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Abstract

Knowledge representation is a traditional field in artificial intelligence. Researchers have devel-
oped various ways to represent and share information among intelligent agents. Agents that share
resources, data, information, and knowledge perform better than agents working alone. However,
previous research also reveals that sharing knowledge among a large number of entities in an open
environment is a problem yet to be solved. Intelligent robots are designed and produced by different
manufactures. They have various physical attributes, use different knowledge representations and
have different needs. In this research, we pose robot knowledge sharing as an activity to be devel-
oped in an open environment - the World Wide Web. Just as search engines like Google provide
enormous power for information exchange and sharing for humans, we believe a searching mech-
anism designed for intelligent agents can provide a robust approach for sharing knowledge among
robots. We have developed knowledge representation for robots that allows Internet access and a
knowledge organization and search indexing engine that performs knowledge retrieval.



1 INTRODUCTION

In the past when we needed to know something, we would look it up in an encyclopedia or find
a book on the subject. Nowadays, we turn to web search engines, like Google”?* or Yahoo”?,
and are given pointers to a large amount of information, and we usually find what we’re looking for
relatively quickly and easily. In this research, we develop similar capabilities for physical robots,
including humanoid robots, which act in the world and must know a great deal about it. This
includes robot butlers, surgeons, drivers, hospital orderlies, homecare nurses, etc. Thus, when a
robot encounters an unfamiliar or unknown object in its environment, or when it needs to know how
to perform a particular task with or on an object (e.g., clean it), it will be able to query a RobotShare
in order to get pointers to relevant information available in the world wide web.

Humans achieve knowledge sharing mainly through natural language: queries are words that are
matched to document content. For robots, it is not clear how to achieve this, and the question arises
as to what representations best facilitate robot knowledge sharing. It is quite clear though, both the
content of the knowledge representation and its format impact the effectiveness of this sharing. We
would like to build our framework on solid ground so that knowledge representations derived from
it allow common usage. Our framework provides a convenient yet unambiguous way to support the
representation. Robots that use our framework may communicate with each other usefully.
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Figure 1. The RobotShare Framework.

responses

The developed framework for our solution is shown in Figure 1. In this figure, each participant
robot creates web accessible knowledge repositories; the RobotShare server harvests knowledge
from each of the participant robots and then creates and organizes efficient indexes into the database.
Participant robots query the RobotShare server for knowledge and receive URLS pointing to other
robots” knowledge. Robots, in this view, act as agents [1, 2, 3, 4, 5], and we assume their ability to
generate the necessary knowledge structures; this is not an issue of investigation here.

1GOOGLE is atrademark of Google Inc.
2yahoo is atrademark of Yahoo Inc.



Imagine a scenario like the following. A kitchen robot works in a Kkitchen. It is told to clean all
kitchenware. After successfully cleaning a few plates, forks and spoons, the robot notices that there
is a pair of wooden sticks. The robot is confused by this pair of wooden sticks as it has never seen
this before. It does not know what to do with them. By asking a nearby human, the robot learns that
this pair of wooden sticks is called “chopsticks.” The robot then formulates a query and sends it to
the RobotShare server though its on-board Internet connection. It wants to know if these chopsticks
need to be cleaned (as it is told to clean all kitchenware) and if so, how to clean them. The Robot-
Share server processes the query, and responds with: please go to www.robot_chopstick.com/info
to see more information about chopsticks and please go to www.robot_chopstick.com/clean to see
how they can be cleaned. The robot then access these URLSs and downloads the needed information.
It then cleans the pair of chopsticks successfully.

As a general framework, we propose to consider a robot to be much like its human counterpart
sitting at a computer terminal in the following sense. Two major paradigms have been established
to support people:

1. Java virtual machine

2. Web-based search engines.

The first provides a means for a particular machine to emulate a universally shared virtual machine,
and in effect, to embody another machine through the execution of byte-code. An analogous ap-
proach for robots requires the definition and adoption of a universal reference standard for some
abstract mechanism, and the local embodiment of that abstract machine in the particular instance of
a specific robot (e.g., executing bot-code). There could be a variety of abstract reference machines;
e.g., mobile 3-DOF vehicles, 6-DOF robot arm mechnisms, or 44-DOF humanoid linkage mech-
anisms (e.g., see [6]). Each robot manufacturer would then provide interpreters for such abstract
reference models.

