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Abstract— This paper addresses the model-based localization
of sensor networks based on local observations of a distributed
phenomenon. For the localization process, we propose the
rigorous exploitation of strong mathematical models of dis-
tributed phenomena. By unobtrusively exploiting background
phenomena, the individual sensor nodes can be localized by
only observing its local surrounding without the necessity of
heavy infrastructure. In this paper, we introduce two novel
approaches: (a) the polynomial system localization method
(PSL-method) and (b) the simultaneous reconstruction and
localization method (SRL-method). The first approach (PSL-
method) is based on restating the mathematical model of the
distributed phenomenon in terms of a polynomial system.
These equations depend on both the state of the phenomenon
and the node locations. Solving the system of polynomials
for each individual sensor node directly leads to the desired
locations. The second approach (SRL-method) basically regards
the localization problem as a simultaneous state and parameter
estimation problem with the node locations as parameters. By
this means, the distributed phenomenon is reconstructed and
the individual nodes are localized in a simultaneous fashion.
In addition, within this framework the uncertainties in the
mathematical model and the measurements are considered.
The performance of the two different localization approaches
is demonstrated by means of simulation results.

I. INTRODUCTION

Recent developments in various areas dealing with sensor
networks and the further miniaturization of individual nodes
make it possible to apply wireless sensor network for ob-
serving natural large-area physical phenomena [1]. Examples
for such physical quantities are temperature distribution [2],
chemical concentration [3], fluid flow, structural deflection
or vibration in buildings, or the surface motion of a beating
heart in minimally invasive surgery [4].

For the reconstruction of such distributed phenomena, the
individual sensor nodes are densely deployed either inside
the phenomenon or close to it. Then, by distributing local
information to a global processing node, the phenomenon
can be coöperatively reconstructed in an intelligent and
autonomous manner [5], [6], [7]. In such scenarios, the
sensor network can be exploited as a huge information
field collecting data from its surrounding and then providing
useful information both to mobile agents and to humans.
Hence, respective tasks are accomplished more efficiently,
thanks to the extended perception provided by the sensor
network. By this means, sensor networks can forecast or
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Fig. 1. Visualization of two possible phases for the estimation of distributed
natural phenomena. The phases are managed by a planing and scheduling
process (not considered in this paper). (a) The first phase consists of the
identification of the environment in order to derive a strong mathematical
model of the phenomenon to be monitored (identification phase) [6].
(b) Based on the mathematical model, newly deployed sensor nodes or
movable nodes can be localized by local observations (localization phase).

prevent dangerous situations, such as forest fires, seismic sea
waves, or avalanches [8].

For most sensor network applications, the sensory data has
only limited utility without location information. In particular
for the accurate reconstruction of distributed phenomena, the
locations of the individual sensor nodes are necessary. Man-
ually measuring the location of every node in the network
becomes infeasible, especially when the number of sensor
nodes is large, the nodes are inaccessible or in the case
of mobile sensor deployments. That makes the localization
problem one of the most important issues to be considered
in the area of sensor networks.

In general, localization methods could be classified into
active methods and passive methods. The active localization
methods estimate the locations based on signals that are
artificially stimulated and measured by the sensor network,
e.g., artificially generated acoustic events. That means, the lo-
calization is performed in controlled environments and incurs
significant installation and maintenance costs. A comprehen-
sive survey on active localization methods can be found in
[9]. On the other hand, the passive localization methods
occur in a non-controlled environment, where stimuli are
generated in a natural and autonomous fashion. The advan-
tage of passive methods is that they do not need additional
infrastructure, and thus keep the installation and maintenance
costs at a very low level. Furthermore, these methods be-
come particularly important for applications, where satelite
positioning systems are simply not available, e.g., indoor
applications, sensor networks for monitoring the soil or
snow cover. In our previous research work, a purely data–
driven modelling approach was introduced for the passive



localization of cellular phones based on measuring signal
strengths [10] and barometric pressure [11].

For the passive localization of sensor nodes, we present
model-based approaches based on local observations. The
novelty of the methods introduced in this paper is the
rigorous exploitation of a strong mathematical model of
the distributed phenomenon for localizing individual sensor
nodes. Furthermore, within this framework, the often remain-
ing uncertainties in the sensor node locations can be con-
sidered during the reconstruction process of the distributed
phenomenon [2]. The use of such a mathematical model for
node localizations was proposed in [8]. However, there was
no consideration of uncertainties naturally occuring in the
measurements and in the used model.

