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The solution to a complex shape analysis problem generally
requires the design of shape modeling techniques and procedures for
organizing unknown shapes according'to such models. Once a shape
modeling mechanism has been chosen, specific models for the classes of
shapes to be analyzed can be constructed. This might involve simply
determining values for specific shape features or detailing the spatial
organization of a shape. The process of choosing a modeliﬁg mechanism
and then constructing shape models is complicated by a variety of factors
that influence both the appearance of specific shapes in images and the
segmentation of shapes of individual objects from images. These factors
include: geometric transfermations, obstruction, agglomeration and noise.
In this chapter, we consider shape models based on features of.the area,

boundary or special axes of the objects to be modeled.

AREA METHODS

Area methods are based on the knowledge of all points belong-
ing to the shape, that is, both ihterior and boundary points. One
vcommonly used area model is the method of moments. The theory of 2-D
moment invarianrs for planar geometric figures‘is described by Hu (1962).
The method provides for recognition of shapes independent of position,

size, and orientation. The (p,q)th moment of a shape is defined as:
m(p,q) =17 5y (x,y)dxdy p,9 =0,1,2...

where r(x,y) is the characteristic equation for a bounded shape, i.e.,
r(x,y) = 1 if (x,y) is in the shape and 0 otherwise. The sequence
{m(p,q)} is uniquely determined by r(x,y), and vice versa. Definitions
and pr0perties of moment invariants under translation, scaling, ortho-

gonal transformations and general linear transformations are developed.
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These moment invariants rather than the actual moments can be used for
’shape modeling.

Thus, the method of moments presents many desirable feature
However, the method has several drawbacks. A significant amount of
computation is required to compute them. Also, although the first
few moments may suffice to model a simple shape, more complicated
shapes require many more terms of the sequence {m(p,q)}. Moreover,
distortion of a shape by noise and poor segmentation is not easily
modeled in terms of transformations of the moments. Finally, if parts
of the shape are obscured, or if agglomeration occurs, then the moments
of the resulting shapes are radically different from those of the
original shape.

In anigital image, f(x,y), the projection of that image
(see Rosenfeld (1976)) may be defined as a function:

p(i) =if(x,y)
X, Y € Ii

wherveIi describes a family of curves, e.g., a set of lines or circles.
Some standard projections include the x-projection of £, and the |
y-projection of £, which ére just the column sums and the row éums,
respectively. These projections paﬁ be used to detect blobs by

merely looking for plateaus in the projection function. Linear
objects can be detected if they run perpendicular to the projection
axis. Thus, if their orientation is unknown, several projection axes
might be tried. If several objects must be recognized, and the

objects have a known orientation, then a pfojection function might
suffice to distinguish between them (e.g., character identification).

A different app*oach to shape decomposition is to segment
the area of a shape into convex subregions. These area-based shape
models use convex polygons as the primitive elements of thé represen-
tation. Given a set of points, S, the usual definitions for convexity

include:
~-For every two points p and q in S, the line segment from
P to q lies entirely in S, or

-For every two points p and q in S, the midpoint of the line
segment from p to g lies in S.
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However, these definitions require some care if they are to be
implemented'for a digital image. Namely, line segments must be
digital line segments, and the midpoint must be compared to points
within half a unit of the midpoint. The definition of_convex objects in
a digital setting remains a problem for the application of these
methods.

Once a suitable definition of convexity has been chosen, a
set of points must be broken into its convex subsets. In general,
there is no unique convex segmentation. One approach to solve this
problem is to start with several (say 3) close points, and "grow" a
convex face containing those parts, i.e., points of S are added until no
point éan be added and still satisfy the definition of convexity. A
structural approach to this problem is described by Pavlidis ( 977).
Such an‘approach is complicated by the fact that a polygon cannot, in
general, be expressed uniquely as the finite union of its convex
subsets. Moreover, decompositions into convex subsets may not

necessarily correspond to a natural organization of the shape.