The second paradigm, web-based search engines, addresses ways to find and share relevant knowl-
edge. We describe in this paper a specific framework in which all queries and information gathering
flow through the search engine (see Figure 1). This follows human use of a search engine and allows
knowledge indexing, querying and relevance determination (the latter is possible since requests for
URLSs must also be submitted through the RobotShare search engine).

A large amount of work need to be done to realize the RobotShare scenario. Questions need to be
answered include: (1) How does a robot communicate with RobotShare? (2) How does RobotShare
process and answer a query? (3) How does one robot know if information stored on a website
applies to its own environment? These are interesting questions that point to intensive research.
This work focuses on solving one core problem: build a multi-format data search engine for robot
knowledge sharing.

The next section describes some relevant background work. Section Il presents our view of robot
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knowledge. Section 1V introduces the RobotShare architecture. We discuss functions and designs
of RobotShare components. Section V presents experimental results on our sample data set. We
conclude in section VI with future research.

2 RELEVANT WORK

The study of knowledge representation can be traced back to ancient Greece. Epistemology, the
study of the nature of knowledge and its justification, was established by Plato in the fifth century
B.C. [7]. Since then, the study of knowledge, including its nature, representation, development,
etc. has been carried on by philosophers, mathematicians, linguists, and scientists. Most knowledge
representation developed today is rooted in various logics. Recently, some computer scientists
have expressed belief that grounding knowledge purely in logic, e.g., in symbolic languages, is
insufficient for building intelligent agents, e.g., robots. They propose to develop sensor grounded
and context-aware knowledge representations for robot [8, 9]. Even though their work is promising,
they are still far from providing a comprehensive and satisfactory solution.

Although still in its formative stages, several groups are making progress on sensor-grounded robot
knowledge creation. Cohen et al. [10] describe a natural semantics approach in which robots
learn meanings through their interaction with the environment. In natural semantics, meanings are
acquired and maintained by the robot system, and not specified externally by human programmers
or knowledge engineers. In this work, a robot is provided with a small number of behaviors (e.g.,
move, turn, open gripper, etc.), and the robot records sensor data streams. In this way, the robot
learns a sensor data based ontology through interaction with the environment, and concepts are
related to the sense data.

The Spatial Semantic Hierarchy, which allows bootstrap learning from uninterpreted experience
[11], the human developmental theory based robot behavior study [12], the relational representation
for procedural task knowledge [13], the cognitive robot [14, 15], etc, are some examples of a group
producing sharable robot knowledge.

Another influential work in knowledge sharing in general is the Knowledge Interchange Format,
known as KIF [16]. KIF was defined as an ANSI standard by the NCITS T2 committee on Infor-
mation Interchange and Interpretation in 1998. KIF is a version of typed predicate logic, which
differs from the sensor data grounded knowledge sharing. The book by Davies et al. [17] provides
a very clear review of methods and tools developed for the human semantic web, which set its
aim as to create a universal medium for information exchange by putting documents with computer
processable meaning on the World Wide Web. Using the Semantic Web, information can be better
organized and more accurately delivered to a human reader.



3 ROBOT KNOWLEDGE

Humans recognize the external world first through sensory organs. Imagine when we visit a mu-
seum, there are a number of artifacts on display. Suppose there is an object we do not recognize,
but we would like to know what it is. We look at it to see its shape; we lift it to feel its weight; we
may smell it to determine its odor; we may tap it with our finger to see how it sounds. With this
collected sensory information, we try to associate this new object to some object we already know.
We believe that humans recognize an object first by collecting information through sensory organs.
Sensory information is the ground for object recognition.