In this paper, we introduce two different methods for the
model–based passive localization of sensor nodes based on
local observations: (a) the polynomial system localization
method (PSL-method), and (b) the simultaneous reconstruc-
tion and localization method (SRL-method). The first ap-
proach (PSL-method) is purely deterministic, meaning that
neither uncertainties in the model description nor in the
measurements are considered. This direct method is based
on restating the model of the distributed phenomenon in
terms of a polynomial system including the state of the
phenomenon and the location to be identified. Then, solving a
system of polynomial equations leads directly to the desired
location of the sensor node. The second approach (SRL-
method) considers uncertainties both in the mathematical
model and the measurements during the localization process.
It is shown that the localization problem can be regarded as
a simultaneous state and parameter estimation problem, with
node locations as the parameters to be identified. This leads
to a high-dimensional nonlinear estimation problem, making
the employment of special kinds of estimators necessary. By
this means, the sensor nodes are localized and the distributed
phenomenon is reconstructed in a simultaneous fashion. The
improved knowledge can be exploited for other nodes to
localize themselves.

The rest of the paper is organized as follows: Section II
contains a rigorous formulation of the problem and chal-
lenges for localizing sensor nodes based on local obser-
vations of a distributed phenomenon. Section III describes
a deterministic approach based on solving a polynomial
system of equation (PSL-method). Section IV is devoted to
spatial and temporal decomposition methods allowing the
conversion of the distributed phenomenon into a system
description in state-space form. Based on this system descrip-
tion, we derive a method for the simultaneous reconstruc-
tion of distributed phenomena and node localization (SRL-
method) in Section V. It turns out that this leads to a high-
dimensional nonlinear estimation problem, however, with a
linear substructure. Accordingly, a novel estimator, the so-
called Sliced Gaussian Mixture Filter [12], is employed. This
allows exploitation of the (conditionally) linear substructure
in the high-dimensional nonlinear estimation problem, and
leads to a more efficient localization process.
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Fig. 2. (a) Numeric solution of the considered distributed phenomenon
subject to Dirichlet boundary condition at both ends. (b) Simulation setup
for localization based on a system of polynomial equations (PSL-method).
The sensor node to be localized receives measurements of the distributed
phenomenon and locations from neighboring nodes.

II. PROBLEM FORMULATION

The main goal is to design a novel localization method
for sensor network applications, where individual nodes are
able to locally measure a distributed phenomenon only.
We assume to have a strong mathematical model of the
phenomenon, i.e., with known model structure and model
parameters. This model could possibly result from an earlier
identification phase, visualized in Fig. 1 (a). Based on this
mathematical model and local measurements newly deployed
or movable sensor nodes can be efficiently localized, without
using a global positioning system, see Fig. 1 (b).

Throughout this paper, we consider the localization based
on the observation of a distributed phenomenon described by
the one-dimensional diffusion equation

L (p(r, t)) =
∂p(r, t)
∂t

−α(r, t)
∂2p(r, t)
∂r2

−s(r, t) = 0 , (1)

where p(r, t) denotes the distributed state of the phe-
nomenon. The diffusion coefficient α(r, t) could be varying
in both time and space. Given an estimated solution p(r, t),
the aim is the estimation of the sensor node location ηS

k

based on local measurements of a realization of the dis-
tributed phenomenon p(r, t). In this paper, we consider the
worst-case scenario where the node location ηS

k is completely
unknown and the phenomenon p(r, t) still contains some
uncertainties; see Fig. 2. The same methods can be utilized
for the purpose of simply considering uncertainties in node
locations during the reconstruction of distributed phenomena.

First, we derive the deterministic approach (PSL-method),
which needs less computational performance and can be
implemented in a fairly straightforward manner. However
it does not consider uncertainties at all. Then, the more
involved localization method (SRL-method) is introduced,
considering the uncertainties both in the mathematical model
and in the measurements. In addition, it gives a measure for
the uncertainty of the estimated location ηS

k .



