax@$' denotes a translation in the
horizontal axisZ, is the cyclic group of 4 elementBGL is the general linear group,
and theR/Z andZ, products help describe how to produce truncated cylindads a
cones. The main point is that sensor signal data can be rédoishort expressions
as geometric symmetries.)

Operationally, our hypothesis is thgtoup theoretic representations (G-Reps)
inform cognitive activity;wreath productsas suggested by Leyton [25, 26] are a
key part ofG-reps We describe here symmetry-based signal analysis and gonce
formation in sensorimotor reconstruction based on 1-Daigm schematic view
of our proposed symmetry-based affordance architecthesSgmmetry Enginds
given in Figure 2. The successful demonstration of this @ggn will constitute a
major advance in the field of cognitive autonomous agents$ vél also motivate
joint research programs into human cognition.

4 Sensorimotor Reconstruction

As pointed out by Weng [48], a major research question inrearteous mental de-
velopment is "how a system develops mental capabilitiesudjin autonomous real-
time interactions with its environment by using its sensorg effectors (controlled
by an intrinsic development program coded in the genes agded in by hand).”

Thus, a representation is sought derived from sensorinsigorals as well as the
grouping of such signals as processing takes place. Noté¢htisaassumes that no
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Fig. 2 The Symmetry EngineRerceptionrequires an appropriate set of operators to constuct
reps this includes vector constructors, symmetry detectors, and syiynib@sed data indexing
and variance operator€ontrol actionrequires the ability to mafs-repsonto action sequences
to achieve desired results in the worfdoncept Formatioroperators allow the exchange GF
repswith other agents. Finally, thduman Machine InterfacéHMI) will exploit human symmetry
perception, as well &-repproperties to achieve context-aware integrative displagfofmation.

coordinate frames exist in this setting; see [41] for a dis@n of coordinate frames
in biological systems. Asada et al. [3] give a good accourthefdevelopment of
body representations in biological systems and maintah”thotions deeply par-
ticipate in the developmental process of sensing and pgocepThey review data
ranging from spinal reflexes with fixed motor patterns, toiotoassembly, to mixed
motion combinations in the cerebrum. Lungarella [28] alas much to say on this
issue, and of great interest here, states that "spontamaetivgy in newborns are not
mere random movements ... instead organized kicks, armmmws, short phase
lags between joints ... may induce correlations betweesisgand motor neurons.”
Early on, Pierce [35] described an approach to learning aefrafdhe sensor set
of an autonomous agent. Features are defined in terms of reserséata, and fea-
ture operators are defined which map features to featuresgdal is to construct a
perceptual system for this structure. One of the fundanhésdture operators is the
grouping operatowhich assigns features to a group if they are similar. Thiskwo
was extended to spatio-visual exploration in a series oéaf80, 31, 35]. For a
detailed critique of Pierce’s work, see [11]. Olsson exeghthis work in a number
of papers [19, 20, 21, 22, 23, 32, 33]. He used informatioordtc measures for
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sensorimotor reconstruction, and no innate knowledge géiphl phenomena or
the sensors is assumed. Like Pierce, Olsson uses randommaotigeto build the
representation and learn the effect of actions on sensgmrform visually guided
movements. The major contributions are the analysis ofinétion theoretic mea-
sures and motion flow. O’Regan and &[34] use the terrsensorimotor contingen-
ciesand give an algorithm which can determine the dimension efsghace of the
environment by "analyzing the laws that link motor outputsénsor inputs”; their
mathematical formulation is elegant.

4.1 Symmetry Detection in 1-D Signals

A symmetry defines an invariant. The simplest invariant @idy. This can apply
to an individual item, i.e., a thing is itself, or to a set ah#ar objects. In general,
an invariant is defined by a transformation under which oneatbhs mapped to
another. Sensorimotor reconstruction can be more eftdgtiachieved by finding
such symmetry operators on the sensor and actuator datalésgd, 177).

Invariants are very useful things to recognize, and we @efbat various types
of invariant operators provide a basis for cognitive fumies, and that it is also useful
to have processes that attempt to discover invariancemetadmong sensorimotor
data and subsequently processed versions of that data.

Assume a set of sensor¥, = {S,i = 1...n»} each of which produces a finite
sequence of indexed sense data valggs/herei gives the sensor index anajives
an ordinal temporal index, and a set of actuaters= {A,i = 1...n.} each of
which has a finite length associated control sigAgl, wherei is the actuator index
and | is a temporal ordinal index of the control values.

