A MULTI-SENSOR INTEGRATION AND DATA ACQUISITION SYSTEM

Thomas C. Headerson and Wu So Fai

Department of Computer Science
University of Utah,Salt Lake City, Utah 84112

1. Abstract

The Multi-sensor Kernel System (MKS) is proposed
as a means for multi-sensor integration and data
acquisition. This system is being developed in the
context of a robot workstation equipped with
various types of sensore, including tactile sensors

mounted on a dexts=rous hand and cameras. Specific
goals are to:
1. Develop a suitable low-level

representation of raw data and/or features
evtracted from the raw data of the various
Sensors,

2. Provide a method for efficient
reconfiguration of the sensor system in
terms of "logical" sensors which map onto
physical sensors and computation, and

3. Provide a basis for 3-D object modeling
techniques which allow the derivation of
constraint useful in controlling and
directing the acquisition of dat:z for
object recognition.

2. Introduction

The long-term goal 1s the development of a
flexible and programmable robot workstation
involving several sensors and several robot arms
and hands. The object of such a robot workstation
is the zutcwatic inspection or assembly of parts.
Clearly such a system requires a capacity for
planning actions, modeling objects, and integrating
vast amounts of sensor data to those ends.
Therefore, a prerequisite to intelligent action is
a method for representing and integrating data from
several different types of sensors.

Various 2-D -low-level representations have been
proposed by workers in the image analysis
community, however, we propose the sgatial
proximity graph as & means of describing 3-D
spatial relations between features, and a sensory
data protocol which allows for efficient
integration of non-visual information and features.
The significance of such a represmta:tion is that
it allows uniform handling of data from diverse
types of sensor systems, and that given an
sfficient representational scheme, it allows more
rapld exploitation of the sensor data for object
identification and manipulation.

CHI1891-1/83/0000/027451.00 © 1983 IEEE

Such a system should De easily reconfigurable
(perhaps even automatically). Thus, a mechanism
will be provided for defining "logical" sensors
which may involve several physical sensors and some
amount of computation; e.g., a "range finder" can
be defined in terms of two cameras and a "stereo"
program. Then the sensor system can be "compiled"
once all the logical and physical sensors have been
defined.

Many methods exist for modeling 3-D objects, and
the Multi-sensor Kernel System supports a wide
range of 3-D object modeling techniques. Such high
level models allow the automatic derivation of
constraints which can then be used to control the
acquisition of data. This provides a mechanism to
1imit the amount of sensor data acquired, and thus
reduces the amount of computation necessary to
identify objects. Al though the methods proposed
here are developed 1in the context of a robot
workstation, the results will be applicable t» any
mul tisensor system, including distributed sensing
systems, situation assessment systems, etc.

Mul tiprocessor and mul tisensor systems are being
proposed to solve a wide range of problems. In
particular, distributed sensing systems and general
robot workstations require real-time processing of
information from visual, auditory, tactile and
other types of sensors. Three major issues must be
addressed:

1. Low-level representation of the sensory
data,

2. High-level specification and organization
of the sensor systems, and

control of processors and

3. High-level
sensors.

We propose the spatial proximity graph as a low-
level representation of sensory data from diverse
sources and use this as the basis for high-level
organization and control over the acquisition cf
data. The notion of "logical" (or abstract) sensor
allows for flexible hardware/sof tware mix in terms
of a multi-sensor system and permits a simple
method of reconfiguation whenever logical or
physical sensors are added to or removed from the
system.




The first major goal is to provide a mechanism for
the integration of data available from different
sensors into a coherent low-level representation of
the 3-D world. Such a representation is crucial to
the successful application of multisensor systems,
and in particular, robot technology. Shneier et
al [14] argue:

the use of easily acquired information
from a number of sources can lead more
easily to understanding a scene than can
exhaustive analysis of an image from a
single source.

their work dealt only with visual
information, we heartily concur in principle and
propose the spatial proximity graph (see Section
2.1) as a structuring mechanism for the integration
of data from different sensors.