III. POLYNOMIAL SYSTEM LOCALIZATION METHOD

This section is devoted to a deterministic approach for
the localization of individual nodes in a sensor network
based on local measurements of a distributed phenomenon.
The key idea of the proposed direct method is to solve the
partial differential equation (1) in terms of the unknown node
locations. This leads to a straightforward solution as long
as the resulting nonlinear equations can be readily solved.
Solving these equations for all sensor locations is called the
Polynomial System Localization Method (PSL-method). The
PSL-method basically consists of two steps: (1) spatial and
temporal discretization of the mathematical model, and (2)
reformulating and finally solving the resulting system of
polynomial equations in terms of the desired locations.

1) Spatial and Temporal Discretization: The simplest
method for the spatial and temporal discretization of dis-
tributed phenomena is the finite-difference method [7], [8].
In order to solve the partial differential equation (1), the
derivatives need to be approximated with finite differences
according to

∂p(r, t)
∂t

=
pi

k+1 − pi
k

∆t
,

∂2p(r, t)
∂r2

=

pi+1
k −pi

k

ri+1
k −ri

k

− pi
k−pi−1

k

ri
k−ri−1

k

1
2 (ri+1

k − ri−1
k )

(2)

where ∆t is the sampling time. The superscript i and sub-
script k in pi

k denote the value of the distributed phenomenon
at the discretization node i and at the time step k. Plugging
the finite differences (2) into the mathematical model of the
distributed phenomenon (1), in general, leads to a system
of polynomial equations of degree three. However, for the
case of one unknown sensor node location, this reduces to a
single quadratic equation, as shown in the next subsection.

2) Solving Polynomial System Equations: Based on the
spatial and temporal discretization, the partial differential
equation (1) may be expressed as a finite difference equation
and put in the following form at each discretization point,
pi

k, in the interval in question

0 =Ai
k(ri+1

k − ri
k)(ri

k − ri−1
k )(ri+1

k − ri−1
k )

−Bi
k(ri

k − ri−1
k ) + Ci

k(ri+1
k − ri

k) , (3)

where

Ai
k =

pi
k+1 − pi

k

2α∆t
, Bi

k = pi+1
k −pi

k , Ci
k = pi

k−pi−1
k .

At this point, it is important to mention that ri
k represents

the unknown location of the sensor node to be localized and
ri+1
k and ri−1

k are the known locations of neighboring nodes,
visualized in Fig. 2 (b). The derived system equation (3)
can be simply regarded as an explicit relation between three
positions on a line (two known endpoints and one unknown
location between them), and four values of the measured
phenomenon (all known and one at each location at time t
and one at the unknown location at time t + 1). In order
to derive the unknown location ri

k of sensor node i, the
polynomial system of equations (3) needs to be solved and
the root selected, which best fits the conditions (e.g., must
be between the two known locations ri−1

k and ri+1
k ).
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Fig. 3. The solution p(r, t) of the distributed phenomenon is approximated
by a series of shape functions Ψi(r) and their respective weighting
coefficients xi

k . (a) Elemental decomposition of solution domain Ω into
several subdomains Ωe and (b) application of shape functions Ψk(r) [2].

The PSL-method assumes a densely deployed sensor net-
work in which every node i communicates with its neigh-
boring nodes i−1 and i+1. This means that measurements
of the distributed phenomenon pi−1

k and pi+1
k need to be

transmitted between adjacent nodes, see Fig. 2 (b). It can
be stated that the denser the sensor nodes are deployed,
the more accurate the individual nodes in the network can
be localized. The proposed localization approach involves
neither errors in the mathematical model nor uncertainties
in the measurements. However, it can be easily implemented
and has low computational complexity.

IV. FINITE-DIMENSIONAL MODEL
FOR NODE LOCALIZATION

In this section, we derive a finite-dimensional model,
which can be exploited for the simultaneous reconstruction
of distributed phenomena and node localization based on
local measurements. The finite-dimensional model consists
of two parts: the system model and the measurement model.
The system model describes the dynamic behavior of the
distributed phenomenon to be monitored in terms of a
finite-dimensional state vector xk. On the other hand, the
measurement model relates the actual measurements obtained
by the sensor network both to the state vector xk describing
the phenomenon and to the current node locations ηS

k
.