We believe robots can behave similarly, and that the best way for a robot to recognize objects
is through its sensor data. Therefore, we position this research towards a sensor data grounded
approach. We restrict the scope of robot knowledge to be: string representation of sensor data.
Strings give information about the object; this usually includes physical properties of an object and
verbal descriptions. For a robot to know an object means to have information about that object
stored in its memory.

The problem we need to address is: how do robots share their knowledge with each other, though
a knowledge server such as RobotShare? We believe two knowledge transformations can help.
The first transformation takes place in robots, where knowledge is transformed from the robot’s
internal representations, which are probably known only to themselves, to a form such that they
are understandable to other parties, i.e., RobotShare and other robots. The second transformation
takes place in RobotShare, where knowledge which is represented in the format produced by the
first transformation, is transformed into a representation, that can be efficiently indexed. Then,
RobotShare is able to effectively answer queries sent by other robots, hence knowledge is shared.

3.1 TheFirst Transformation

The purpose of the first transformation, from a robot’s internal format to an open standard, is to
transform knowledge in a systematic way such that an unambiguous, widely-adoptable, format is
obtained, while maintaining all information in a knowledge piece. Two requirements need to be
satisfied. First, the data source, or inputs, of the transformation need to be collected in a standard
way. We propose the idea of the asymmetric spatial-temporal coherence for objects. When a robot
collects information about an object, i.e., measures its properties, we assume the robot does this in
a uniform way such that all properties are measured with the least intervention among them. Once
all information is collected through a robot’s onboard sensors, the robot needs to package them
tightly to maintain data integrity. Therefore, it is clear to both the robot, and RobotShare, at a later
time, that information about one particular object, or an instance of an object, is collected, not just
information about some object from a certain class.

Having a clear distinction between an object instance and an object class is significant to this work
5



\ Field \ Value \

IM1:red [1.84e-011 -6.63e-009 4.44e-007 3.07e-005 -4.80e-004]
IM1:green | [2.23e-011 -8.72e-009 8.06e-007 8.99e-006 -2.25e-004]
IM1:blue | [2.20e-011 -8.55e-009 7.65e-007 1.37e-005 -4.56e-004]

IM2:red [1.45e-012 2.51e-009 -9.89e-007 8.74e-005 -2.45e-004]
IM2:green | [3.11e-012 1.82e-009 -9.20e-007 8.84e-005 -3.80e-004]
IM2:blue | [4.23e-012 1.34e-009 -8.71e-007 8.94e-005 -5.51e-004]
IM1:edge [-1.24e-010 6.39e-008 -1.07e-005 6.47e-004 -0.0063]
IM2:edge [-1.37e-010 6.99e-008 -1.16e-005 6.97e-004 -0.0070]

LSI: [-0.0509 0.2674 0.2571 0.4403]
Dim: [6.0190 1.6906 11.3570 0.4998]
Weight: 0.4244
Filename: “knife2a.jpg’
Description: "Knife with black handle’

Table 1: An Object Example Contains Images, Text Descriptions, Dimensional Data and Weight
Measure

for two reasons. First, RobotShare is deeply rooted in the concept of sensor data grounded knowl-
edge. Knowing which instance sensor data refers to is important to all possible higher levels, e.g.,
semantic level, knowledge structure formation at a later time. Second, it is desirable to support
instance-based queries in addition to the general class-based queries. For example, to be able to
determine that an image represents a human face is useful (the class-based query), but to be able to
detect whose face it is (instance-based query) can be more useful for some applications.

We employ the standard Extensible Markup Language (XML) to represent knowledge as the result
of the first transformation, as XML is widely used and accessible. The designed format is flexible
enough to capture various types of knowledge while still being parser friendly.

3.2 The Second Transformation

The purpose of the second transformation is to convert the easy-to-communicate XML file into
something that is easy to index. Hence we can build the search engine efficiently. We take the
vector space approach.