Al though

The second major goal is to provide a simple, yet
complete, method for (re)configuring a multi-sensor
system. We propose the "logical" sensor as a key
notion toward this end. A logical sensor maps
either directly onto a physical sensor, or provides
a description of how data from one or more physical
sensors is combined to produce the desired data.
(See Pfaff et al [11] and Rosenthal et al [13] for
a similar approach to computer graphics systems.)

Ultimately, such logical sensors could be
implemented in special hardware (a "sensor
engine").

The third major goal is to provide a context in

which constraints, both physical and logical, can
be brought to bear to reduce the amount of
computation required to solve probleas. A

prominent example of a multisensor system is the
distributed sensing system for situation
assessment [16]. Distributed sensing systems
consist of several independent stations interacting
to produce an assessment of the activity being
monitored collectively by the stations. Most
research in this area is directed toward organizing
the information flow between stations so as to
achieve an efficient and successful interpretation
of the sensed data (see also Smith [15]). Usually
the stations transmit reports or evaluations of
their own data rather than the raw data itself.
Thus, there is a need for a high-level model to
provide an interpretation of the various patterns
of information provided by the sensors, and a
mechanism for controlling the acquisition of data.
Several high-level modeling methods will be
investigated, including standard feature models and
structural models. Al though the system
organization and modeling capabilities proposed
here are generally applicable to multisensor
systems, the focus of this proposal is the design
of a mul tisensor robot workstation. In particular,
the system 1s presented in terms of the integration
of visual and tactile data toward the goal of
forming a model of the 3-D objects within the range
of a robot arm.

275

3. Acquisition and Organization of 3-D Data

The Multi-sensor Kernel System (MKS) must
coordinate the active control of several sensors,
e.g., turn a sensor off or on, aim a camera, etc.,
and integrate the data from the various sensors
into a coherent and useful description of the
world. Figure 1 shows the flow of data and control
in such a gystem, where C; to C, are the
controllers or actuators for the sensor systems S,
to Sn, respectively. In this section, we describe
the organization of incoming data into the low-
level representation.

Each sensor system, Si’ in Figure 1 has an
asociated controller, Ci; for example, a camera may
be aimed focused, or have the shutter speed
changed. A sensor system may have several
components:

- a camera system: a camera and a light

source,

- a laser range finder: a laser,

system, diode arrays, and optics.

mirror

That is, a sensor system consists of all the sensor
components and the associated controller.

Control Signals

World Model (-——)m(s" Cq CpessCy
& Description l S84 82...3n

Sensor Data
Figure 1. MKS: Multi-sensor Kernel System

The prototype system will consist of two .sensors:
a camera and a dexterous hand; these will provide
visual and tactile data, respectively. Visual
information will arrive as digital images which
must be processed, whereas the tactile information
will be provided by a multi-fingered dexterous hand
currently under development by the University of
Utah Center for Biomedical Design in conjunction
with the MIT AI laboratory. This is a U4-finger
dexterous hand which includes touch sensors on
palmer and finger surfaces. The contact sensors
are based on the use of birefringent materials in
conjunction with optical fibers [9]. However,
other contact sensors such as that described by
Hillis [8] or Raibert and Tanner [12] may also be
used as they become available.

In general, any set of sensors can be used, and
the system is organized such that each sensor
contributes infogrmation independently of the other
sensors. However, as will be described later, a



high-level model is used to control the acquisition
of data so that as time goes on, less data is
demanded from the sensors. Constraints from the
already processed data control the sensors'
acquisition of new data. '

3.1. Spatial Proximity Graphs

In the context of digital image analysis, various
schemes have been proposed for organizing
properties or features recovered from 2-D images,
e.g., Marr's primal sketch [10], the intrinsic
images of Barrow and Tennenbaum [1], and in a more
limited context, the region adjacency graph.
However, all of these representations were
developed with 2-D images in mind, and we propose a
more general 3-D organization called the spatial

proximity graph.

The spatial proximity graph provides a means for
organizing information about the 3-D world. In
particular, the approach is to:

1. obtain raw sensory data,
2. extract features from the data and the 3-D
locations of these features, and

relationships

3. determine the spatial

between the features.