A. Conversion of Distributed Phenomena

The model–based state estimation of distributed systems
based on a distributed–parameter description (1) is quite
complex. The reason is that a Bayesian estimation method
usually exploits a lumped–parameter system description. In
order to cope with this problem, the system description has
to be converted from a distributed–parameter form into a
lumped–parameter form. In general, the conversion of the
system description (1) can be achieved by methods for
solving partial differential equations, such as modal analy-
sis [4], the finite-difference method [7], [8], the finite-element
method [2], and finite-spectral method [13]. Basically, these



methods consist of two steps, namely spatial decomposition
and temporal decomposition.

1) Spatial decomposition: By means of the spatial decom-
position, the partial differential equation (1) is converted into
a set of ordinary differential equations [2]. First, the solution
domain Ω = {r|0 ≤ r ≤ L} needs to be decomposed into
N subdomains Ωe. Then, the solution p(r, t) in the entire
domain Ω is represented by a piecewise approximation
according to

p(r, t) =
N∑

i=1

Ψi(r)xi(t) , (4)

where Ψi(r) are analytic functions called shape functions. It
is important to note that the individual shape functions Ψi(r)
are defined on the entire solution domain. The essence of
all aforementioned conversion methods lies in the choice of
the shape functions Ψi(r), e.g., piecewise linear functions,
orthogonal functions, or trigonometric functions [2].

2) Temporal discretization: In order to derive a discrete-
time system model the system of ordinary differential equa-
tions (derived from the spatial decomposition) needs to be
discretized in time. The temporal discretization produces a
linear system of equations for the state vector xk containing
the unknown weighting factors of the finite expansion (4).
The resulting discrete-time lumped-parameter system repre-
sents the approximation of the distributed system (1).

In the case of linear partial differential equations (1),
the aforementioned methods for the spatial and temporal
decomposition always result in a linear system of equations
according to

xk+1 = Akxk + Bk (ûk +wx
k) . (5)

The global state vector xk characterizes the state of the
distributed system and the vector wx

k represents the system
uncertainties. The structure of the system matrix Ak and the
input matrix Bk merely depends on the applied conversion
method [2].

B. Measurement Model for Node Localization

In this section, we derive the measurement model for the
purpose of localizing sensor nodes based on local observa-
tions of a physical phenomenon. The measurement model
consists of two parts, namely the measurement equation and
the output equation, described in the following.

1) Measurement equation: The measurement equation
relates the actual measurements ŷi

k at location ηi
k to the

distributed phenomenon p(r, tk), according to

ŷ
k

= h∗k (p(r, tk)) + v∗k ,

where the vector v∗k contains the uncertainties arising from
the actual sensor node. In general, depending on the mea-
surement principle used for the actual sensor, the mapping
h∗k ( · ) consists of nonlinear functions.
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2) Output equation: The output equation relates the finite-
dimensional state vector xk directly to the distributed phe-
nomenon p(r, tk) in continuous space, according to

p(r, tk) =
N∑

j=1

Ψj(r)xj
k ,

where Ψj(r) represents the shape functions. It is important to
emphasize that the shape functions Ψj(r) here are identical
to the shape functions used for the spatial decomposition.

In this article, we assume that the sensor nodes measure di-
rectly a realization of the distributed phenomenon p(ηi

k, tk)
at their individual locations ηi

k. Then, the measurement equa-
tion for the entire network is assembled from the individual
shape functions Ψj(ηi

k) according to

ŷ
k

=

Ψ1(η1
k) · · · ΨN (η1

k)
...

. . .
...

Ψ1(ηM
k ) · · · ΨN (ηM

k )


︸ ︷︷ ︸

Hk(ηS
k
)

xk + vk , (6)

where vk denotes the measurement uncertainty and M
represents the number of sensor nodes used in the network.
The measurement model (6) directly relates the measure-
ments ŷi

k to the state vector xk characterizing the distributed
phenomenon and to the location vector ηS

k
containing the

individual node locations ηS
k

= [η1
k, . . . ,η

M
k ]. The structure

of the measurement matrix Hk for localizing sensor nodes
in a network is shown in the following example.

Example 1 (Measurement model for node localization)
In this example, we visualize the structure of the measurement
matrix Hk subject to piecewise linear shape functions. The
entire solution domain Ω is decomposed into 3 subdomains
and appropriate piecewise linear functions are defined on each
subdomain. In addition, there are two sensor nodes located at
η1

k and η2
k in the subdomains Ω1 and Ω2, as depicted in Fig. 3.

