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Abstract

Engineering drawings provide a significant chal-
lenge to image analysis. The goal is to take a
scanned engineering drawing image and produce an
interpretation of the contents in terms of charac-
ters, digits, arrows, line segments, dimensions, etc.
Our goal is to incorporate these results into a legacy
system re-engineering process (e.g., image analysis
must provide parameter values for manufacturing
features like counterbore holes, etc.). We propose
to treat the problem in two steps: (1) determine a
good set of feasible points which constitute the mark-
ings on the page, and (2) subsequently treat these
as a 2D floor plan that is explored by a tiny mobile
agent that mavigates through the drawing and pro-
duces a map. The trajectories followed by the agents
allow a segmentation of the image into basic geomet-
ric units: straight line segments, end points, branch
points, etc. In this paper we study static Pseudo-
Range Maps (PRMs) to identify point features in
the image.

We believe that this approach can be applied to any
kind of line drawing material where the objects of
interest can be segmented. We conjecture that it will
also be possible to characterize and identify processes
that create such line drawings (e.g., people, printers,
etc.).

1 Introduction

Almost all legacy engineering designs involve 2D
CAD drawings. The most common tasks for the
re-engineering of legacy systems include the modifi-
cation of existing designs to make a new design, or
the synthesis of 3D models from multiple 2D views
(usually available as engineering drawings). Au-
tomatic engineering drawing analysis offers a use-
ful tool in the interpretation of engineering draw-
ings when the original electronic CAD is not avail-
able. Engineers engaged in reverse engineering rely
heavily on the scanned engineering drawings from
blueprints as well as 3D data from the available

physical parts. Our goal is to aid the design process
by achieving the most accurate image segmentation
possible in order to permit the best interpretation of
annotations in digitized images of CAD drawings.

The automatic analysis of engineering drawings
has posed interesting and challenging research top-
ics in document analysis, pattern recognition, image
processing and computer vision for a few decades
(19, 22-25]; however, the complete analysis of engi-
neering drawings is still an unsolved problem. Most
extant systems exhibit brittle performance when ap-
plied to real world image sets. (See Tombre [1] for
an overview of the field and Kanungo et al. [2] for
insightful commentary.) Most previous work deals
with the interpretation of particular symbols and
structures in CAD drawings (e.g., straight line vec-
torization [4, 12, 16], arcs [20], and dimensioning
analysis [3, 5]). Our survey shows that previous re-
search focuses on methodologies and algorithms for
individual aspects of the problem and only achieves
good overall performance in special circumstances.
Most of the known algorithms and procedures re-
quire noise-free conditions which is usually an un-
realistic assumption. Research is still underway in
this area due to real world application demand, and
no existing system works well universally.

We have studied this problem for a number of
years (e.g., see [8-11, 22]). That work explored the
use of structural constraints in the underlying doc-
ument elements, and feedback mechanisms to rein-
force paths to successful interpretations. However,
one constant issue is the poor quality of the image
segmentation of the engineering drawings.

We propose to improve the image segmentation
process by taking advantage of the fact that engi-
neering drawings are human artifacts and thus have
a regular structure. Moreover, this structure is quite
similar in nature to the 2D floor plan of a building
layout; e.g., lines are like hallways. Figure 1 shows a
typical layout to be explored and mapped by a mo-
bile robot. Similarly, the scanned digital image of an



Figure 1: Building Layout for Mobile Robot Map-
ping

engineering drawing has errors and noise, and there-
fore poses difficulties for standard image processing
techniques. We propose a paradigm shift: view the
drawn lines and symbols as hallways, rooms, etc.,
and use robot navigation and mapping methods to
analyze the drawing structure. Mobile agents are
placed “inside” the drawn lines and located with
subpixel precision. The gray levels serve as a density
function, and a pseudo-range scan can be performed
at any pixel (the background of the line drawing im-
age serves as the solid surfaces). The engineering
drawing analysis is now defined as a robot mapping
problem. We propose to demonstrate that features
important to the drawing analysis can be extracted
using this approach. Once these features can be ro-
bustly extracted, we believe that it is possible to
obtain the line segments and structures necessary
for high-quality drawing interpretation. The method
also makes it possible to learn interesting structure
within the image automatically. Finally, localiza-
tion methods can be used to match models of known
structures (e.g., letters, digits, arrowheads, etc.).

