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Abstract—This paper proposes a novel scheme for target
localization in unknown environments using a prior-deployed
static wireless sensor network (WSN). The goal is to have multiple
mobile autonomous robots navigate from any point in a region to
the closest identified target location just by interacting with the
sensors. This is achieved in two ways: (i) by producing a pseudo-
gradient in the region having its peak closest to the target, and
(ii) by having the sensors assist the robots, guiding them to the
target efficiently. Such a scheme makes use of the topology of
the network to create a navigation path as the robot follows
this pseudo-gradient in the network to reach the global maxima.
It is assumed that there is no global coordinate frame for the
region i.e. the WSN and robots are not aware of their position
globally, and only make use of the relative localization based
on neighborhood information. The performance of the scheme is
analyzed in simulation with different node-densities and obstacle-
filled regions.

Index Terms—RSSI, Target Localization, Virtual Topological
Gradient, WSN assisted navigation

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have proved themselves
to be an effective media for environment monitoring. Some
of the important characteristics of WSNs are: (i) low cost, (ii)
low power requirements, (iii) multifunction capabilities, (iv)
robustness, and (v) scalability. The multifunction capability
allows them to provide a wealth of information regarding the
state of the environment they are deployed in with a variety
of sensors like seismic, magnetic, thermal, visual, etc. [1].
These characteristics allow the random deployment of WSNs
in large numbers even in human-inaccessible terrains, where
the sensors can be used to localize the source of the occurring
event, such as fire, chemical leakage as well as people in
case of search-and-rescue. In certain environments, like land-
mine areas, disaster relief operations, etc., it is suitable to use
automated agents to provide assistance. The use of multiple
mobile autonomous robot (MAR) platforms with inherent
intelligence and autonomous behavior is seen to afford several
advantages, especially as it provides distributed, cooperative
interaction with the static WSN [2], [3], [4], [5]. The robots
interact with the WSN and utilize the information from the
WSN to coordinate their response behaviors. As research in
the field evolves, the applications have become varied and
include area coverage, search-and-rescue, target detection and
tracking, cooperative transport, etc. [6], [7], [8], [9]

Such interactive coordination in an unknown environment
poses interesting challenges:

1) Efficient WSN-Robot interaction and navigation
schemes are required.

2) Time-critical response ability is needed.
3) Distributed control algorithms with localized interac-

tions are required to avoid dependence on global position
information.

It is thus, of particular interest to develop an algorithm which
can use low cost, low power and low complexity techniques
in aiding the coordination between existing static WSNs and
robots. In this paper, we introduce a novel technique for target
localization and network-guided navigation for mobile robots
in unknown surroundings. In a region uniformly covered by a
WSN, each sensor node gets a magnitude assigned to itself
depending on its communication distance from the target.
The sensor node closest to the target (target-node) would
consequently, have the highest assigned magnitude. In this
way, decreasing magnitudes get assigned to sensors away
from the target. The robot is then called upon to follow the
magnitude in the increasing direction to reach the target from
any location within the region. We call this the “pseudo-
gradient” algorithm similar to the terminology used in [10]
and [4]. Fig. 1 on the following page illustrates the concept.
The targets could be anything from sources of fire, chemical
leaks, etc. showing an inherent gradient in their distribution in
the region, to actual people in a search-and-rescue application.
In the latter case, a pseudo-gradient for a robot to follow
and reach the target, can mimic the distribution of a physical
phenomena like temperature. Since, we assume the non-
availability of global positioning information, Received signal
strength (RSS) and the number of communication hops (i.e.
hop-count) in the WSN away from the target are critical
artifacts in estimating the degradation in the magnitude away
from the target-node. We propose that the inclusion of RSS
and hop-count in distributing the magnitude is advantageous
in unknown environments to overcome the problems posed by
obstacles, noise, and link failures.

The remainder of the paper is organized as follows: Section
II discusses related work in this area. Section III introduces
our algorithm while Section IV discusses the implementation



of the algorithm with experimental results. We present a
comparative analysis of our algorithm with algorithms from
[4] and [5]. Section V concludes the paper with a reference
to future work.