The nodes of the spatial proximity graph correspond
to the positions in 3-space of the features
extracted from the raw sensory data. Nodes are
iinked by an edge if they are within some
prespecified distance. This then provides a means
for organizing information from different sources.
Moreover, high-level analysis can be performed on
this graph [4].

Thus, given a set of sensors, we assume that each
sensor provides raw data in the form of two pieces
of information. Namely, each datum from a sensor
consists of a feature and a location (in 3-space)
of that feature. In this manner, data from various
sensors can be treated uniformly. This data
protocol places an additional burden on some types
of sensors, e.g., cameras, but for most sensors,
techniques are available to determine the required
information, and for many sensors, €.8., laser
range finders, tactile sSensors, etc., the
information is directly available.

The spatial proximity graph has been studied in
the context of 3-D range data (5]. For example,
consider the surface points of the synthetic cube
shown in Figure 2. The spatial proximity graph
(SPG) for those points is given "in Figure 3.
Figures U4 and 5 show the same process for a set of
points obtained with a laser range finder used to
scan an industrial object. There are about 2000
point samples. Various views of the object points
and the spatial proximity graph are shown in
Figures 6 through 13. The original object is shown
in Figure 14.

Figure 2 - Surfuce Pornta of Cube

Figure § - 0 Dogroe View of Surface Points

Figure T - 85 Degree View of SPG

Figure 6 - 85 Degree View of Surface Points

LI
h
sl
ikl

Figurs § - 180 Degree View of Surface Points.

s e,
i RIS

Fugure 10 - Botlom View of Surface Points Figurs 11 - Botiom View of SPG

Figurs 12 - Top View of Surface Pointe Figure 13 - Top View of 5PG

Figure 14 - Original Object

276




The spatial proximity graph is a graph G, having a
distinct node for each distinct feature location.
An edge exists between two nodes if either of the
two nodes has the other as one of its m-nearest
neighbors, for some small m. If the features are
not used in forming the key, then the spatial
proximity graph imposes a direct Euclidean nearest
neighbors on the features; for example, such a
graph can be used to recover planar faces
approximating the data when the the features are
simply surface points [4].

On the other hand, if the features are encoded as
part of the key, then an appropriate choice of the
feature values in the feature space dimension can
lead to tremendous gains in object recognition
efficiency. For example, if linear edges and flat
surfaces are features assigned a large positive
value in the first key dimension, whereas curved
edges and surfaces are assigned a large negative
value, then the spatial proximity graph of a scene
containing a sphere and a cube, for example, will
be disconnected. Obviously, one would like to take
avantage of this whenever possible.

This method of representation seems well suited

to organizing mul tisensor data. Intuitively, the
spatial proximity graph makes explicit the
neighborhood relations of selected features

extracted from the data.

3.2. Feature Selection

Feature extraction plays a prominent role in
image analysis, and there is every indication that
it will do so for tactile sensors, also. Features
range from the intrinsic characteristics found in
images (edges, reflectance, depth, etc.) to
physical characteristics of a surface (temperature,
smoothness, compressability).

Features are often used to characterize objects,
and as time efficiency is of utmost importance,
features are usually chosen so as to provide an
adequate description and which can be obtained
cheaply and reliably. Discovering useful features

will no doubt be an outcome of this project, but
such features as edges, surface texture, and
surface shape will be used initially. We view

feature extraction as a distinct step performed on
the raw sensor data, but obviously a "smart" sensor
might provide such features directly.

3.3. Feature Organization

The cost is prohibitive to try and form the
spatial proximity graph directly from the sensor
data. Therefore, as a first step, the feature-
location pairs are organized into a special tree
structure (called the kd-tree) which can be built
in Order(nlogn) time for n keys, and which allows
the m-nearest neighbors of any given key to be
found in Order(logn) time complexity. See [3] for
a detailed explanation of kd-trees. Basically, a
kd-tree is a binary tree of k-dimensional Kkeys
which is organized such that at each subdivision
step, the data is split at the median along the

277

‘

axis having greatest spread in vector element
values along that axis. In our application the
feature-location pairs are used as the keys of the
tree, and the spatial proximity graph 1is built by
finding for each node, 'the m-nearest neighbors.
This approach has already been studied in the
context ’,of‘ feature encoding for satellite
imagery [6, 71].