BOUNDARY METHODS

Several classes of shape models based on the boundary of a
shape have beeh proposed, including, polygonal approximations, Fourier
descriptors,»B—splines, Hough transforms and shape numbers. All of
these methods depend on extracting the object in terms of the boundary
between the object and the background.

Chain codées, and more generally, boundary segments
determined by piecewise functional approximations providé a slope
intrinsic representation of shape. A grid is superimposed on the
shaée, and one of two methods is used to encode the boundary of the
shape. Some starting point on the boundary is arbitrarily chosen; then
for each point of intersection of the shape boundary with a grid line,
the nearest point of the grid is included in the encoding of the shape
boundary. - If the elements of the encoding are joined together, they
define a polygonal arc which is an approximation to the shape boundary.
This arc is called a chain and can be completely specified by giving a
starting point and the successive directions necessary to follow the
chain. For an eight neighbor grid, these directions can be efficiently

encoded with 3 bits corresponding to directions O degrees to 315 degrees
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in 45 degree increments. Such a list is called a chain éode, and each
element is a chainlet.

Various properties of chain codes can be easily derived and
used in defining shapes (see Freeman (1974)). For example, the
Euclidean length of a chain is the sum of the number of e&en chainlets
and the /2 times the number of odd chainlets. Some other properties
which can be easily computed include the maximum cross section length in
any of the eight given orientations and the first moments in any of
these orientations. This is quite attractive in many applications.

When the approximating functions are line segments, then
this is a generalization of the chain code which allows for arbitrary
lengths and directions of chain elements (also see Freeman (1979) on
,generalized chain codes). In general, the shape boundary is segmented
into pieces described by arbitrary functions. It is usually sufficient
for the functions to be restricted to low-order polynomials (of degree
less than three). |

Perhaps the most frequently used shape boundary represen-
tation is the piecewise linear approximation of the boundary. Many
algorithms have been proposed for computing various piecewise 1inear
approximations - see, e.g., Pavlidis (1973a, 1974, 1975), Ramer (1972),
Rbsenfeld & Johnston (1973) and Davis (1977). These procedures can be
categorized as oné of two ﬁypes: (1) those that attempt to find the
lines directly, and (2) those that attempt to find the break points
directly. The fitst class of procedures search for boundary segments
which are well fit by lines, while the second class search for boundary
points with locally high curvature, that is, they are angle detectors.
Of all these algorithms, the split-and-merge algorithm proposed by
Pavlidis (1974) seems to be the most robust (i.e., it has very slight
sensitivity to small changes in thé underlying shape) yet is at the
same time computationally efficient.

Piecewise linear approximation can be used not only for
feature extraction, but also for noise filtering and data compaction
(see Pavlidis (1973b)). Let s = {(xi,yi)}, i = 1,N, be a set of points;
the problem is to find a minimum partition of S into n subsets
SyreecrSy where s, = {(xj,yj)} j = Ki'li and S5 is approximated by a
straight line with an error norm less than a prespecified threshold,

E . Given an error norm E and a segmentation s_,...,S_, let E, be the
max 1 r i
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value of the norm evaluated on Si' and let E = Ei’ i=1,r. Then

the split -and-merge algorithm is:

i. For i = 1,r,if E, > E , then split s, into two subsets,
set r=r +1 ané calca{ate the error fiorms of the two
subsets. The breakpoint for obtaining the two new sets
can be chosen in one of several ways. Pavlidis proposes
using the point which contributes the most to the error
value or the midpoint.

2. For i = 1,r, if E, and El can be merged and the error
norm of the new ségment 1s less than E___ then merge.
E. and E, and reduce r by one. Compu%e the error norm

of the naw segment.

3. Adjust the segment end points to minimize E. If no
changes were made in steps . (2) or (3), then terminate,
else go to (1).