II. PREVIOUS WORK

Our work is inspired from previous work done by [2], [4],
[5], [10], [11]. There are, essentially, two approaches in this
research theme: (i) position-aware, and (ii) position-unaware
algorithms. Position-aware schemes require some form of
global positioning capability for WSN nodes like GPS or
a prior implemented localization scheme. Position-unaware
schemes require no such capabilities and involve algorithms
independent of the locations of the nodes. They utilize the
present topology of the WSN, while basing their control on
the immediate neighborhood of the nodes. The algorithm in
this paper falls in the (ii)nd category.

A. Position-Aware Approaches

Chen and Henderson [11] can be seen as early proponents
of the smart sensor network philosophy which uses distributed
computation in the sensor network and coordination with
multiple robots. The authors state that the sensor network is
an “information field” for mobile robots that can guide them
to different targets. Using a model for temperature dissipation
in a region, the authors analyze the cost and efficiency utility
of the sensor network in improving the performance of mobile
robots while detecting targets. Along with global position
awareness requirement, the algorithm here also requires an
inherent gradient to be present in the source-phenomenon
being localized. Li et al. [2] show the ability of WSNs in
acting as guides to navigate robots using novel networking
protocols and robot navigation algorithms. The authors have
developed an artificial potential field based method to navigate
robots to a goal location keeping as far away from “dangerous”
(obstacle) sites as possible.
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Figure 1. Robot moving toward target following the pseudo-gradient

In [12], the authors present three algorithms which present
a gradient following technique for any mobile robot to reach
a detected target. The target in this case is the source of

a chemical leak, fire, etc. Although, one of the algorithms
presented does not require global position awareness, the
algorithm utilizes the inherent gradient present in the phe-
nomenon being sensed. Hence, the algorithms will not work
in cases of targets without inherent gradient such as search-
and-rescue applications. Kotay et al. [3] explore the use of the
synergy between GPS-enabled robots and networked sensors
to provide localization, path planning and improved robot
navigation. In [13], Verma et al. propose a scheme to guide
the mobile sensor nodes (MSNs) to move to a goal assisted by
a network of sensor nodes. The scheme assumes every node in
the network is equipped with a positioning device. The MSN
moves to the position which is calculated based on the virtual
attractive force generated from the selected nodes’ positions.
Sukhatme and colleagues discuss how sensor networks can be
used to mediate robot task allocations [14], and algorithms
for optimizing sensor placement [15]. As is seen, all these
methods require some technological ability to ascertain their
position in a global frame (e.g., GPS, magnetic compass).

B. Position-Unaware Approaches

In [10], the authors present a novel scheme to discover
the positions of individual sensing elements in a random-
distributed sensor network. Assuming one sensor node knows
its global position (i.e. a seed node), all other sensors use
communication hops from this sensor to estimate their distance
and then use iterative gradient descent to arrive at their (x,
y) position estimates. The approach here is similar to what
we propose, in that the seed serves as the target-node in our
algorithm. Corke et al., 2005 [16] describe an elaborate scheme
using a flying robot to localize sensor nodes, and then use
these localized nodes to navigate robots and humans through
the space. The scheme involves the use of a diverse set of
hardware capabilities which require a high cost and complexity
investment. In [17], Sheu et al. propose another position-
unaware mobile robot navigation scheme for the purpose of
replacing low-energy sensors. They propose the determination
of direction of movement for the robot, based on to-&-fro
movement of the robot itself. According to the authors, this
allows the RSS value to change enough to ascertain the
direction from which it is coming. This implementation is
vulnerable to the environmental variation in RSS values as
well as not being quick and efficient with all the back-&-forth
movements. Reich & Sklar [4] propose a position-unaware
navigation scheme for search and rescue purposes. The mobile
robots follow the path guided by the sensors, which have
artificial gradient assigned to them based on hop-count. The
nodes closest to the target have low gradient values. The node
nearest to the target initiates the gradient assignment flooding
the network with its gradient value set as zero. Subsequent
nodes set their gradient value as one plus the largest gradient
value in their neighborhood. The research describes a simple
scheme to navigate robot with the aid of a static sensor
network. The implementation is vulnerable to degradation due
to obstacle presence since the gradient assignment does not
account for proximity/distance of nodes to targets or to each