In this paper we explore the static use of pseudo-
range maps at individual pixel locations to classify
0-dimensional features (i.e., point features), includ-
ing: (1) end points, (2) interior corridor points, (3)
corner points, and (4) branch points. Performance of
this approach is demonstrated on engineering draw-
ing images for which ground truth is available.

2 Method
We propose a two-step process:

1. Threshold the image into foreground and back-
ground components, and

2. Use mobile robot mapping techniques to inter-
pret point features in the foreground data.

Thus, step 1 produces a binary image and step 2
extracts point features of interest.

2.1 Foreground Segmentation

The images being analyzed are mostly comprised of
lines; that is, elongated, thin linear structures. The
foreground segmentation algorithm takes as input an
image, I, and a length, k and is given as follows:

Figure 2: Original Gray Level Drawing Image.
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Figure 3: Segmented Image.

e for every pixel, p, in I

— analyze the linear vector of k pixels cen-
tered at p and in the 4 major orientations
(0, 45, 90, 135 degrees)

— pick the orientation, if any, with the
strongest contrast between the middle pix-
els and the outer pixels (outer pixels higher
valued than the middle pixels since the
drawing is dark on light background).

Figure 2 shows an original gray level image and Fig-
ure 3 its segmented counterpart. (Figure 4 shows
a segmented image using a standard within-group
variance thresholding technique [18].)

Note that the arrow head is missing in Figure 3
as it is not a linear structure. Also note how the
fraction numbers and line are messy and not well-
separated in Figure 4.

2.2 Mobile Robot Mapping
Techniques

Figure 5 shows part of an engineering drawing with

the position and orientation of a mobile agent over-

layed on it. The agent can produce a pseudo-range

map (PRM) at any location; Figure 6 shows the



Figure 4: Image Segmented using Standard Method.

Figure 5: An Engineering Drawing with Agent Over-
layed.

PRM for the given location (note that the range is
taken at sub-pixel accuracy). The basic idea is that
the agent will use the PRM in order to explore the
line drawing. This will be done using standard map-
ping techniques. While exploring the line drawing,
features, segments and symbols will be extracted.
Performance will be analyzed using a dataset for
which we have determined the ground truth.

Mobile robot navigation, localization and map-
ping is still an area of active research in the robotics
community [2, 17]. However, many techniques are
already developed which apply to our problem do-
main|7].

Mobile robot mapping techniques exploit three
types of map concepts: topological, geometrical, and
grids. From one or more of these standpoints, a map
of the domain will be built. Specific approaches in-
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Figure 6: A Pseudo-Range Map (PRM) for the
Agent Location.

clude the use of the the visibility graph[14], the gen-
eralized Voronoi diagram (GVD)[1], trapezoidal de-
composition, or probabilistic roadmaps[13]. We have
developed some simple mapping procedures (similar

~ to [7], p. 176) that construct an approximation to

the GVD. f

2.3 Feature Analysis

We describe here our work on 0-D features in the
image, but ultimately, we hope to exploit navigation
techniques to discover:

e O-dimensional features: point or locale-centered
features:

— end points, small blob segments
— corners

— multi-branch points

e 1-dimensional linear features

— straight line segments
— curved line segments

e 2-dimensional features

— arrowheads
— certain symbols

An initial foray into 0-D feature extraction demon-
strates the feasibility of this approach. The PRM
can be used at each pixel to identify:

1. endpoints: the terminal part of a line segment
(a dead end in terms of robot exploration)



Figure 7: The four 0-D Feature Types (1: endpoint;
2: interior corridor; 3: corner; 4: multi-branch
point).

270

Figure 9: The Pseudo-Range Map for the Interior
Corridor Feature (number 2 in Figure 7).
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Figure 8: The Pseudo-Range Map for the Endpoint
Feature (number 1 in Figure 7).