There are many reasonable choices for the errorknotm. Pavlidis describes
the Euclidean distance between {xi,yi} and the approximating curve, while
Horowitz (1977) demonstrates the use of the mean square error norm. To
minimize the latter norm means to find:

, 2
min { Lp ¥y = (@x + D)7}

There exist unique closed forms for a and b:

o]
i

. 2 2
(aniyi‘— in . Zyi)/(nZ xi - (Z xi) )

b

il

( Eyi - a . Exi)/n.

An important practical advantage of this error norm is that the various
sums used in defining a and b need not be recalculated completely for
updatlng purposes; they can be directly added or subtracted as sums.
One can obtain higher order approximations using the split-
and-merge algorithm with higher degree polynomials, but as Pavlidis
discusses (1973a), the computational coSt increases dramatically as one
raises the degree of the approximating curves. Furthermore, the
algorithms become numerically less stable. Pavlidis suggests using the
reéults of the piecewise linear approximations to selectively guide the
application of higher order approximation procedures to pieces of the

shape boundary.
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A description of 2-dimensional’non—inte;secting closed
curves proposed by Bribiesca & Guzman (1979) called the shape number is
associated with the boundary of simply connected regions. This shape
number is obtained by laying a grid over a shape and encoding the border
around the grid squares that fall (at least 50% of the’squate) within the
shape. In particular, the shape number has several chain code represen-
tations, nameiy, one for each starting point on the boundary. If the
derivative of the chain code is used, i.e., replace each convex corner
of the chain by a 1, each straight corner by a 2, and each concave
corner by a 3, then the chain with the minimum value when viewed as an
integer can be used to represent the shape. In order to normalize the
shape, a grid is chosen after the shape is surrounded by its basic
rectangle (i.e., its orientation coincides with the major axis of the
shape). Then the shape can be represented to any level of detail by
refining the grid. 1In this way, a shape description is obtained that is
independent of size, orientation and position.

The boundary of a 2-D shape can be expressed in term of
slope of the boundary as a function of arc 1ength, Zahn (1972), or aé a
complex parametric function, Granlund (1972). 1In either case, the
function is periodic and can be expanded in a Fourier series. The shape
can be approximated to any desired degree of accurady by retaining a
sufficient number of terms of the series. For example, suppose that the

boundary of a shape is expressed in parametric form:
z(t) = (x(t), y(v)), O_f__ t< L,

where L is the length of the boundary. Let T(t) be the angular direction
at point t, and let T(0) ='C. Define P(t) to be the amount of angular
bend between the starting point and t. Then, P(t) + C = T(t). The

function P(t) can be normalized over the interval [0,2] as follows:
P*¥(t) = P(Lt/2) + t.

Then, P*(0) = P*(2) = 0. There exists a sequence {Ak,ak}, k=1 to «, and
u such that ‘

P*(t) = u +-2Akcos(kt—ak).

The Ak’ a k = 1 tow are the Fourier descriptors,
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Transforms other than the Fourier transform can be used,
e.g., the Walsh transform. However, one of the main advantages of the
Fourier transform is the well-developed theory and software to implement
it. Fourier shape models can be made independent of position,
orientation and scale. The major disadvantages of the method are that
local features of the shape are difficult to describe without taking
many coefficients and that obstruction or agglomeration produce
coefficients unrelated to those of the original shape.

An approach to boundary representation that has received
mucb attention in the areas of computer graphics and CAD/CAM is the use
of E—splines. As described by Gordon & Riesenfeld (1974), a polynomial
spline is a generalized polynomial with specified points of derivative
discontinuity. Usually, a spline function of degree m-1 is defined
over a sequence of intervals and is a polynomial of degree m-1 on each
‘subinterval, and its derivatives of orders 1,2,...,m-2 are everywhere
continuous. Various bases exist for the space of all such spline
functions, however, the B-spline basis functions are a commonly used
basis. Arbitrary primitive functions can be represented by a B-spline
approximation which consists of a weighted sum of the basis functions.
B-spline approximations are variation diminishing representations and
provide local approximations. Although these are convenient properties
of general splines, only first order splines have had much success in
shape analysis since the theoretical and computational problems are
much more complex for higher-order splines; moreover, in shape
perception, linear approximations capture most relevant information and
continuity conditions are usually not too important (see Pavlidis (1977)
for a discussion of the use of splines in shape analysis).