Then, the measurement model is given as follows
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where the constants cji arise from the definition of the piece-
wise linear shape functions in each subdomain and thus the
geometry of the applied grid for the finite elements. The ex-
tension to orthogonal polynomials and trigonometric functions
can be derived in a straightforward fashion [2], [6].

From the previous example, it is obvious that the structure
of the measurement matrix Hk merely depends on the
location ηS

k
of the individual sensor nodes. That means, for

the accurate reconstruction of the distributed phenomenon (1)
based on a sensor network, the exact node locations ηS

k
are necessary. Due to this dependency, deviations of true
locations from the modeled node locations lead to poor
estimation results, as shown in Sec. V-A.

On the other hand, thanks to the dependency of the
measurement matrix Hk on the node locations ηS

k
, the lo-

calization problem can be stated as a simultaneous state and
parameter estimation problem. By this means, the distributed
phenomenon can be reconstructed and the sensor nodes can
be localized in a simultaneous fashion. In the next section,
we introduce the method for the simultaneous reconstruction
and node localization (SRL-method).

V. SIMULTANEOUS RECONSTRUCTION OF DISTRIBUTED
PHENOMENA AND NODE LOCALIZATION

After the derivation of a finite-dimensional model for the
node localization in the previous section, we now introduce
a method for the simultaneous reconstruction of distributed
phenomena and node localization (SRL-method). There are
four key features characterizing the novelties of the proposed
method: (a) approach is based on local measurements only,
(b) systematic consideration of uncertainties in the model
description and the measurements, (c) derivation of an un-
certainty measure for the estimated node location in terms of
a density function, and (d) the simultaneous approach allows
improving the estimation of the distributed phenomenon.

A. Reconstruction based on Incorrect Node Locations

For the reconstruction of distributed phenomena, an ap-
propriate estimator has to be developed. The structure of
the estimator usually depends on the system model and the
measurement model, i.e., being linear or nonlinear. For the
pure reconstruction of the state p(r, t) of linear distributed
phenomena (1), both system equation (5) and measurement
equation (6) are linear. Therefore, it is sufficient to use
the Kalman filter for the reconstruction of the distributed
phenomenon p(r, t).

The Kalman filter requires a rather precise model of the
system and a precisely known uncertainty description. If
any of these assumptions is violated, the performance of
the reconstruction process can quickly degrade. In many
cases, the locations of sensor nodes (randomly deployed or
movable nodes) contain some uncertainties or even could
be completely unknown. The degradation leading to poor
performance is illustrated in the next example.

Example 2 (Reconstruction with incorrect node location)
In this example, we consider the one-dimensional diffusion
equation (1) subject to Dirichlet boundary condition at both
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By this means, the localization problem can be decomposed into nonlinear
and linear problems.

ends and respective initial conditions, as depicted in Fig. 2 (a).
The nominal parameters for the system model (1) are given by

s(r, t) = 0 , α(r, t) = 1 , ∆t = 0.2 , ηS
true = 16 ,

where ηS
true denotes the true node location. The system uncer-

tainty at the individual discretization nodes is given by Cwi
k =

20 and the measurement noise variance by Cv
k = 0.5. The

reconstruction of the distributed phenomenon is performed on
the basis of a Kalman filter with nominal parameter set for the
sensor location ηS

model according to

ηS
model = [10 , 10.5 , . . . , 19.5 , 20] .

For each assumed node location, 100 independent
Monte Carlo simulation runs have been performed, resulting
in n = 100 true realizations exi

k of the distributed phenomenon.

The simulation results are shown in Fig. 4. The root mean
square error (rms) and the error variance are approximated
by calculating the average according to

ê2k ≈
1

n ·m

n∑
i=1

‖x̃i
k−x̂

i
k‖ , C rms

k ≈ 1
n− 1

n∑
i=1

(
ei
k − êk

)2
,

where x̂i
k denotes the mean of the estimated state vector.

The root mean square error êk of the Kalman filter based on
incorrect node locations is shown in Fig. 4 (a). It is obvious
that the more the assumed node location deviates from the
true location, the more the performance of the reconstruction
result degrades. Fig. 4 (b) depicts the comparison of the
estimation error between the Kalman filter based on incor-
rect node locations and the simultaneous node localization
and reconstruction approach (SRL-method); see Sec. V-B.
Thanks to the simultaneous approach, the estimation of the
distributed phenomenon can be significantly improved.