Every knowledge piece in our system can be divided into three parts: text data, sensor data and
meta data. Text data are provided by humans. This includes the name, function, use and possible
other related descriptions of an object. Sensor data represents physical properties of an object. They
are recorded by numerical values. For instance, the weight measure of an object is recorded with a
single numerical value, given a standard unit is used; the shape of an object can be recorded by a
histogram of the direction of the object’s edges, where a histogram is represented by a vector. Meta
data is recorded when the object is measured by sensors. It contains information about collected
6



sensor data. For instance, the location of where the object is encountered, the time of when the
object is encountered, the type/band/model of the sensor used to collect this data, etc.

Knowing the curse of dimensionality[18], we explored a few methods to reduce lengths of vec-
tors, i.e., convert a high dimension vector to a lower dimension one, into especially histograms,
including, Fourier coefficient representation, polynomial coefficient representation, statistics repre-
sentation and moment representations. Our results show that representing a 256-bin color histogram
by coefficients of a fourth order polynomial provides a reasonable compromise between data accu-
racy and vector length reduction; hence it is adopted in this research. Text information is converted
into vector space using the latent semantic indexing (LSI) mechanism [19, 20]. For instance, a de-
scription such as “Small metal bowl” can be represented as [—0.39, —0.12, —0.21, 0.08]. Meta data
can be represented by numerical values as well. For instance, time can be unambiguously repre-
sented by a UNIX time string; locations can be represented by GPS coordinates and sensor type can
be represented by an index of the sensor in a sensor database or Logical Sensor System [21, 22].
Table 1 shows an example of an object represented in this vector space.

4 KNOWLEDGE SEARCH ENGINE

As described by Frieden and Kuntz [23], the three main tasks of a search engine are to (1) match
query keywords with related material on the web, (2) rank web documents according to relevance,
and (3) provide pointers to the documents. Essentially, a search engine needs to be able to gather
data from online sources, categorize and store them into a repository, and provide data access to its
users. In the first generation robot search engine, i.e., RobotShare, we do not foresee a major role
for web crawlers. Even if web pages exist, the meta data is not available to determine what pages to
download, what is of interest in them (e.g., there are no words to count and no lexicon to help define
any semantics), no popularity measure, and no standard places to find things (e.g., specific sites, in
homepage, etc.). Thus, robots must register with the system and provide direct meta data and links
to files. We focus on creating a robot search engine architecture that is:

e Flexible. RobotShare is not designed for any particular data type. We emphasize the sensor
data grounded knowledge sharing model, in which virtually all types of sensor data can be
supported.

e Scalable. RobotShare sets no limit on the number of attributes or properties of its supported
data types. Both query templates and items stored in RobotShare can contain as many prop-
erties as needed.

e Efficient. RobotShare supports indexing on a large amount of data. The retrieval speed is not
determined by the number of items stored in its database.



To accomplish these three tasks, we divide RobotShare into four groups of components: a query
processor, indexing structures, a cross analyzer and a response formalizer (see Fig 2).

Indexing
Structure |
Query W Cross Response
Processor Structure | Analyzer || Formalizer XML
Indexing
Structure 111

Figure 2: The RobotShare Architecture.

4.1 Query Processor

RobotShare supports query-by-example [18]. The query processor is the first component in a Robot-
Share query workflow. It takes queries, in the format of XML, and translates them into arrays of
vectors and sends each vector to a corresponding indexing structure to find matches. The query pro-
cessor converts data stored in XML to vectors, and computes various derived features from raw data
stored in the XML file, such as color and edge histograms and their low dimension representations
from images. It also generates vector representations from text data.

4.2 Indexing Structures

The second group of components are indexing structures. They take inputs from the query processor
in the form of vectors, and produce ordered lists of items. They sort items using measures between
the query template and objects stored in RobotShare and return the list.