2. anterior corridor points: two directions of travel
possible, but not a corner (robot can move ba-
sically in two directions 180 degrees apart)

3. corner points: two directions of travel possible,
but at significant angle off 180 degrees

270

4. multi-branch points: more than two directions

possible for robot to explore. Figure 10: The Pseudo-Range Map for the Corner

Feature (number 3 in Figure 7).
Figure 7 shows examples of these four types, and
Figures 8 to 11 show the PRM for each location
circled in the image.
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Figure 11: The Pseudo-Range Map for the Multi-
Branch Feature (number 4 in Figure 7).

Given a thresholded image, this algorithm labels
the 0-D features in the image; Figures 12 through
15 show the feature points extracted from the image.
This is done using the polar range plots; the number
of branches in the polar function tells the type of
structure.

The feature classifiers work by taking into account
properties of the PRM like number of peaks, maxi-
mum range, and range in the direction opposite to
the maximum range (e.g., endpoint pixels have short
range opposite the maximum, while corridor pixels
have long range in both directions).

The performance of the proposed method, even
without serious pre- and post processing, is better
than that of the standard line detection algorithms.

In an attempt to determine how well our al-
gorithm works, we explored the use of decision
trees as a classification method. In particular, the
information-theoretic approach described in [21] was
applied, using the following attributes of the PRM:

e attributes 1-7 Hu invariant moments[15] of the
PRM image region.

e atiribute 8 area of the PRM image region.
e attribute 9: perimeter of the PRM image.
e gttribute 10 sum of ranges in the PRM.

e attribute 11: total distance of the points in
PRM perimeter to the point which is used to
compute the PRM.
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Figure 12: Endpoints Found in Image im00.
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Figure 13: Corridor Points Found in Image im00.
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Figure 14: Corner Points found in Image im00.
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Figure 15: Branch Points Found in Image im0O0.

e attribute 12: sum of the absolute distance of
the rows and cols of the PRM region point’s
to the row and col of the point which is used to
compute the PRM, divided by the total number
of points in the PRM region.

e attribute 13 number of branches in the PRM.
(The range of the branch length must be longer
than 90% of the maximum range of the PRM.)

A set of training samples were selected, and four de-
cision trees were built: one for each 0-dimensional
feature. It is interesting to note the most discrimi-
nating attribute (i.e., the first branch is determined
by this attribute) for each feature: (1) endpoints:
attribute 11, (2) corridors: attribute 2, (3) cor-
ners: attribute 12, and (4) branches: attribute 11.
These classifiers perform well (see Section 3 on per-
formance), but not as well as the hand written clas-
sifier.

3 Performance Evaluation

The overall system performance is evaluated in
terms of the quality and computational complexity
demonstrated over various image datasets. Noise
is introduced during the digitization process; thus
there are extraneous as well as missing objects in the
resulting image. Both noise and missing data can
have a large influence on the image interpretation
process. In addition, blueprints might be stained,
damaged during storage and usage, and scanners
might have different blur, lighting, and scale factors
[8]. To objectively measure how well the proposed
system analyzes digitized engineering drawings, we
compare results over a dataset for which we have
ground truth knowledge acquired from engineering
drawing datasets.

We have done the following steps for system per-
formance evaluation:
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Figure 17: Test Image im17.

e Established a testbed benchmark set of five im-
ages and ground truth. These five images are
shown in Figures 16 through 20.

e Run our previous feature classifier (non-PRM)
on the test images. (See Table 1.)

e Run the PRM classifier on the test images. (See
Table 2.)

e Developed a decision tree classifier using train-
ing data (numerical features of the PRMs). (See
Table 3.)

Figures 16 through 20 show the engineering drawing
test images.

To measure the performance of the algorithm, we
use recall to mean the ratio of correct features found
to total number of features, and precision to indicate
the ratio of the number of correct feature responses
to the total number of feature responses. Tables 1
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Figure 18: Test Image im18.
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Figure 19: Test Image im19.
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Figure 20: Test Image im22.

through 3 show the recall results from these exper-
iments, while Tables 4 through 6 give the precision

results.
Image | F.end F_corr F_corn F_bra
1m00 90.45 99.55 72.60  81.22
iml17 92.41 99.25 65.11  89.25
imi18 96.38 98.64 73.27 7190
im19 95.59 98.95 73.88  86.36
m22 84.85 99.92 36.72  86.75