other. Here again, the RSS factor is not considered. Jiang et
al. [5] present a novel scheme which introduces: (i) a message
broadcast mechanism utilizing RSS values and farthest-node-
forwarding (FNF), (ii) a message exchange based mobile robot
coordination, and (iii) a tree-assisted navigation scheme for
efficient navigation of the robots to the target locations. With
these three schemes, the authors show improved performance
in time and energy efficiency of the WSN-robot coordination.
Although similar, one of the key differences in our approach
is the non-reliance on RSS having a 1:1 correspondence with
physical distance.

The work discussed in this paper is envisioned to be an
improvement on the implementations of [4] and [5].

III. A DISTRIBUTED ALGORITHM FOR TARGET
LOCALIZATION

Fig. 1 also shows an example of the pseudo-gradient dis-
tribution as the dispersion of color in the region. The target-
node is ‘Dark Red’ and the color fades to ‘Blue’ further away
from the target. The goal of the algorithm is to guide a robot
suitably and efficiently in an unknown environment with the
help of uniformly distributed intelligent sensor nodes. As far
as this can be seen as a motion planning problem for robots,
the key difference is the discretization of the motion space
by the locations of the nodes in the WSN where the node-
density of the WSN dictates how closely the motion space can
be approximated by this discretization. The advantage of this
discretization is that since the robot is limited to only interact
with the WSN, its movements are dictated by the pseudo-
gradient magnitudes at only the locations of the nodes. The
robot does not concern itself with the non-represented space
between two neighbor-nodes as it moves in straight line paths
from node-to-node. It is up to the algorithm then to present
a uni-directional path from start-to-end to the robot. In effect,
the complexity and burden of motion planning is now shared
by the robot and the distributed intelligence in the WSN.

Before describing the algorithm, certain important assump-
tions that are made with respect to the WSN & robot capabil-
ities are stated here:
• The distribution of the sensor nodes is assumed to be

uniformly random over the region of interest.
• The sensor nodes implement a flooding protocol which

helps in periodically updating the memory of the nodes
with the latest gradient value.

• The robots have the ability to communicate through
the wireless medium with the sensor nodes. The robots
have directional antennae for wireless interaction with the
WSN.

A. Algorithm

As stated earlier, the algorithm consists of each sensor
calculating the value of a function. The magnitude at each
sensor depends on its distance estimate from the target itself
which in turn utilizes the communication hop-count and the
wireless signal intensity (or RSS) in the node neighborhood.

• The RSS gives an indication of the intensity of the signal
in a wireless communication link [18]. It provides a
metric for assessing how stable a connection is given
environmental changes, such as noise, obstacles, interfer-
ence, etc. or changes in position. Signal strength distance
estimates have been empirically analyzed in [19] and
[20].

• Communication hop-count is an indication of the straight
line distance of a particular node in a WSN from a source
node that initiates a message. This essentially derives
from the breadth-first search tree [21], where each node
maintains a minimal hop-count to the source node.

In essence, every node senses its vicinity for a particular target.
The node closest to the target marks itself as a target-node
and initiates a packet exchange via the flooding mechanism,
which allows subsequent nodes to set their hop-count as well
as the magnitude. The target-node sets its own magnitude as
the highest in the region (this value is available to all the
nodes as a preset). The hop-count for this node is set as ‘0’.
The function used to calculate the magnitude at each node is:

vgicalc = vginode •
[

(RSSi)

(Hop-Counti)

]
(1)

for all i neighbors. Each node stores the highest value as its vg-
value. The RSS value is scaled between ‘0 ~ 1’. Each sensor
node implements the algorithm (Algorithm 1 on the next page)
independently by interacting with its immediate neighborhood.
As described in the algorithm, each sensor node in the WSN
calculates two magnitudes vgsense and vgcalc.