B. Augmented System Description for the Node Localization
For the simultaneous node localization and reconstruction

of distributed phenomena, the unknown locations of the
sensor nodes ηS

k
are treated as additional state variables.

By this means, conventional estimation techniques can be
used to simultaneously estimate the location and the state



of the distributed phenomenon. Hence, an augmented state
vector zk containing the system state xk and the additional
unknown node locations ηS

k
is defined by zk := [xT

k ,η
T
k

]T .
The augmentation of the state vector with additional

unknown parameters leads to the so-called augmented system
model. In the case of localizing sensor nodes, the augmen-
tation leads to following augmented system model[

xk+1

ηS
k+1

]
=
[
Akxk + Bkûk

ak(ηS
k

)

]
+
[
Bkw

x
k

wS
k

]
, (7)

and measurement model

ŷ
k

= Hk(ηS
k

)xk︸ ︷︷ ︸
hk(xk,ηS

k
)

+vk , (8)

where the nonlinear function ak ( · ) describes the dynamic
behavior of the node locations ηS

k
to be estimated.

The structure of the augmented system model (7) and (8)
for the node localization is depicted in Fig. 5 (a). In this
case, it is obvious that the augmented measurement model
is nonlinear in the augmented state vector zk due to the
multiplication of Hk(ηS

k
) and the system state xk, see

Example 1. That means, the node locations ηS
k

characterize
the measurement matrix Hk and thus the actual measured
values. It is important to emphasize that the measurement
model (8) contains a high-dimensional linear substructure,
which can be exploited by the application of a more efficient
estimator. In the following section, we describe a novel
estimator – the Sliced Gaussian Mixture Filter – allowing
the decomposition of the localization problem.

C. Estimation based on Sliced Gaussian Mixture Densities

There are several methods to exploit the linear substructure
in the combined linear/nonlinear system equation (7) and
measurement equation (8). The marginalized particle filter
[14] integrates over the linear subspace in order to reduce
the dimensionality of the state-space. Based on this marginal-
ization, the standard particle filter is extended by applying
the Kalman filter to find the optimal estimate for the linear
subspace (which is associated with the respective individual
particles). The marginalized filter certainly improves the
performance in comparison with the standard particle filter.
However, some drawbacks still remain. For instance, special
measures have to be taken in order to avoid effects like
sample degeneration and impoverishment. More importantly,
it does not provide a measure on how well the true joint
density is represented by the estimated one.

For that reason, a more systematic estimator is employed
for the simultaneous reconstruction of distributed system
and node localization. This localization method is based on
a special kind of density allowing a decomposition of the
estimation problem. To be more specific, as a density rep-
resentation we employ a so-called sliced Gaussian mixture
density and a systematic approximation method leading to
(close to) optimal estimation results, see Fig. 5 (b).

The sliced Gaussian mixture density f(xk, η
S
k

) is rep-
resented by a Dirac mixture in the nonlinear subspace

Conditional linear subspace

γij
k := N

“
ŷ

k
−Hi

kµ
p
k,H

i
kCpij

k Hi
k

T
+Cv

”
µeij

k := µpij
k + K

“
ŷ

k
−Hi

kµ
pij
k

”
Ceij

k := Cpij
k −KHi

kCpij
k

with K := Cpij
k Hi

k
T

“
Cv + Hi

kCpij
k Hi

k
T

”−1

TABLE I
FILTER STEP: PARAMETERS OF ESTIMATED DENSITY.

Nonlinear subspace Conditional linear subspace

ξpi
k+1

:= ak

“
ξei

k

”
µpij

k+1 := Akµ
eij
k + Bkûk

Cn
w Cpij

k+1 := AkCeij
k Ak

T + Cl
w

TABLE II
PREDICTION STEP: PARAMETERS OF PREDICTED DENSITY.