Table 1. Recall Percentage Correct for Non-

PRM Method.
Image | F.end F corr F_corn F_bra
1m00 100.0 98.70 100.0  100.0
im17 96.97 98.84 100.0  100.0
imi18 100.0 99.07 99.63  100.0
iml9 98.64 98.95 100.0  95.87
im22 97.32 98.09 100.0  98.92

Table 2. Recall Percentage Correct for PRM

Method.
Image | F_endpt F_corr F_corn F_bra
im00 100.0 87.61 85.48  99.53
iml17 97.32 82.61 68.85  100.0
mi18 99.55 84.91 84.49  80:99
im19 100.0 84.91 81.34  90.91
im22 97.73 91.85 46.88  97.59

Table 3. Recall Percentage Correct for Deci-
sion Tree Method.

Image | F.end F_corr F_corn F_bra
im00 43.36 100.0 42.87  43.25
im17 35.10 100.0 28.64  41.52
imi18 60.96 100.0 51.66  35.01
im19 53.94 100.0 63.23  34.92
1m22 34.73 100.0 29.20  45.93

Table 4. Precision Percentage Correct for
Non-PRM Method.

Image | F.end F_corr F_corn F_bra
im00 35.82 100.0 42.59  50.11
im17 55.39 100.0 38.31  39.45
im18 69.89 100.0 47.83  57.56
iml19 68.55 100.0 48.57  58.27
im22 31.06 100.0 28.20  44.50

Table 5. Precision Percentage Correct for

PRM Method.




Recall Results for Non-PRM (dashed), PRM (solid), Decision Tree (dotted)
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Figure 21: Percentage Correct Recall.
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Figure 22: Percentage Correct Precision.
Image | F.endpt F corr F_corn F_bra
1m00 35.17 100.0 35.35 33.71
mml17 30.17 100.0 24.15 30.14
im18 36.42 100.0 4714  43.79
1ml19 38.79 100.0 41.21 32.43
1mm22 26.35 100.0 22.96  38.18

Table 6. Precision Percentage Correct for De-
cision Tree Method.

As can be seen from the performance data in Fig-
ures 21 and 22, the static PRM feature classification
method works very well with regard to recall, but
requires a post-processing step to ensure good pre-
cision.

4 Conclusions and Future Work

We have demonstrated that the use of static Pseudo
Range Maps yields high percentage detection of
point features in engineering drawing images. We

are currently investigating:

e Agent motion during feature recognition. First,
0-dimensional features will be analyzed, then 1-
dimensional, and finally, 2-dimensional.

e Learning characteristics of the line drawing
data. Let the trajectory of an agent as it
explores a drawing be considered an element.
Then one approach to finding related parts
of the drawing, or parts that are similar to
a known model, is to use the affinity graph
method[6] to cluster the elements into similar
classes.

We are currently pursuing these two lines of de-
velopment. In addition, we intend to expand the
domain of application to other datasets, including:
map features, handwritten and other documents.

A cknowledgments

This work was supported in part by ARO grant num-
ber DAAD19-01-1-0013.

References

[1] F. Aurenhammer. Voronoi Diagrams — A Sur-
vey of a Fundamental Geometric Structure.
ACM COmputing Surveys, 23:345-405, 1991.

[2] G. Dissanayake, P. Newman, S. Clark, H.F.
Durrant-Whyte, and M. Csorba. A Solution to
the Simultaneous Localisation and Map Build-
ing (SLAM) Problem. IEEE-T Robotics and
Automation, 17(3):229-241, June 2001.

[3] Dov Dori. Dimensioning Analysis toward auto-
matic understanding of engineering drawings.
Communications of the ACM, 35(10):92-103,
October 1992.

[4] D.S.Guru, B.H.Shekar and P.Nagabhushan. A
simple and robust line detection algorithm
based on eigenvalue analysis. Pattern Recog-
nition Letters, 25(1):1-13, 2004.

[5] Feng Su, Jigiang Song, Chiew-Lan Tai and Shi-
jie Cai. Dimension Recognition and Geom-
etry Reconstruction in Vectorization of Engi-
neering Drawings. In Computer Vision and
Pattern Recognition, 2001 (CVPR 2001), vol-
ume 1, pages 682-688, 2001.