Here we are interested in determining the similarity of seinsotor signals.
Thus, the type of each sensor as well as the relation to motdral actions play a
role. It is quite possible that knowledge of the physicalmmaenon that stimulates
a sensor may also be exploited to help determine the stmiofithe sensor system
and its relation to motor action and the environment [12].

We suppose that certain 1D signal class structures are ten@nd are known
a priori to the agent (i.e., that there are processes fottifgierg signals of these
types). Given an isometry that maps a 1-D signal onto itdedfe are 3 possibilities:

1. All points map to themselves (thdentity symmetry).

2. Only one point maps to itself (threflectionsymmetry). E.g., this is the case for
the histogram of a Gaussian sample.

3. No point maps to itself (&ranslation symmetry). A translation can be either
continuous (a linear signal) or discrete (a periodic signal

We have developed algorithms to detect these symmetriessthem to classify
sensor and actuator types in the sensorimotor recongtnuptioblem (see [16]).
This allows sensor classification without any actuatios (imuch lower energy ex-
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penditure), and achieves much greater classification cioess compared to previ-
ous methods.
The output of the 1-D symmetry analysis is one of:

Z;: a non-symmetric base shalpe

Zy: a basic shapb with reflexive symmetry.

(: a continuous translational signal; i.e., a line with slopand intercepb.
Z: a periodic signal with base shapand periodT .

Note that symmetry analysis may be applied to transformgdass (e.g., to the
histogram of a signal; a Gaussian sample should result istthetural typezy).
Thus, afirst level symmetry is one that characterizes aesighal as belonging
to one of these categories. Of course, composite signalbeammnstructed from
these as well.
Next, pairwise signal symmetries can exist between siginalee same class,
and if so, they will be grouped:

e linear (y=ax+b)

— same lineag =az, by =hy
— parallel:a; = ap, by # by
— intersect in point; rotation symmetry about intersecpoimt

e periodic (y(t+T) = y(t))

— same period
— same Fourier coefficients

e Gaussian (Ng,02))

— same mean
— same variance

4.2 The Sensorimotor Reconstruction Process

The sensorimotor reconstruction process consists of tlosviag steps: (1) perform
actuation command sequences, (2) record sensor data t€Bjnilee sensor equiva-
lence classes, and (4) determine sensor-actuator redafdoradditional criterion is
to make this process as efficient as possible.

Olsson, Pierce and others produce sensor data by applyidgmavalues to the
actuators for some preset amount of time, and record theosseguences, and
then look for similarities in those sequences. This hasraépeoblems: (1) there
is no guarantee that random movements will result in seretarttiat characterizes
similar sensors, (2) there is no known (predictable) refabetween the actuation
sequence and the sensor values, and (3) the simultaneoasi@actof multiple ac-
tuators confuses the relationship between them and thersens
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To better understand sensorimotor affects, a systemsagipie helpful. That is,
rather than giving random control sequences and trying ¢gpter what happens,
it is more effective to hypothesize what the actuator is€gilimited choices) and
then provide control inputs for which the effects are kno®aoch hypotheses can
be tested as part of the developmental process. The basis dfontrol that can
be applied include: none, impulse, constant, step, lingenipdic, or other (e.g.,
random).

Next, consider sensors. Some may be time-dependent (eeggyelevel), while
others may depend on the environment (e.g., range senfbus).it may be possible
to classify ideal (noiseless) sensors into time-dependedttime-independent by
applying no actuation and looking to see which sensor ségar@ not constant (this
assumes the spatial environment does not change). Thiagtties to noisy sensors
in that it may be more useful to not actuate the system, amd ¢lassify sensors
based on their variance properties. That is, in realistith(moise) scenarios, it may
be possible to group sensors without applying actuatioii.at a

Consider Pierce’s sensorimotor reconstruction procéssalistic noise models
are included, the four types of sensors in his experimeatgyé, broken range, bear-
ing and energy) can all be correctly grouped with no motioallat(This assumes
some energy loss occurs to run the sensors.) All this can teendieed just using
the 1-D symmetries described above and the means and \esiahthe sensor data
sequences. This leads to the following algorithms:

Algorithm SBSG: Symmetry-Based Sensor Grouping

1. Collect sensor data for given period
2. Cassify Sensors as Basic Types
3. For all linear sensors

a. Goup if simlar regression error
4. For all periodic sensors

a. Goup if simlar Period
5. For all Gaussian sensors

a. Goup if simlar variance

This algorithm assumes that sensors have an associated Notg that this requires
no actuation and assumes the environment does not chamgdlyRihe similarity
test for the above algorithm depends on the agent embodiiNets that in 4a and
5a above, a similarity measure must be established; thismdispon the particular
application and needs.