1

4. configuring the Multi-sensor Kernel System

The Multi-sensor Kernel System (MKS) permits the
specification of':

1. both physical and logical sensors,

2. the meaning of the low-level
representation in terms of any particular
high-level representation, and

3.

We will consider the requirements of each of these
capabilities. Figure 15 shows how physical and
logical sensors are specified.

high-level models.

user
!
Edit Edit — ‘Programs
Physical Logical
Sensor Sensor Logical
~— | Sensor
Description
Sensor Physical
Specification —— | Sensor
Description
Compiled \U/
Logical Sensors
Figure 15 - Sensor Specification
Physical sensors are defined by parameters

associated with the individual sensor of some known
class, e.g., CCD array, TV camera, tactile sensor,
etc. Moreover, some indication of operationality
of the sensor should be provided. Logical (or
abstract) sensors are defined in terms of physical
devices and algorithms on their data, e.g., an
"edge image" sensor or "surface normal" sensor. It
may be possible that logical sensors can be defined
in terms of other logical sensors. The compilation
process involves producing a process which carries
out the required computation on the data from the
desired physical sensors.

The low-level model must be specified in that
meanings must be provided for the elements of the
k-dimensional vectors stored in the kd-tree. This
basically amounts to formatting instructions (see



Figure 16). Moreover, the number of neighbors and
distance thresholds in the spatial proximity graph
must be defined in terms of these meanings. For
example, if one sensor returns (x,y,z) location and
a measure of the "edgeness" at that location, while
another sensor gives a measure of surface curvature
at a point, then positions in the vector must be
assigned for the various features measured.
Another use of the kd-tree data structure is simply
to organize locations where features are detected,

i.e., (x,y,z) positions, and associate features
measured at those locations with the position
vec tors. User defined constants and functions

necessary to build the kd-tree must be specified,
too, e.g., bucket size of the terminals.

Low-Level
Model
Specification

Compiled \U/

Formatting
Routines

v
Spatial
Proximity
Graph -

«from logical sensors

Kd-tree
Manager

Figure 16 - Low-Level Model Specification

Finally, the high-level models must be specified,
along with some mechanism for matching the models
to descriptions derived from the sensor data (see
Figure 17).

High-level
Model
Specification

Y

Database

Compiled

Matcher
4

Organized
Data

Figure 17 - High-Level Model Specification

.
%

In principle any high-level modeling method could
be used, but it is reasonable to choose methods
which can better exploit the low-level
representation. For example, any method based on

278

the graphical representation of spatial relations
between the features could correspond directly to
the spatial proximity graph.

Thus, the system is configured by defining the
sensors, the low-level, and the high-level
representations, and the preceeding paragraphs have
given the compile time view of the system. The
goal, though, is the performance of some task. Our
view is that the task ties the system together as
shown in Figure 18. Thus, the given task
description defines when new sensor data is
required and how it should be obtained. Matching
models to descriptions can take place in the task
or can be incorporated directly into the sensor

system. Based on the results of the analysis of
the data, objects (or the environment) can De
manipulated.
Task e Manipulators
t \
Sensors Object
< — | Models

Figure 18 - Relation of Task to MKS

Al though the development
languages and high-level
important research topics,
project is to provide a coherent and efficient
method for obtaining a useful, low-level
representation which can serve as the basis for a
wide variety of such high-level systems.

of task definition
model techniques are
the main goal of this

5. High-Level Models

A wide range of high-level modeling techniques
are available for use, and these divide naturally
into tWwo classes: feature models and structural
models. Feature models involve mapping sensed data
(or perhaps restricted portions of the data) into a
single number or a vector which then represents the
data, while struc tural methods provide a
description of the parts of an object and the
relations (usually spatial) between the parts.