1) vgsense is the sensed value of the phenomenon itself. For
instance, temperature shows an inherent gradient in its
distribution in a region, which can be utilized in the
pseudo-gradient in the WSN.

2) vgcalc is the calculated magnitude using equation 1.
The higher of the two values is retained as vgnode and propa-
gated in the network. Algorithm 1 on the next page describes
the logic more clearly.

As shown in equation 1, the calculated value of vgcalc at the
node scales the received vgnode value from the neighbors by
their respective RSS and hop-count values. Equation 1 signifies
the following points:
• vgcalc at a particular node is dependent on the vgnode value

it receives from its neighbors.
• Higher the RSS value, higher is the vgcalc. This factor

incorporates how close the sensor node is to the highest
vgnode-value node in its neighborhood.

• Higher the hop-count, lower is the vgcalc. This factor
incorporates how far the sensor node is from the target-
node.

Since the dBm value of RSS is always negative [18], it is
scaled to the ‘0 ~ 1’ range. A higher dBm will have a value
closer to ‘1’ and a lower dBm will show an RSS value closer
to ‘0’. A key aspect of the algorithm is the sensor node
retains the highest magnitude after getting updates from its
neighbors. Implicit in this methodology is the fact that any



Algorithm 1 Magnitude assignment algorithm
1: Set MAX_VG = 100;
2: if target_pos==nearby then {node=target-node}
3: Hop-Count = 0;
4: vgsense = sensed_entity
5: vgcalc = MAX_VG
6: if vgsense > vgcalc then {vgnode = vgsense}
7: do nothing
8: else {vgnode = vgcalc}
9: do nothing

10: end if
11: else {node is not target-node}

12: vgsense =

{
sensed_entity (if_exists)
0 otherwise

13: for all nodes ‘i’ in neighborhood do {get RSS, Hop-
Count, vgnode}

14: Hop-Counti = Hop-Countneighbori + 1
15: Get vgicalc from equation 1 on the preceding

page
16: end for
17: Hop-Count = min

∀i (Hop-Counti)
18: vgcalc =

max
∀i
(
vgicalc

)
19: vgnode =


vgsense, vgsense > vgcalc

vgcalc, vgsense < vgcalc

vgcalc, otherwise
20: end if
21: broadcast [vgnode; Hop-Count]

node only broadcasts its highest value to its neighbors. If,
from a received magnitude from a neighbor, the calculated
value is less than the previous retained value, then the node
discards this message and does not propagate it further. In
effect, any sensor node only broadcasts a message when it
sees a positive change in its magnitude assignment from the
received message. This property not only limits the number of
messages being exchanged by the network, but is also critical
in terms of the convergence of the magnitude at any sensor
node. The performance of the algorithm with respect to this
property is shown later in the paper.

B. Robot-WSN interaction (pseudo-gradient following)

Once the magnitudes have been assigned to each sensor, the
next step is the interaction between the robot and the WSN as
it moves towards a target. As stated earlier, the robot utilizes
directional antennae to determine the directions of wireless
signals. Algorithm (2) shows the process followed by the robot
in navigating to the target-node.

The robot thus estimates the gradient at each sensor node as
the difference in magnitudes of the neighbors. It then follows
the steepest positive gradient to the subsequent nodes and
likewise, towards the target. As discussed in section III-C,
the path thus followed by the robot is a uni-directional path
without local maxima. The robot stops only when it reaches
the target-node.

Algorithm 2 Pseudo-Gradient-following navigation algorithm
1: loop
2: Locate close to a node ‘n’ in the WSN
3: for all neighbors ‘i’ in the neighborhood of ‘n’ do

{get vgnode}
4: determine directions of all neighbors
5: δni

= vginode − vgnnode
6: end for
7: δn = max

∀i (δni) {if all ‘vgi’ are negative, then ‘n’ is
target-node}

8: nextNode = ‘ith’ neighbor corresponding to δn
9: Move to nextNode as node ‘n’ in a straight-line

path
10: end loop {loop until ‘n’ is target-node, i.e. target is

reached}

C. Correctness Analysis

Proposition 1: There is no local maxima in the magnitude
distribution in the WSN.