Algorithm SBSR: Symmetry-Based Sensorimotor Reconstruction

1. Run single actuator and
col l ect sensor data for given period
2. For each set of sensors of sane type
a. For each pair
i. If translation symretry hol ds
Determ ne shift val ue
(in actuation units)



The Role of Symmetry in Structural Bootstrapping 11

This determines the relative distance (in actuation ubigtjveen sensors. E.g., for
a set of equi-spaced range sensors, this is the angulat.offse

4.3 Comparison to Pierce’s Work

A set of simulation experiments are described in ChapterHi@fce’s dissertation
[35]. The first involves a mobile agent with a set of range ses)sa power level sen-
sor, and four compass sensors. The sensors are groupecearalgtructural layout
in 2D is determined. The second experiment concerns an afrplgotoreceptors.
Here we examine the first experiment, and in particular, theggenerator.

The basic setup involves a64 n¥ rectangular environment with a mobile robot
defined as a point. The robot is equipped with 29 sensors alhath take values in
the range from zero to one. Sensors 1 to 24 are range sensicisard arranged in
an equi-spaced circle aiming outward from the robot. Raegsea 21 is defective
and always returns the value 0.2. Sensor 25 gives the volkagé of the battery
while sensors 26 to 29 give current compass headings for Nasth, West and
South, respectively. The value is 1 for the compass direatiearest the current
heading and zero for the other compass sensors. There aradtwos,ap anday,
to drive the robot, and these can produce a maximum forwaedspf 0.25 m/sec,
and a maximum rotation speed of 100 degrees/sec. We assattiedlvalues of the
motors range from-1to 1, where-1 produces a backward motion and 1 produces a
forward motion (more specifically, assume the rotation& akthe tracks is aligned
with they-axis; then a positive rotation moveto x and corresponds to a positive
rotation abouy in the coordinate frame).

Some details of the motion model are left unspecified; tloeesfve use the fol-
lowing model:

if a0>= 0 and al>=0
t hen robot noves forward mn(a0,al)*0.25 nfsec
robot rotates ((a0-al)/2)+*100 degrees/sec

el seif a0<=0 and al<=0
t hen robot noves backward abs(max(a0, al))=*0.25 m sec
robot rotates ((a0-al)/2)*100 degrees/sec

el seif a0>0 and al<O0
then robot rotates ((a0-al)/2)*100 degrees/sec

end

Moreover, if the robot attempts to move out of the rectangalavironment, no
translation occurs, but rotation does take place.

Two pairwise metrics are defined (vector and PDF distanees)based on these
the sensors are grouped pairwise. Then the transitiverel@staken on these. Pierce
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runs the simulation for 5 simulated minutes and reportslt®sn the sample data
generated from that run. Based on the samples generatedtiremun, the group
generator produces seven groups:

Range: {1,2,3,4,5,6,7,8,9,10,11,12, 13,
14,15, 16, 17, 18, 19, 20, 22, 23, 24}

Def ective range: {21}

Battery Vol tage: {25}

Conpass (East): {26}

Conpass (North): {27}

Conmpass (West): {28}

Conpass (South): {29}

It is not clear why range sensors are grouped, but compaserseare not, nor why

a run of five minutes was selected. In our attempt to replittateexperiment, we

tried runs of various time lengths and found that the grogigiorrectness rose to a
maximum at about five minutes, but never got a perfect result.

4.4 Symmetry-based Grouping Operator

Any simulation experiment should carefully state the goestto be answered by
the experiment and attempt to set up a valid statistical éwonk. In addition, the
sensitivity of the answer to essential parameters needs éxémined. Pierce does
not explicitly formulate a question, nor name a value to hareged, but it seems
clear that some measure of the correctness of the sensquiggonould be appro-
priate. From the description in the dissertation, Pierogina experiment once for 5
minutes of simulated time, and obtained a perfect groupdhgtisn.
From this we infer that the question to be answered is:

Grouping Correctness. What is the correctness performance of the proposed grouping
generator?

This requires a definition of correctness for performancad \&a propose the fol-
lowing:

Correctness M easure: Given (1) a set of sensor§S,i =1 :n} (2) a correct group-
ing matrix, G, whereG is ann by n binary valued matrix witlG(i, j) = 1 if sensors
S andS; are in the same group ai@li, j) = 0 otherwise, and (3l ann by n binary
matrix which is the result of the grouping generator, thendhouping correctness

measure is:
n n

G,H) = )/
He(G,H) ;;[(d;)/n]
&,j = 1if G(i,j)==H(i,j); 0 otherwise

Note that we defin& here for the purpose of evaluation of the method, but a
robot agent will need to validate any groupings that it dvges. This involves some
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form of learning process, and we do not deal with that herevéver, we believe
that this can be based on how well affordances work whichmgpa the grouping.