Most of the current industrial vision systems
model objects in terms of global features of
objects (or regions), e.g., area, number of holes,
hole area, etc. An object model is simply a set of
feature values, and an unknown object is identified
by how similar its feature measurements are to the
reference values. This form of object modeling is
supported quite easily by the MKS approach, namely,
a logical sensor returns the location and feature
vector of any object detected in the image (this
generalizes to non-image type _ sensors, too) .
Matching can be performed by standard methods, or
the reference vectors can be stored as a kd-tree
and then matching merely requires a query on the
tree.




Obviously, MKS also provides the basis for
structural modeling. Features are detected and
organized "locally"; they can then be analyzed
directly (as suggested by Bolles and Cain [2]), or
they can be further grouped (say from surface
points to faces) and then analyzed. We plan to
investigate several high-level modeling techniques
in terms of the MKS, and in particular, graph
models of feature organization, Hough shape models,
and syntactic (or grammatical) methods.

6. Acknowledgements

This work was supported in part by the System
Development Foundation. The original range data
for the object shown in Figure 14 was obtained with
a laser range finder developed by Francois Germain

at INRIA (1'Institut National de Recherche en
Informatique et en Automatique) located in
Roquencourt, France.

7. Bibliography
(1]

Barrow, Harry and Jay Tennenbaum.

Recovering Intrinsic Scene Characteristics
from Images.

Technical Report 157, SRI International,

April, 1978.

[2] Bolles, R.C. and R.A. Cain.
Recognizing and Locating Partially Visible
Objects: The Local-Feature-Focus Method.

Robotics Research 1(3):57-82, 1982.

[3] Friedman, J.H., J.L. Bentley and R.A. Finkel.

An Algorithm for Finding Best Matches in
Logarithmic Expected Time.

ACM Trans. on Math. Soft. 3(3):209-226,

September, 1977.

(4] Henderson, T.C.

An Efficient Segmentation Method for Range
Data.

In SPIE Conference on Robot Vision, pages

46-47. Arlington, VA, May, 1982.

[5] Henderson, T.C. and B. Bhanu.

Three-Point Seed Method for the Extraction of
Planer Faces from Range Data.

In Proc. of IEEE Workshop on Industrial
Applications of Machine Vision, pages
181-186. I1EEE, research Triangle Park,

NC, May, 1982.

[6] Henderson, T. and E. Triendl.

Storing Feature Tree Descriptions as 2-D
Trees.

In Proceedings of Pattern Recognition and
Image Processing Conference, pages

555-556. June, 1982.

[7] Henderson, T. and E. Triendl.

The k-d Tree Representation of Edge
Descriptions.

In Proceedings of International Conference on

Pattern Recognition. October, 1982.

279

(8]

(91

(10]

(1]

[12]

[13]

[14]

(151]

[16]

Hillis, D. -
A High-Resolution Image Touch Sensor.

Robotics Research 1(2):33-44, Summer, 1982.

Jacobsen, S.

personal communication.

Technical Report, Center for Biomedical
Design, 1982.

Marr, D.

Early Processing of Visual Information.

AI Memo 450, MIT, Cambridge Mass, December,
1975. '

Pfaff, G., H. Kuhlmann and H. Hanusa.

Constructing User Interfaces Based on Logical
Input Devices.

Computer 15(11):62-69, November, 1982.

Raibert, M. and R. Tanner.

VLSI Implementation of Tactile Sensing.

In Proceedings of the 12th International
Conference on Industrial Robot Technology
Conference, pages 417-426. June, 1982.

Rosenthal, D.S., J.C. Michener, G. Pfaff,

R. Kessener and M. Sabin.

The Detailed Semantics of Graphics Input
Devices.

Computer Graphics 16(3):33-38, July, 1982.

Shneier, M., S. Nagalia, J. Albus, and

R. Haar.

Visual Feedback for Robot Control.

In Workshop on Industrial Applications of
Industrial Vision, pages 232-236. IEEE,
May, 1982.

Smith, R.G.
A Framework for Distributed Problem Solving.
UMI Research Press, 1981.

Wesson, R., F. Hayes-Roth, J. W. Burge,

C. Stasz and C. Sunshine.

Network Structures for Distributed Situation
Assessment.

IEEE Trans. on Systems, Man, and Cybernetics

SMC-11(1):5-23, JAN, 1981.