[6] D.A. Forsyth and J. Ponce. Computer Vision:
A Modern Approach. Prentice Hall, Upper Sad-
dle River, NJ, 2003.

[7] H. Choset and K. Lynch and S. Huthinson and
G. Kantor and W. Burgard and L. Kavraki and
S. Thrun. Principles of Robot Motion. MIT
Press, Cambridge, MA, 2005.



8]

[10]

[11]

(12]

[15]

[16]

[18]

Thomas C. Henderson. Explicit and Persis-
tent Knowledge in Engineering Drawing Anal-
ysis. Research Report UUCS-03-018, School of
Computing, University of Utah, Salt Lake City,
Utah, 2003.

Thomas C. Henderson and Lavanya Swami-
nathan. Form Analysis with the Nondetermin-
istic Agent System (NDAS). In Proceedings of
2008 Symposium’ on Document Image Under-
standing Technology, pages 253-258, Greenbelt,
VA, April 2003.

Thomas C. Henderson and Lavanya Swami-
nathan. NDAS: The Nondeterministic Agent
System for Engineering Drawing Analysis. In
Proceedings of International Conference on In-
tegration of Knowledge Intensive Multi-agent
System, pages 512-516, October 2003.

Thomas C. Henderson and Lavanya Swami-
nathan. Symbolic Pruning in a Structural
Approach to Engineering Drawing Analysis.
In Proceedings of International Conference on
Document Analysis and Recognition, pages 180~
184, August 2003.

Jigiang Song, Min Cai, Michael R. Lyu and Shi-
jie Cai. A New Approach for Line Recognition
in Large-size Images Using Hough Transform.
In International conference on pattern recogni-
tion (ICPR’02), volume 1, page 10033, 2002.

L.E. Kavraki, P. Svestka, J.C. Latombe, and
M.H. Overmars. Probabilistic Roadmaps for
Path Planning in High-Dimensional Configura-
tion Spaces. IEEE-T Robotics and Automation,
12(4):566-580, June 1996.

J.C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, MA, 1991.

Martin Levine. Vision in Man and Machine.
McGraw-Hill Book Company, New York, 1985.

M.Mattavelli, V.Noel, and E.Amaldi. A New
Approach for Fast Line Detection Based on
Combinatorial Optimization. In 10th Interna-
tional Conference on Image Analysis and Pro-
cessing, volume 1, page 168, 1999.

M. Montemerlo and S. Thrun. Real Time Data
Association for FastSLAM. In Proceedings of
International Conference on Robotics and Au-
tomation, Taipei, Taiwan, 2003.

Robert M. Haralick and Linda G. Shapiro.
Computer and Robot Vision. Addison-Wesley,
Reading, MA, 1992.

[19]

(21]

[22]

[23]

[25]

S. H. Joseph, T. P. Pridmore, and M. E. Dunn.
Toward the automatic interpretation of me-
chanical engineering drawings. Computer Vi-
sion and Image Processing(A. Bartlett, Ed.),
New York: Kogan Page, 1989.

Jigiang Song, Michael R. Lyu, and Shijie
Cai. Effective Multiresolution Arc Segmenta-
tion: Algorithms and Performance Evaluation.
IEEE-T Pattern Analysis and Machine Intelli-
gence, 26(11):1491-1506, November 2004.

Stuart Russell and Peter Norvig. Artificial In-
telligence. Prentice Hall, Upper Saddle River,
New Jersey, 2003.

Lavanya Swaminathan. Agent-Based Engineer-
ing Drawing Analysis. Master’s thesis, Univer-
sity of Utah, Salt Lake City, Utah, May 2003.

K. Tombre and D. Antoine. Analysis of Tech-
nical Documents using A Priori Knowledge. In
IAPR Workshop Syntactic and Structural Pat-
tern Recognition, Pont--Mousson, France, pages
178-189, 1988.

K. Tombre and Dov Dori. Interpretation of
engineering drawings. In Handbook of Charac-
ter Recognition and Document Image Analysis,
pages 457-484, 1997.

Y.Yu, A.Samal, and S.C.Seth. A System for
Recognizing a Large Class of Engineering Draw-
ings. IEEFE Transactions on PAMI, 19(8):868—
890, 1997. :