ηS
k

(node locations) and a Gaussian mixture in the linear
subspace xk (state vector),

f(xk, η
S
k

) =
M∑
i=1

αi
k δ(η

S
k
− ξi

k
)︸ ︷︷ ︸

Dirac mixture

f(xk|ξ
i

k
)︸ ︷︷ ︸

Gaussian mixture

. (9)

The density parameters ξi

k
∈ Rs can be regarded as the

position of the individual components of the sliced Gaussian
mixture densities f(xk, η

S
k

) as shown in Fig. 5 (b). The
marginal density in nonlinear subspace ηS

k
is given by a

Dirac mixture function, according to

f(ηS
k

) =
M∑
i=1

αi
kδ(η

S
k
− ξi

k
) , (10)

where αi
k and ξi

k
represent the weights and positions of

the Dirac functions, respectively. The density representation
along the individual slices is assumed to be a Gaussian
mixture density

f(xk|ξ
i

k
) =

Ni∑
j=1

βij
k N

(
xk − µij

k
,Cij

k

)
, (11)

with βij
k , µij

k
∈ Rr, and Cij

k ∈ Rr×r denoting the weights,
means, and covariance matrices of the j-th component of the
Gaussian mixture density of the i-th slice.

Thanks to the conditionally linear dynamic system
model (7) and measurement model (8), the Chapman-
Kolmogorov equation for the prediction step and the Bayes
formula for the measurement step can be solved analytically.
The proof is omitted here; rather the resulting predicted
density is stated. By means of the sliced Gaussian mixture
filter, the predicted density f̃p results in a Gaussian mixture
both in linear xk and nonlinear subspace ηS

k
,

f̃p(xk+1, η
S
k+1

) = c ·
M∑
i=1

Ni∑
j=1

αi
kβ

ij
k γ

ij
k

· N
(
ηS

k+1
− ξpi

k+1
,Cn

w

)
N
(
xk+1 − µpij

k+1
,Cpij

k+1

)
, (12)
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Fig. 6. Results of the polynomial systems localization method (PSL-
method) for various neighboring nodes with known locations. The true node
location to be identified is ηS

true = 16.

where the mean and covariance matrices in linear subspace
xk are calculated by applying the standard Kalman predic-
tion step. The mean in the nonlinear subspace ηS

k
is derived

by simply repositioning the density slices. The parameters
for the predicted density (12) are shown in Tables I and II.
For the sake of simplicity and in order to keep the equations
simple, the following abbreviation is used: Hi

k := H(ξi

k
).

In order to bound the complexity, the predicted den-
sity (12) in terms of a Gaussian mixture density needs to
be reapproximated as a sliced Gaussian mixture density (9).
One possible approach for the approximation is to derive
the location of the density slices by only considering the
marginal density f̃p(ηS

k+1
). In general, this approximation

of arbitrary marginal densities f̃p(ηS
k+1

) by Dirac mixture
densities (10) can be achieved by batch approximation [15]
or sequential approximation [16].

After the approximation of the marginal density f̃p(ηS
k+1

)
in the nonlinear subspace, the Dirac approximation is ex-
tended to a sliced Gaussian mixture representation over the
entire sample space. Basically, this is achieved by evaluating
the Gaussian mixture density f̃p(xk+1, η

S
k+1

) at every Dirac
position, i.e., at every slice position, determined by the
algorithm. This leads to a sliced Gaussian mixture density
(9), which can be used for the next processing step. A more
detailed description of this estimator can be found in [12].

VI. SIMULATION RESULTS

In this section, the performance of the proposed localiza-
tion methods is demonstrated by means of simulation results.

Example 3 (Simulated system)
In this simulation, we consider the localization based on the
one-dimensional partial differential equation (1), with assumed
initial condition and Dirichlet boundary conditions as depicted
in Fig. 2 (a). The aim is the localization of a sensor node with
initially unknown location based on local observations only.
The true node location is given by ηS

true = 16. The system
noise term is Cw

l = diag {20, . . . , 20}, the noise term for
the node location is given by Cw

n = 0.02, and for the local
measurement of the node to be localized is assumed to be
Cv = 0.01. Here, we compare different approaches for the
passive localization based on local measurements: (a) PSL-
method, (b) deterministic approach introduced in [8] (CSN-
method), (c) SRL-method based on sliced Gaussian mixture
filter (50 slices), (d) SRL-method based on marginalized par-
ticle filter (500 particles). These approaches are compared
based on 100 Monte-Carlo simulation runs.