Currently, eleven indexing structures exist in RobotShare. Six of them are built for color histograms
(each object contains two images, and there are three color channels in an image); two of them are
built for edge histograms; one of them is built for text data produced from an LSI process; one of
them is built for dimensional information of the object, i.e., length, height, width, and the cube root
of the product of the three; the last indexing structure is built for the weight measure of one object.
Currently, k-d trees have been used to index all fields except the weight measure, where a binary
tree is used. In all k-d trees, branch dimension is selected in the round-robin fashion, starts from
the left most entry/first dimension in a vector. This is due to the fact that eight histograms in one
object are approximated by polynomials in which high order terms contribute more to the shape of
the polynomial. Text data are processed by the LSI process, where at its core is a singular value
decomposition (SVD), which has the same property that high order terms capture more information
than low order ones. All indexing components return fifteen items for each query, except the text

8



indexing and dimensional indexing component, in which thirty items are returned.

There are a few advantages for separating the indexing structure into distinct subclasses. First,
this design allows RobotShare to support incomplete queries, i.e., queries with missing attribute
fields, quite easily. For instance, if a query template contains only one image instead of two, in-
dexing structures built for color and edge histograms for the missing image would not be used. All
other RobotShare components would work the same as before. Second, it brings great flexibility to
RobotShare as each indexing structure can be added, removed or modified without changing other
components. New indexing structures can be added to support new data types and existing indexing
structures can be removed if they are found to be not effective for retrieval. Different data types may
require different types of indexing structures. If an existing structure is found to be less than ideal,
it can be modified or replaced. Third, it brings more parallelism into a query process workflow.
Each indexing structure processes one object attribute. Thus there is no intervention between any
two indexing structures. A parallel process reduces search time for queries.

4.3 CrossAnalyzer

The cross analyzer takes item lists from each indexing component, and cross analyzes them to
produce a single sorted list. This list is produced based on a weighted summation of distances
between a query template and items stored in the RobotShare database.

The cross analyzer first creates a list contains all items generated by indexing structures, without
duplication. It then computes a distance measure from the query template to every item in the
list. The distance measure is a weighted L, norm, which can be expressed as, the overall distance
D(A, B) between two objects A and B is equal to:

k
D(A, B) =) |widi(As, Bi)|
i=1

Where & equals the number of item attributes presented in the query; w; is the weight coefficient of
the ith component; and d; is the distance between ith components in the two objects. All d;(A;, B;)
are computed using an L, distance measure, where

k
di(Ai, Bi)) =Y |Aij — Bijl
7=1

For all image histograms represented by polynomial coefficients, k equals 5; for the text data and
the dimensional data fields, k equals 4; and for the singleton weight measure, k equals 1. We
have evaluated a set of distance measures for this computation, including Lo, L., Mahalanobis,
and Kullback-Leibler [18, 24]. L gives the best compromise between computation efficiency and
accuracy.



The cross analyzer provides RobotShare a simple control on item rankings through weight coeffi-
cients w;. Since each indexing structure processes one item attribute, if for some reason, a certain
attribute needs to be emphasized over others, the weight coefficient associated with this attribute
can be adjusted accordingly. If we consider each item as a point in some high dimensional space,
it can be viewed that weight coefficients can be used to dynamically enlarge or shrink the space in
different dimensions. For instance, if we want to ignore a certain attribute in a query sample, we put
a small weight coefficient for this attribute. This is equivalent to shrinking the space in dimensions
used to represent this attribute. When a space is shrunk, the coordination of a point and the distance
between two points no longer matter as all points are crowded together in this space.

We are at the very beginning stage to develop a systematic approach for computing weight co-
efficients w;. Currently, a static analysis approach is taken. We design experiments for various
data conditions and query types. In each experiment we evaluate RobotShare performance using
the standard information retrieval measures: precision and recall [25]. We then search for weight
coefficients that maximize these measures. The searching algorithm we have implemented is an
n-dimensional binary search, which is a good compromise between simplicity and performance.

The cross analyzer controls the number of items returned by RobotShare. Since the cross analyzer
sorts the item list returned by the indexing structures, two commonly used search types: k-Nearest-
Neighbor search, i.e., using distance measure D, find k& objects that are closest to the query and
within-Distance (a-cut) search, i.e., using distance measure D, find all objects which are within «
to the query template, are effortlessly supported.