4.4.1 Sensor Grouping with Noise (No actuation)

Assume that the sensors each have a statistical noise nitdeteal-valued range
sensors have Gaussian noise sampled from @, 1) distribution (i.e.,Vsample=
Virue + @. The binary-valued bearing sensors have salt and peppse ndiere the
correct value is flippe@% of the time. Finally, the energy sensor has Gaussian noise
also sampled from#'(0,1). (The broken range sensor returns a constant value.)

Based on this, the grouping correctness results using SBS@wen in Figure 3.
Sensor data sampling time was varied from 1 to 20 secondsrfanbnoise of 5%,
10% and 25%, and Gaussian variance values of 0.1, 1, and aQridks were run
for each case and the means are shown in the figure. As canmepseect sensor
grouping is achieved after 20 seconds without any actuatish Previous methods
required driving both wheels for a longer time and they castua 3k,,s more in
energy than our method{s is the actuation to sensing cost ratio).

o
I~ =3
o o

e
by
o

Measurement Correctness
Measurement Correctness
Measurement Correctness

e
3

o
@
a

0.6

. . . .
0 10 20 ~o 10 20 ~o 10 20
Time Steps (secs) Time Steps (secs) Time Steps (secs)

Fig. 3 Grouping Correctness vs. Number of Samples for SBSG; left td aighfor binary salt and
pepper noise of 5%, 10%, and 25%; curves for 0.1, 1.0, and Hi@ince are given in each plot.

4.4.2 Sensor Grouping (Actuated)

Given a set of sensors that characterize the group operadioine of an actuator (in
this case rotation), the sensors can be grouped based oacthindt similar sen-
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sors produce data that has a translation symmetry alongmimgaral axis. Figure 4
shows representative data for the simulated range and aaspasors. The simple
determination of a translation symmetry between sign#dsvalboth grouping (i.e.,
the signals match well at some time offset), and the anguffi@reince between the
sensors (given by thg¢ser at which the symmetry occurdys sset is proportional
to the angle between the the sensors in terms of actuatids. figure 5 shows
the perfect grouping result with noise of 1% in the compassa@edata and 0.1
variance in the range sensor data (the figure shows a 29x2arsiyrmatrix where
white indicates sensors are in same group, and black imdi¢hat are not).

Range Sensor 1 Range Sensor 2 Range Sensor 13

1 1

0.9 0.9 0.9

208 208 208
o o [
> > >

o 0.7 o 0.7 o 0.7
j=23 i=2] =
15 15 15
< Il Il

x 0.6 x 0.6 x 0.6

0.5 0.5 0.5

0.4 0.4 0.4

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Time Step (0.1 sec) Time Step (0.1 sec) Time Step (0.1 sec)
Range Sensor 26 Range Sensor 27 Range Sensor 28

14 14 1.4

12 12 12

[ 1 [ 1 [ 1
= 2 2

Sos Sos Sos
@ @ @

2 0.6 206 206
< Il Il
@ 14 14

0.4 0.4 0.4

0.2 0.2 0.2

0 0 0

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Time Step (0.1 sec) Time Step (0.1 sec) Time Step (0.1 sec)

Fig. 4 Sensor data showing translation symmetry: Row 1 shows sensors 1,23;@R0dw 2 shows
compass sensors 27,28, and 29.

4.4.3 Unactuated Physical Experiment

We have performed experiments with physical sensors tdatalithe proposed ap-
proach. Data was taken for both the static case (ho actyatiahthe actuated case
(camera rotation). Two sensors were used in this experiraer@mera and a micro-
phone. The camera was set up in an office and a sequence of 2§6swas taken
at a 10Hz rate. Figure 6 shows one of these images. The 25x2&r szt of pixels
from the image comprise a set of 625 pixel signals each otheR@0. An example
trace and its histogram are given in Figure 7. As can be shanistqualitatively a
Gaussian sample. Figure 8 shows a 200 sequence signal ojpinare data, and its
histogram which also looks Gaussian.
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S1S2... S2

S1
S2

S29vy

Fig. 5 Grouping Matrix: 29x 29 binary matrix; sensors 1-24 are range sensors (sensor 21 returns
constant value); 25 is energy; 26-29 are compass sensors.