The simulation results for the PSL-method are depicted
in Fig. 6. It is important to mention that this deterministic

approach was simulated with perfect information, i.e., there
is noise neither in the system nor in the measurements.
Furthermore, we assume that the sensor node to be local-
ized receives information about distributed phenomenon and
locations from neighboring nodes, see Fig. 2 (b). Since the
diffusion equation has derivatives involving ∆t and ∆x, the
PSL-method is sensitive to the distance between the two
adjacent known locations. Evidence of this effect is shown
in Fig. 6 which plots the values found by the PSL-method
for known points of varying distance from the unknown. It
is obvious that the denser the nodes are deployed the more
accurate the location can be identified.

The simulation results for the SRL-method with consider-
ing all the aforementioned uncertainties is shown in Fig. 7.
Here, we assume the sensor network consists only of a single
sensor node locally measuring the phenomenon. Further-
more, the sensor node has only very uncertain knowledge
about the initial distributed phenomenon, see Fig. 7 (a).

Fig. 7 (c) depicts one specific simulation run for the
estimation of the unknown node location ηS

k . It is obvious
that after a certain transition time the SRL-method based on
sliced Gaussian mixture filter (with 50 slices) offers a nearly
exact location estimation, while the determinstic approach
CSN-method strongly deviates (due to neglecting system
and measurement noises). The density function f(ηS

k ) for
the estimated location ηS

k for a specific simulation run is
depicted in Fig. 7 (e). It can be seen that with exploiting
more and more measurements and information about the
dynamic system, the estimation of the location changes from
a multimodal to an unimodal function. This explains the
higher uncertainty at the beginning of the simulation. The
root mean square error (rms) of all 100 simulation runs over
time is depicted in Fig. 7 (d). It is obvious that the SRL-
method based on Sliced Gaussian Mixture Filter (with 50
slices) outperforms both the deterministic approach (CSN-
method) and the approach based on marginalized particle
filter (with 500 particles); mainly due to the consideration of
uncertainties and the systematic and deterministic approxi-
mation of the density.

Comparing Fig. 7 (a) and (b), it is obvious that thanks
to the simultaneous property of the SRL-method, not only
can the sensor node be accurately localized, but also the
estimation about the distributed phenomenon can be further
improved. This can be exploited by other sensor nodes to
localize themselves.

VII. CONLUSIONS AND FUTURE WORK

In this paper, we introduce the methodology of two novel
localization approaches for sensor nodes measuring locally
only their surrounding. The PSL-method is a deterministic
approach and is mainly based on restating the mathematical
model in terms of the location. In the case of no noise in the
model description and the measurement, this method leads to
sufficient results for a dense sensor network. The stochastic
SRL-method basically reformulates the localization problem
into a simultaneous state and parameter estimation prob-
lem. This leads to a high-dimensional nonlinear estimation
problem, which makes the employment of special types
of estimators necessary. Here, the sliced Gaussian mixture
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(b) Improvement of estimation of distributed phenomenon (blue) thanks to
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Specific simulation run for the estimation of the node location ηS

k . The
true location (red) is assumed to be ηS

true = 16. (d) Root mean square error
over time of 100 simulation runs. (e) Specific density function f(ηS

k ) for
estimated node location ηS

k over time.

filter (SGMF) and the marginalized particle filter (MPF) are
applied for the decomposition of this estimation problem.
Thanks to the stochastic approach, the SRL-method leads
to better estimation results for the location, even with noisy
information. Furthermore, the simultaneous approach allows
to improve the knowledge about the phenomenon, which then
can be exploited by other nodes for the localization.

The application of the proposed localization methods
(PSL-method and SRL-method) to sensor networks provides
novel prospects. The network is able to localize the individ-
ual nodes without relying on a satelite positioning system
(which is not always available, e.g., indoor applications) as
long as a strong model of the surrounding is available.

For the PSL-method it is necessary to incorporate un-
certainties into the mathematical model as well as the
sensors, and to study the robustness of the method in the
presence of noise. Another issue for future work is that
if the locations of several nodes are unknown, they may
be solved separately using the method described in this
paper; however, we should compare it to the simultaneous
solution of the system of degree three equations. So far, the
model parameters and structure were assumed to be precisely
known for the SRL-method. In many real world applications,
the parameters contain uncertainties. The combination of the
parameter identification of distributed phenomena and the

node localization is left for future work. Finally, we intend
to test the proposed localization methods on real sensor data.
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