Proof: A local maxima in this scheme implies two
nodes having each other as the highest magnitude nodes in
their respective neighborhoods. As shown in Algorithm (1),
following the target-node, all subsequent nodes scale the vgnode

value depending on RSS and hop-count. For a particular node,
no two nodes in its neighborhood can have the same RSS
value, the same hop-count as well as the same vgnode value.
Therefore, the calculated vgnode-value for each neighbor using
equation 1 on the preceding page, is different. Since all values
are different, there can only be one vgnode value which is the
greatest in a neighborhood. In other words, if two nodes in a
neighborhood of a node have the same RSS value, hop-count
and vgnode values, then they are located at the same position
with respect to the node under consideration. In this case, the
choice between these two nodes is irrelevant since they will
guide the robot in the same overall direction.

Theorem 1: If a node has a vgnode value, then there exists a
path from that node to any target located in the region covered
by the WSN.

Proof: The prerequisite for this property is that the
network be connected [22], i.e. there needs to exist a path (of
any length) from every node to every other node in the WSN.
If a node has a vgnode value, then it indicates that the node
has a neighborhood with at least one other node. Following
Proposition 1, there exists a node in its neighborhood with the
highest vgnode value. Thus, the node has a path leading towards
the target-node. Consequently, a connected graph implies that
this node would have a path to all targets within the coverage
area of the WSN.

IV. EXPERIMENTS

Two critical requirements that need to be mentioned here
pertain to the distribution of the WSN in a region and the
characteristics of the region itself.

1) There needs to exist a geographic path from a particular
starting point for the robot to traverse to reach the target.



The environment considered in our experiments is a 2-
dimensional planar field with or without obstacles. The
physical region and obstacle placement needs to be such
that the target is not completely occluded from the robot
in terms of path traversal.

2) If such a path exists then the WSN distribution should
be such that there exist nodes physically located close to
that path. Since the robot is to be guided by the WSN,
the existence of the geographic path is not a sufficient
condition for the success of the algorithm. The absence
of nodes in close proximity to this path is a necessary
condition for the algorithm to be useful.

Fig. 2 shows target-detection in a 50-node WSN uniformly dis-
tributed over a region. Fig. 3 shows a spline-interpolated image
of the same network. The “Black dots” represent the node
locations with their elevation representing the magnitudes.
As seen, the global maxima exists close to the actual target
location (the highest node is the target-node). The magnitude
then decreases away from the target. The robot simply follows
the steepest gradient to reach the target.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Start

Target

Target−Node

Figure 2. Navigation Path to a target

Figure 3. Spline-Interpolated magnitude distribution showing the target
location as the peak of a hill

A. Convergence

Flooding as a routing protocol, implies the simple transmis-
sion of every incoming message that a node receives on every
outgoing link, except the one it arrived on [21]. Without any
damming mechanism like time-to-live or maximum number
of re-transmissions, a single message can live forever in the
network. The convergence of a network to a global equilibrium
state after a start-up depends on the speed of information
propagation in the network. In our case, convergence implies
all the sensor nodes settling on their final magnitudes after a
message has been initiated by the target-node and no further
messages are exchanged by any node in the WSN. In order
to reduce the wasteful exchange of messages, and thereby
improve the convergence rate of the network, the algorithm
allows the sensor nodes to re-broadcast a vg-value message
only if the newly calculated value is greater than the stored
value i.e., one transmitted by the node earlier. In effect, every
sensor node transmits the vg-value message only as many
times as it sees an incremental change in its stored value.
Fig. 4 shows the average number of retransmissions and the
average number of nodes involved in those, before no more
packets are exchanged by the nodes and all the nodes have
converged to their highest magnitudes. In all cases, only about
10% nodes are involved in retransmissions.
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Figure 4. Convergence statistics of the WSN with the modified Flooding
mechanism