4.4 Response Formalizer

The response formalizer is the last component in the RobotShare query workflow. It takes inputs,
which are sorted item lists, from the cross analyzer, transforms them into a format which can be
easily understood by robots, and then packages them into files. Snapshots of items, which contains
basic information such as dimensional measure, and URLs which point to sources of items are both
included. Containing snapshots in the returned file help robots to filter out unwanted results and
find interesting information faster.

5 EXPERIMENT

To evaluate the performance of RobotShare, the common measures of precision and recall are used.
Precision in information retrieval is defined as:

|relevantdocument () retrieveddocuments|

precision = ;
|retrieveddocuments|
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It is a measure of the percentage of results that are desired in the total retrieved list. Recall in
information retrieval is defined as:

|relevantdocument ( retrieveddocuments|

recall =
|relevantdocuments|

It is the percentage of desired retrieved results in the entire database.

5.1 Object Knowledge

In this section, RobotShare performance on object data are examined. Sixteen objects, including
four bowls, one cup, two forks, three knives, two plates, and four spoons are selected as data. Two
images are taken of each object: a top view, and a side view. All images are taken against a white
background and manually segmented. Images are stored in JPEG format in the size of 640x480
pixels. For each image, histograms of its color in RGB channels are computed, respectively, with
256 bins for each channel. The Sobel edge detection algorithm is applied to compute the distribution
of edge orientations, and a histogram with 256 bins is obtained. To simulate the uncertainty of the
real world, twenty-nine duplications of each object are created by adding 20% random noise from a
Gaussian distribution to each object. The total sample size reaches 480.

Six groups of performance evaluation are presented. In tests groups one through three, relevant
documents are defined as items which are generated from the same master copy by adding Gaussian
noise. Group one shows the result where all documents returned from RobotShare are considered.
Group two shows the result where only the top 30 most relevant items are considered. Test three
shows the result where optimal weight coefficients are applied to rank returned items. Groups four
though six use same settings, except “relevant documents” are defined as items which are in the same
object class, e.g., fork, bowl, etc. Each group contains four tests. Test one examines RobotShare
under optimal conditions, in which both query templates and objects stored in RobotShare contain
complete information. Test two tests performance with incomplete queries, in which one image
is missing in query templates. Test three tests performance with an incomplete data record. One
third of RobotShare records miss one image in their record. Test four tests performance with both
incomplete queries and incomplete records. Query templates miss one image and one third of
RobotShare records miss the other image. Each test is composed of 200 runs. In each run, one
object is randomly selected from the database as the query template. Average precision and recall
are computed.

Many observations have been made during our performance evaluation. In terms of precision,
RobotShare shows good performance when the top items from returned list are considered. (Even
though it is not shown here, when the top 10 items are evaluated, precision reaches 100% uniformly
for every test.) In general, performance drops when queries are incomplete or database records are
incomplete. However, we also have discovered that certain features are more useful than others
when retrievals are concerned. For samples from our dataset, images and text descriptions are bet-
ter classifiers than dimensional and weight measures. Hence missing images or text descriptions
11
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Figure 3: Performance Test Group 1. All items returned from RobotShare are taken into consid-
eration. Items derived from the same instance are relevant. Tests range from complete query &
complete database to incomplete query & incomplete database.

in a query shows more negative impact to retrieval performance than missing dimensional mea-
sures. The weight coefficient adjustment in the cross analyzer is a very effective tool for improving
retrieval performance. It identifies attributes that have more classifying power, hence prevents or
reduces interference from other attributes. To achieve a uniformly high performance on precision, a
set of weight coefficients should be pre-computed, based on the type of queries, i.e., attributes that
are missing in a query.

