THE K-D TREE REPRESENTATION OF EDGE DESCRIPTIONS

Thomas C, Henderson

Department of Computer Science
University of Utah,Salt Lake City, Utah 84112

Ernst Triendl
DFVLR - Oberpfaffenhofen
8031 Wessling, West Germany

1. Abstract

The detection and manipulation of edges in
digital images constitue major aspects of many
image analysis systems. This edge information is
usually kept in another image, the "edge image."
Such a representation of the edges is less
efficient than the k-d tree representation if the
percentage of edges is below a certain level. The
tradeoffs between the two representations are
presented.

2. Introduction

Several types of intrinsic images (see Barrow and
Tennenbaum [1978]) have been shown useful in
recovering 3-D scene information. One of the most
important and probably the most often used is the
edge image. Usually, the edge image is an array
registered with the original, and edges are
recorded pixelwise. If the edge image 1is
thresholded, the result is a sparse feature image,
and in this case a more efficient representation
can be found,

We propose to use the 2-D tree which is simply
the 2-D version of the kd-tree introduced by
Friedman et al [1977] for storing multidimensional
keys. The efficacy of this data structure is
investigated in the context of the storage of edge
features, and in particular, the storage of full
edge descriptions including orientation, radius and
edge likelihood information. However, the results
apply equally well to any set of sparse feature
arrays,

3. Edge representation

We assume that edges are detected by some full
edge description method: Nevatia, Hueckel,
Triendl, etc. For example, an edge crossing a
pixel may be represented with subpixel accuracy by
a triple (r,a,p) which gives the radius, angle and
probability, respectively of that edge with respect
to the center of the pixel.

Given such an edge description, then there are
multiple channels of output for each channel in the

CH1801-0/82/0000/0806 $00.75 © 1982 IEEE

input image. Thus, a four channel LANDSAT image
produces a 12 channel edge description image., In
most applications, the edge output will be
thresholded, and the resulting edge images will be
very sparse (e.g., see Henderson et al [1981]).

4, Storage Requirements

Suppose that each input channel is an m by n
array, that there are Kk channels of input, and that
there are e storage elements required in the output
description. Let p = mn. Then, the number of
storage elements required for the output
description is ekp.

As for the 2-D tree representation, the goal is
to organize the features so as to minimize the
expected number of records to be examined in a
search query. Each (x,y) location of a feature is
a 2-D key to be stored. Suppose that there are ap
significant responses in each input channel, and
that b is the bucket size of each terminal node.
Then, there are approximately (e+2)apk + (4apk/b)
storage elements required. (The first term is the
number of terminals, and the second term is the
number of nonterminals.)

Comparing these two, we find that the 2-D tree is
more economical whenever:

a < e/{(4/b)+e+2}.

For example, for single channel input, single
channel edge description and bucket size 1, the
breakeven point is at 14% edge density. This
increases quickly with increase in either bucket
size or edge description size: e.g., the breakeven
point is 25% for either b=zl4 or e=2,

The cost of operations on the edge description
storage structure is also important. Two of the
most common operations are channel grouping and
spatial grouping of edges. Channel grouping
requires kp operations for the array
representation, while for the 2-D tree, channel
grouping can be accomplished by simple tree
traversal requiring 2akp + (ldakp)/b operations;
thus, whenever:

a < b/{2(2+b)}>

Reprinted from PROCEEDINGS OF THE 6 TH INTERNATIONAL
CONFERENCE ON PATTERN RECOGNITION, October 1982

the 2-D tree 1is more efficient. This occurs at
around 17% edge density for bucket size 1 and 33%
for bucket size 4. The breakeven point of spatial
grouping is not so easily analyzed, involving a log
term for finding nearest neighbors in the 2-D tree;
however, arguments can be made that the 2-D tree
should outperform the storage array for this
operation. First, the spatial grouping is guided
by the tree, and consequently only processes where
edges occur. Second, since the 2~D tree method is
used only if a savings in storage occurs, then the
2-D tree is more likely to fit in core memory than
the array structure and less time will be spent in
costly disk I/0.

5. Conclusion

The conditions under which the 2-D tree is a more
efficient representation of feature images has been
described. Moreover, standard grouping operations
have been shown to be less costly when performed on
the 2-D tree rather than the traditional array
representation. The kd-tree has other
applications, e.g., as Hough accumulators and for
range data organization, and the 2-D tree modules
can be useful tools in these other domains.
Finally, the 2-D tree allows straightforward access
to interesting locations, i.e., exactly where the
features occur, and this can be useful in search,
display, etc.

6. References

[1] Barrow, H.G. and J.M. Tennenbaum, "Recovering
Intrinsic Scene Characteristics from Images," SRI
Tech. Rept. 157, April 1978.

[2] Henderson, T.C., E. Triendl and R. Winter,
"Edge-Guided Image Registration," 2nd Scand. Conf.
On Image Analysis, Helsinki, Finland, June 1981,
pp. 106-111.

{3] Friedman, J.H., J.L. Bentley and R.A. Finkel,
"An Algorithm for Finding Best Matches in
Logarithmic Expected Time," ACM Trans. on Math.
Soft., Vol. 3, No. 3, Sept. 1977, pp. 209-226.

807