The application of our symmetry detectors classified alepand microphone
signals as Gaussian signals, and grouped the pixel sigepdsately from the mi-
crophone due to the difference in their variance properties

4.4.4 Actuated Physical Experiment

Of course, actuation can help understand the structureeag@hsorimotor system.

For example, consider what can be determined by simplyingtat two-wheeled
robot that has a set of 22 range sensors arranged equi-spacedircle. Assume

that the control signal results in a slow rotation parabiehte plane of robot motion

(i.e., each range sensor moves through a small angle to gednext sample) and
rotates more thans2radians. Then each range sensor produces a data sequédnce tha
is a shifted version of each of the others — i.e., there isresstasion symmetry (of
periodic signals) between each pair. The general probléheis

General Symmetry Transform Discovery Problem: Given two sensors$; andS,, with
data sequencelg andTy, find a symmetry operatar such thafl, = o(Ty).

We also took a set of images by rotating the camera by five ddgoeements
for 720 degrees (see Figure 9 for the first eight of the 128 @wdg the rotated
sequence). Domain translation symmetry allows the ideatibn of all the pixel
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Fig. 6 The 25x25 Center Pixels from One of the 200 Static Images.

signals along a row as similar to each other (i.e., they drandhe plane of the

rotation). Due to the translation amount, the offset betwtbe signals is also dis-
covered. Moreover, due to the fact that individual signatésdassified as periodic
(with period 64), it is determined that the actuator is perfog a rotation about the
axis orthogonal to the camera’s optical axis (Figure 10 shibw overlay of the two
periodic 64-element pieces of the 1-D signal for the cenita?l pf the sequence of
128 images).

The groupings found here are mainly useful to allow the disopof, e.g., the
pixels in a specific camera, or the rangels in a range finder,atd nothing guar-
antees that distinct range finders will be grouped. For eX@nifigheir noise char-
acteristics are dissimilar (based on the selected siryilareasure), then they will
not be grouped. On the other hand, groupings should be metisistent even with
changes in environmental conditions since the groupingsnainly based on struc-
ture and noise properties. Finally, we have not yet consitleombined translation
and rotation, but run actuators independently. This is garé@sting topic for future
research.
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Fig. 8 Trace and Histogram of the 200 Amplitude Values of the MicroghData.

5 Conclusions and Future Work

We propose symmetry theory as a basis for sensorimotor secation in embodied
cognitive agents and have shown that this allows the ideatiin of structure with
simple and elegant algorithms which are very efficient. Tkgl@tation of noise
structure in the sensors allows unactuated grouping of énsms, and a simple
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Image at O degrees Image at 5 degrees Image at 10 degrees Image at 15 degrees

--

Image at 20 degrees Image at 25 degrees Image at 30 degrees Image at 35 degrees

Fig. 9 The First Eight Images in the 128 Image Sequence over 720 Degtadd
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Fig. 10 Overlay of the Two Recovered Periodic Parts of the Two Reiamis of Image Data.

one actuator rotation permits the recovery of the spatrahgement of the sensors.
This method was shown to hold for physical sensors as weils. fohm of structural
bootstrapping involves both the identification of instaoé structural prototypes
(i.e., specific 1-D symmetries), as well as the subsequaasification of a broader
type of entity (e.g., range sensors).

Several directions remain to be explored:

1. Consider rotational actuators; these can be seen to defnaup in the follow-
ing way: any specific rotation is an element of the group s, application of
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rotation is the operator. Group properties can be seen thihdhat (i) the se-
quential application of two rotations is a rotation, (iilgtbpposite rotation is the
inverse element, (iii) the application of no actuation is itlentity element, and
(iv) associativity holds. [Note that rotation in just onense forms a group, and
various combinations of actuators may form larger groupg.; &vo wheels.]

— The analysis of actuators as specific group operators eysiudy.

. Higher-dimensional symmetries offer many opportusifier research. For ex-

ample, the transformation from spatial image layout topotar form allows 1D
symmetries to be sought which characterize object scafidgatation.
— The analysis of higher-dimensional symmetries requinedyst

. Higher-level sensorimotor symmetries will allow the ceptualization of phys-

ical objects in terms of sensorimotor sequences charaetelly some invariant
(e.g., stand-off distance in circumlocuting the object).

— The analysis of symmetries in sensorimotor interactioni thie environment
requires study.

. Finally, we are instrumenting a set of mobile robots wéthge and other sensors

and a series of experiments will be conducted to study thesselbr issues.
— Experimental studies in broader environmental interacie required.
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