5.2 Activity Knowledge

In addition to object recognition, human activity recognition is another field RobotShare can be
used. Collaborating with Prof. Dillmann’s humanoid robot research group at the University of
Karlsruhe, we have obtained data generated by the VooDoo human motion capture system [6, 26],
which gathers data of the human configuration over time, resulting in 3D trajectories for every
modeled limb and joint angle of the human body. These data contain 8 activities with each activity
performed multiple times, resulting 120 instances of activities. Since all instances are performed by
a human experimenter, recorded lengths of instances range from 41 frames to 151 frames. These
120 instances are stored into an activity database.

Unlike the Feed Forward Neural Network (FFNN) classification model used in [6], RobotShare
takes a simpler approach. In VooDoo, the human body is represented by 19 4-by-4 transformation
matrices, where each matrix describes the state of a limb joint. In each transformation matrix, the
upper left 3-by-3 sub-matrix describes the rotation of the joint, the right most column describes the
movement of the joint. (See [26] for a complete discussion of the VooDoo system representation.)

12
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Figure 4. Performance Test Group 2. Top 30 items returned from RobotShare are taken into con-
sideration. Items derived from the same instance are relevant. Tests range from complete query &
complete database to incomplete query & incomplete database.

| Activity | Correct |
Hold Out Hand 91.0%
Hold Out Object 95.5%
Put Object On Table 89.9%
Read Book 73.6%
Sitting 89.9%
Standing 86.3%
Take Object From Table | 77.7%
Typing On Laptop 100%

Table 2: Results for activity recognition experiments.

We exploit two of these matrices: one that describes the trunk of the body transformation and the
other that describes the right forearm transformation, from each activity instance frame. The motion
description is based on six values from each of the two transforms: 3 three diagonal elements of the
rotation matrix and the three translation components. This results in 12 feature vectors. We then
approximate the trajectory of every feature field across frames of an activity instance by a fourth
order polynomial and index every instance of a trajectory into a k-d-tree. Therefore, in contrast
to the eleven index structures developed for object knowledge sharing, a twelve index structure
approach is adopted for activity recognition.

We randomly select query templates from the activity database. Since the purpose of activity recog-
nition is to identify human activities, Nearest-Neighbor search is more appropriate than k-Nearest-
Neighbor search or «a-cut search described in previous sections. We then limit the number of re-
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Figure 5: Performance Test Group 3. Top 30 items returned from RobotShare are taken into consid-
eration. Optimal weight coefficients are applied for ranking. Items derived from the same instance
are relevant. Tests range from complete query & complete database to incomplete query & incom-
plete database.

turned activities for each search to be 2 (since every search always returns the query template itself
as the first activity) and define the classification as correct if the second returned item is the same
activity as the query template. Results are presented in Table 2. [6] indicates their FFNS approach
reaches average correctness ranges from 53.1% to 100% for various activities; the RobotShare ap-
proach is comparable.

6 CONCLUSION

This paper introduces the novel idea of developing robot virtual machines and robot search engines
for robot knowledge sharing and discusses the architecture of the robot search engine we have
developed. As a proof of the concept system, it demonstrates the merit of taking a sensor data
grounded approach and using a flexible architecture. RobotShare shows promising performance
in our object knowledge sharing experiments, where the search precision reaches 90+% for the
items selected as most relevant. We have also examined RobotShare’s performance with robot
activity knowledge, in which RobotShare is used as an activity recognizer. In these experiments,
RobotShare demonstrates comparable results to activity recognizers built by our colleagues at the
University of Karlsruhe, in which a neural network approach is used.

Future research includes:

e development of virtual reference models for robots
14
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Figure 6: Performance Test Group 4. All items returned from RobotShare are taken into consid-
eration. Items belong to the same object class are relevant. Tests range from complete query &
complete database to incomplete query & incomplete database.

e the study of RobotShare’s performance on implemented, distributed robot systems

e investigation of a relevance feedback based approach for ranking returned items

e evaluation of the feasibility of porting this framework to intelligent software agent systems

e engagement of the robotics community into semantic robot web activity.
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Figure 7: Performance Test Group 5. Top 30 items returned from RobotShare are taken into con-
sideration. Items belong to the same object class are relevant. Tests range from complete query &
complete database to incomplete query & incomplete database.
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