Another approach to 2-D shape modeling is to transform the
elements of the shape into a parameter (or trénsform) space. The Hough
transform is perhaps the most important example of this approach. .
Originally, the Hough transform was used to detect simple curves, €.9.,
lines or circles. Usually this method is applied to an edge image,
i.e., a binary or thresholded description of the edges in the original
image. The (x,y) location of an edge response restricts the set of
possible lines that this edge could lie on. This set of lines can be
represented by a couple of quantized parameters, e.g., slope and inter-
cept.' The complete set of lines possible for the whole image can be

represented by an accumulator array whose axes are slope and intercept.



T.C. Henderson ‘ 2.

Then, for every (x,y) location of an edge response the accumulator
array is incremented for every possible line through (x,y).
If many edge responses lie on the same line then this results in a high
Avalue at the position in the accumulator array corresponding to that
line, »

The Hough transform has been generalized for arbitrary
shapes in the plane by Merlin & Farber (1975). Given a list
(xi,yi)i=l,n of locations designating a shape, then the shape is

modeled by choosing a reference point, (xo,yo), and keeping list of

displacement vectors D=(gxi,5yi) i = 1 to n where 5xi = xo - xi and
§yi = yo,— yi. This list COnstitutes the model for that shape. In
order to detect the shape in an image, an accumulator array H is
initialized to zero and for each edge location (x,y) detected in the
image, H (x+5xi, y+5yi) is incremented by one. Maxima in H should
represent the location of the reference point (xo,yo). This algorithm
is actually an efficient binary convolution of the shape model and the
edge image. Moreover, this approach can be extended to account for
orientation and scale changes (see Davis & Yam (1981)). If one is
willing to pay the overhead of a complete edge description, e.g., edge

likelihood and orientation, then one can use even more efficient

generalization of the Hough transform has been proposed by Ballard (1981

SPECIAL AXES METHODS .

Sweep representations deécribe'shape in terms of special
axes which can be given as a set of points or as$ a function.
Associated with each point of the axis is either a géometric object,
e.g., a circle, or some deformation of that object. The two major
examples of this approach are the medial axis transform and ribbons:
the 2-D version of'generalized by ecylinders.

The medial axis transform proposed by Blum (1964 differs
-from the previously discussed ﬁethods in that a new object is
derived from the given one. This is one of the earliest proposed
shape modeling techniques and has been widely studied. Let R be the
set of points defining an object and let B be the set of boundary
points of R. Let Nx be the set of points that are in B and whose
distance from x is less than or equal to the distance of x from any

other point of B. Then medial axis transform consists if two parts:
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-The set S = {x : Nx has>more than one member}, and
—The radius of the largest disk contained in R énd centered
at x for each x in S.

Thus, a spatial decomposition of R is given in terms of S, also known
as the skeleton of R. The medial axis transform has many desirable
properties; for example, to determine whether or nct a point, p, is in
the interior or R, one need only computé the distance of p‘from each
point s of the skeleton and see if that distance is less than the
radius of the disk associated with s.

The medial axis transform has several disadvantages. The
skeleton of an arbitrary object is not as economical a representation
as the boundary of‘the object; Moreovér, digital approximations to the
skeleton may not be connected and are very sensitive to noise.

Finally, there is no obvious way to compute properties of the original
shape directly from the skeleton.

- Another successful sweep representation is that of ribbons.
A ribbon is a 2-D restriction of the 3-D shape modeling method of
generalized cylinders. Basically, a ribbon is a means of describing
therprojection of a generalized cylinder. 3-D objects are described
by a basic 2-D shape, an axis along which the shape is moved and a
description of the transformation of the 2-D shape as a function of
position along this axis. A ribbon describes the relations between
lines in an image in the same way, except that the special axis is
restricted to stay in the plane, as is the 2-D shape (see Brook

(1981)).
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