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Abstract— Sensor networks are comprised of devices
having the ability to communicate, compute and sense
the environment. A wide range of information pro-
cessing tasks have been studied for such networks,
including operating systems, issues, architecture opti-
mization, and distributed data processing. In this paper,
we analyze and compare four different techniques to
estimate the gradient of the function represented by
the sensor samples. These include: (GA1) a simple de-
vice ID defined direction, (GA2) directional derivative,
(GA3) polynomial approximation with a plane, and
(GA4) polynomial approximation with a quadratic. We
compare these based on density of devices per unit
area, and noise in the position and sensed data. The
interesting result is that GA3 significantly outperforms
the other algorithms, although GA1 performs very well
and is much easier to compute than the others.

I. INTRODUCTION

Many advances have been made in sensor network
technology and algorithms in the last few years. See
[1] for an overview of the state of the art. Work has
been done on: architecture [2], systems and security
[3], 4], [5], and applications [6]. Our own work has
focused on the creation of an information field useful
to mobile agents, human or machine, that accomplish
tasks based on the information provided by the sensor
network [7], [8], [9], [10], [11].

At the most basic level, the devices are distributed
in the environment. Consider the following scenario.
A set of devices are dropped in a wide geographic
area to monitor a toxic gas leak in the air. Mobile
robots involved in the containment and cleanup need
to follow the chemical gradient to move to the toxin
source locations. Thus, the gradient of the concen-
tration scalar field is required. Figure 1 shows an
example set of devices with neighbors in the graph
defined as those in radio broadcast range.
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Fig. 1. A Selection of S-Element Devices and Their Neighbors.

II. GRADIENT CALCULATION

The gradient of f at (, ) is the vector in &2 given

by: 57 of

(We follow Marsden [12] for our vector calculus
notation.)

grad f=(

A. Coordinate Frame Free Method (GAI)

The gradient is approximated at each device
(I Dgeyice) as follows:

1) From the neighbors of IDgeyice, the device
(I Dppae) with the maximum sensed data value
is determined.

2) The gradient is reported as the pair of device
ID’s: (IDdevice ’IDmaa:)-

A mobile agent uses these ID’s to move in the
gradient direction by moving between the two devices
and then moving in the direction of I D,,,,. Note the



method does not require that the (x,y) positions of the
individual devices be known. Accurate calibration of
sensor networks is a difficult task and getting good
position data is very difficult or very expensive [13].

This method is very inexpensive and robust and
thus, very attractive if its performance compares well
to the other more rigorous approaches. Note that in
order to make error comparisons, we use the position
given by the actual direction between devices because
this is what a mobile agent would use.

B. Directional Derivatives (GA2)

This method requires knowledge of the positions
of the devices. The directional derivative of f at
in direction 7 is given by:

dd. = %f(m t0) |i=0

if it exists. From this, we have that the directional
derivative is also defined by:

dd. = lim 1E )~ f(@)
h—0 h

We approximate this by:
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Assuming all directional derivatives exist, it is the

case that:

dd =L@+ (@, @

where 7 = (vg,v,). Combining these, we approxi-
mate the gradient at each device, I Djeyice, located at
eg, as follows:

1) Choose two of IDgeyice’s neighbors, D7 and
1Dy, located at €7 and é3, respectively, such
that /ejeges is as close to a right angle as
possible.

2) For the two points, €1 and €3, solve (1) to get
the following pair of equations:

dd.a. = freiz + fyeiy 3

d.d.a.g = frea + fyeay @)

3) Solve (3) and (4) for the two unknowns: f, and
fy and form the gradient as (fz, f,).

C. Polynomial Approximation: plane (GA3)
For each device, the position must be known. To
approximate the gradient:

1) From the positions and sensed data values of the
n points within broadcast range of the current

device (i.e., itself and its neighbors), form the
linear system:
f(_é—l_) 1 €z €ly
f(e_Q) 1 eos €2y ao
: s ) a 5
: : as
f(en) 1 enz eny

2) Solve (5) for ag, a1, and as.
3) The gradient is then (aj, as).

D. Polynomial Approximation: quadratic (GA4)

Here we make the assumption that the functional
form of the sensed data is:

Dmaw
f(mv y) = 5 5 (6)
V14 (Sz —2)? + (Sy —y)
where D, is the maximum value of the function
at the source location (S, S, ). In order to set up to
solve for the gradient, rewrite (6) as follows:

L TG

f(z,y) Drnas

1L 14 (Se—2)*+ (S, —v)?
fQ(CC,y) Dmar
u(z,y) = ag + a1 + agy + aza® + agy’
1+S§+S° -

where u(z,y) = fZ(:c ) R N Dgs ’
ao = D?ni'Z9 az = D,zmam’ and a4 = D%al.