B. Navigation Effectiveness

To analyze the effectiveness of the algorithm, two key
parameters are: (i) travel-distance for the robot in reaching a
target, and (ii) the number of nodes required in the navigation
path from the start location to the target. The travel-distance
parameter is measured as the ratio of the actual distance
traveled by the robot to the shortest straight line distance from
the start location to the target. For a good effectiveness mea-
sure, we have compared our algorithm with the Reich scheme
[4] and the FNF scheme [5]. Fig. 5 shows the difference



in trajectories for the three methods from the same starting
point to a target. Figures 6 and 7 show the travel-distance and
number of nodes taken by our algorithm as compared to FNF
and Reich schemes. As seen, our algorithm performs similar
to the Reich scheme and better than the FNF scheme in terms
of the number of nodes taken to reach the target from the same
starting location. It performs better than both the schemes on
the travel-distance parameter. Since we use Received Signal
Strength to scale the magnitude in a neighborhood along with
hop-count, the effect is to create a steeper gradient in the
neighborhood (see Fig. 3), which leads to a shorter path for
the robot to follow. The main advantage in using RSS while
calculating the magnitude distribution is in target-localization
in an obstacle-filled region, as explained in the next section.
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C. Effect of Obstacles

Received signal strength in WSNs is an important character-
istic that can be exploited in order to utilize more qualitative
information regarding the topology of the network as well
as the environment it is deployed in. Consider Fig. 8. Even
though node C is closer to node A than node B, the presence
of the obstacle between nodes A and C will cause the gradient
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Figure 7. Number of nodes comparison graph

to be steeper between nodes A and C than nodes B and
C1. This is due to the weaker link (i.e. lower RSS) between
nodes A and C. Here, the robot would be ill-advised to
follow the steepest gradient towards the target, since clearly,
[vgA−vgC > vgB−vgC ]. Algorithm (2) would lead the robot
to node A from node C, traveling straight into the obstacle.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

Obstacle

Target
[Target−Node, 100]

[A, 65.67]

[B, 64.51]

[C, 20]

[D, 4.32]

Figure 8. Qualitative Analysis of Obstacle Avoidance (shows IDs and vg-
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The robot, therefore, would rather consider the pseudo-
gradient in all the directions at node C and follow the lower
positive gradient which would lead it to the target by going to
node B instead of node C, thus moving around the obstacle.
This is an improvement over Algorithm (2). The robot now
chooses the direction it wants to go in, rather than blindly fol-
lowing the steepest gradient. Depending on the concentration
of obstacles in a region, the robot can be pre-programmed
to choose a particular direction from the steepest positive
gradient to the flattest positive gradient while moving towards
the target. This is a key difference from algorithms like [4] and

1We assume that the obstacles are not large enough to completely preclude
any wireless link between the nodes. This allows us to consider the perfor-
mance of our algorithm in real environments such as office buildings, forest
areas, etc. where the obstacles are easily penetrated by RF-signals at the cost
of weaker connectivity.



[10]. With simply communication hop propagation, the robot
would be directed to move from node C to node A, since
node A is one hop closer to the target-node. Fig. 9, shows the
obstacle avoidance by the robot following a flatter positive
gradient. As expected, the trajectory is longer than that with
the steepest gradient.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated a new mechanism for
localizing targets in unknown environments using static wire-
less sensors. The important feature of the introduced technique
is the non-dependence on global position information, which
allows the algorithm to be used without sophisticated hardware
while using it inside buildings and inaccessible areas. By
creating a pseudo-gradient in the region, the mobile robot is
guided to the detected target by having it follow the steepest
gradient. Another artifact of the mechanism is the ability to
avoid obstacles in the region by choosing a suitable gradient
direction i.e. “differentially tuning” the gradient following
mechanism.

For further research, we plan to analyze its performance
with different levels of obstacle presence, as well as with the
introduction of noise and link failures. Another dimension to
further research would be multiple target detection and mul-
tiple mobile robot navigation. Fig. 3 gives an understanding
of the pseudo-gradient distribution in the region. We plan to
characterize the relationship of this distribution with that of
the actual physical phenomenon occurring in the region, like
chemical leak distribution, temperature distribution, etc. The
algorithm shall also be tested on hardware using TMote Sky
[23] wireless sensors and a generic mobile robot platform.
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