Then the gradient is found as:

1) From the positions and sensed data of the de-
vice and its neighbors, form the linear system:

- 2 2
u(er) 1 e ey e%z e%y ao
u<e_2) 1 €2z €2y €y €2y “
. = . az
: S a3
u(ey) L eny eny €5, €y a4
(7

2) Solve (7) for ag, a1, as, asz, and ay.
3) Then the gradient is given by (2azz+ay, 2a4y+
0,2)
Note that S, = _CCL“, Sy = lgf and D, = ——1——

Note that the recovery of these parameters is dlfﬁcult
as the a;’s are very sensitive to the data.



ITII. SIMULATION EXPERIMENTS

Our simulation works as follows:

for number of devices = dev,,in 10 devyan
for noise = 0 to noiseas
for number of trials = 1 to trialsmas
Distribute devices uniformly over area
Select source location for scalar field
Set values of sensor devices
for each gradient method
Calculate the gradient
Calculate the error
end
end
end
end

This has been implemented in Matlab, and Table I
gives the results of the simulations.

The density of the devices was allowed to vary
from 1 per unit area to 2 per unit area. The table
shows that increasing the number of devices generally
. improves the quality of the approximation. Two noise
levels were evaluator: (1) no noise, and (2) noise with
standard deviation 1. This noise is applied to both
the position of the devices, as well as to the sensed
data values. That is, the device position is normally
distributed about the actual position with 0 mean and
either standard deviation of O or 1. Sensed data is
handled in a similar manner.

IV. CONCLUSION

From Table I it can be seen that GA3 performs
significantly better than the other algorithms, even un-
der noisy conditions. Figure 2 shows a sample sensor
network with neighbors graph, and Figure 3 shows
the gradient approximation by GA3 with an average
of 2 devices per unit area and no noise. Moreover,
GA1 - which does not use device position information
- performs comparable to the other algorithms, and in
absolute terms is not so bad (about 16 degrees error
under noisy conditions with a couple of devices per
unit area). Figure 4 shows the results under the same
conditions as GA3 above. Figures 5 and 6 show the
results of GA2 and GA4 on the same data. As can
be seen, GA4 does a very poor job of approximating
the gradient; any time a specific functional form is
chosen, it will do poorly if it does not match the
actual environment.

In the near future, we intend to implement and
test these algorithms on a 100-device sensor network
testbed. The design of this testbed is underway by the
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Sensor network with neighbors graph (200 devices in 10x10 area)
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Fig. 2. Sample sensor network with neighbors graph.

GA3 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)

+ end of vector indicates gradient direction

Fig. 3. GAS3 gradient approximation with no noise.
GA1 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)
5
il Q‘Q — —

2, TR
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Fig. 4. GA1 gradient approximation with no noise.



TABLE 1
SIMULATION RESULTS

Algorithm Angle Angle Mag Mag
Error Error Error Error

(degrees) Std (pixels) Std

100 devices /

0 data error

GAl 5.89 0.02 5.85 1.49

GA2 5.39 0.02 10.71 8.40

GA3 1.20 0.01 2.90 0.62

GA4 16.63 0.10 10.70 19.12

200 devices /

0 data error

GAl 2.92 0.01 5.34 1.34

GA2 6.18 0.01 14.52 21.42

GA3 0.67 0.01 2.61 0.51

GA4 14.83 0.10 6.90 3.54

100 devices /

1 std data error

GAl 25.79 0.02 6.01 143

GA2 20.90 0.06 7.72 2.74

GA3 1024 004 649 270

GA4 18.59 0.06 56.4 326.94

200 devices /

1 data error

GA1l 15.69 0.03 5.72 1.37

GA2 10.61 0.04 8.67 3.44

GA3 6.58 0.04 5.81 0.97

GA4 17.87 0.08 52.80 150.21

authors, and the goal is to construct the testbed this
summer.
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Fig. 5. GAZ2 gradient approximation with no noise.

GA4 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)

| j/\/ —
VN Af e
7y N%aee
///Q%/M//ﬁﬁi\*\&
\\ PR

(7

(8]
91

[10]

[11]

{12]

[13]

~ = "o 2 ‘ s
Fig. 6. GA4 gradient approximation with no noise.
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