A Colony of Robots Using Vision Sensing and Evolved Neural Controllers

A. L. Nelson, E. Grant, G. J. Barlow

Center for Robotics and Intelligent Machines
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC 27695-7911

Keywords: Evolutionary robotics, Robot colonies, Mobile robots,
Evolutionary neural computing, Behavioral robotics, Vision, Robot vision

Abstract--This paper describes the development and
testing of a new evolutionary robotics research test bed. The
test bed consists of a colony of small computationally
powerful mobile robots that use evolved neural network
controllers and vision based sensors to generate team game-
playing behaviors. The vision based sensors function by
converting video images into range and object color data.
Large evolvable neural network controllers use these sensor
data to control mobile robots. The networks require 150
individual input connections to accommodate the processed
video sensor data. Using evolutionary computing methods,
the neural network based controllers were evolved to play the
competitive team game Capture the Flag with teams of
mobile robots. Neural controllers were evolved in simulation
and transferred to real robots for physical verification.
Sensor signals in the simulated environment are formatted to
duplicate the processed real video sensor values rather than
the raw video images. Robot controllers receive sensor
signals and send actuator commands of the same format,
whether they are driving physical robots in a real
environment or simulated robots agents in an artificial
environment. Evolved neural controllers can be transferred
directly to the real mobile robots for testing and evaluation.
Experimental results generated with this new evolutionary
robotics research test bed are presented.

I. INTRODUCTION

Evolutionary robotics (ER) is an emerging field under the
general rubric of behavioral robotics. The field of ER
applies evolutionary computing methods to automate the
development of autonomous robot controllers. In a typical
application, autonomous mobile robot controllers are evolved
to produce robot behaviors such as homing in on a light
source (Phototaxis) [1][2] or avoiding obstacles [3][4].
Artificial evolution is applied to a population of randomly
initialized controller structures. Typically these structures
are neural networks although genetic programming (GP)
constructs have also been used [5][6]. Each controller in
such a population is tested and ranked according to how well
it can control a robot to produce a desired behavior. The best
performing controllers are selected and the poorer controllers
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are discarded. The best controllers are copied and slightly
altered using genetic operators (mutation in this case). The
altered controllers then take the places of poorer controllers
in the population and the process is repeated.

Recently, the field of ER has been reviewed in several
publications [7-9]. Pertinent issues raised in those works
include 1) the feasibility of applying current ER methods to
more sophisticated and general problems; 2) the coupling of
training simulation to reality; and 3) methods of performance
evaluation. We address the question of scalability of ER
methods to complex problems by evolving complex neural
network based controllers to generate game playing
behaviors in teams of mobile robots. Controllers are evolved
using a competitive relative fitness selection metric (fitness
function). The metric bases controller fitness on the results
of tournaments involving all individuals in an evolving
population.

The main focus of this paper is the description of a
coupled real and simulated ER research platform with vision-
based sensors. A versatile vision based sensing system that
is amenable to simulation but can still provide extensive
sensor information to the neural controllers is presented. The
platform generates large evolvable neural networks that
support very large arrays of processed video sensor inputs.
In this research, neural controllers for autonomous mobile
robots using on the order of 150 processed video inputs were
evolved to play a competitive team robot game. In other ER
work, simpler sensing systems such as IR, photo detectors or
sonar have been used. Such sensor systems provide limited
information about the robot’s environment. Sensor data
complexity can be viewed as a double-edged sword. Simpler
sensor systems make the task of evolving controllers more
tractable. However, limiting the resolution and quality of
sensor information may put an upper limit on the complexity
of evolvable behavior.

There has been very little ER work done in which video
signals, processed or otherwise, were used in conjunction
with evolved neural controllers. Exceptions include [10]. In
that work, a ccd-camera array was used, but it was
functionally sampled by averaging values within a very small
number of photo-receptive fields, thus limiting sensor
resolution to that of several photo receptors. Recently, in
[11] research involving evolved neural networks that made



use of video images fed into a 5 by 5 array of neurons was
presented.

In the research described in this paper, video images are
processed into a generalized form of substance type (color),
range and angle numerical data and provide a considerable
wealth of information to the neural controllers. Unlike other
work involving video sensors, in this work numerical data
from the vision system are not tagged or prioritized, but are
fed directly to the neural controllers. The controllers must
evolve to make use of correlations between numerical sensor
data input and actuator outputs in order produce fit behavior.
Controllers are given no a priori knowledge of the physical
meanings of numerical sensor data.

II. THE EVOLUTIONARY ROBOTICS PHYSICAL
RESEARCH PLATFORM

This research utilizes a recently developed,
computationally powerful colony of small mobile robots.
These robots have been named EvBots from EVolutionary
roBOTs [12].

The robots make up a colony of eight small fully
autonomous mobile robots. Each robot is 5 in. wide by 6.5
in. long by 6 in. high and is constructed on a two track
treaded wheel base. Each robot is equipped with a PC/104
based onboard computer. A custom Linux distribution
derived from RedHat Linux 7.1 is used as the operating
system and is capable of supporting MATLAB in addition to
other high-level software packages. The robots are linked to
one another and to the Internet via a wireless network access
point. Each robot also supports video data acquisition (up to
640x480 live motion resolution) through a USB video
camera mounted on each robot. A photograph of a fully

assembled EvBot is shown in Figure 1 (a)

(a (b))
Figure 1. A fully assembled EvBot (a), The real maze
environment with several EvBots (b)

Each robot in the colony is fully autonomous and capable
of performing all computing and data management on board.
At each time step during controller operation, a single video
image is acquired and processed. The data from the
processed image are then given to the neural network
application, which in turn calculates a set of drive motor
actuator commands. The robots have two parallel driving
wheel sets and maneuver using differential steering.

A physical reconfigurable maze environment was
constructed for the mobile robot colony. To facilitate vision-
based sensing, the maze was surrounded by a blue backdrop.
Robots and other objects in the environment were also fitted
with colored skirts. The entire maze environment is
viewable from a video camera mounted above the
environment.  Figure 1 (b) shows the physical maze
environment with several EvBots.

III. VIDEO RANGE-FINDING EMULATION
SENSORS

In the experiments presented in this paper, all robotic
sensing of environments was accomplished via video. The
goal of this work is not to develop sophisticated vision
systems, but rather to make use of simple methods to extract
useful information in a form that would be presentable to a
neural network based controller.

Initially, the motivation for developing the vision-based
object range detection system was to emulate laser-range-
finding sensors on the real robots. Subsequently it was found
that video emulation of range finding sensors provides an
advantage over real range finders in that object color can be
used to identify object type (or ‘substance’ type) in addition
to distance. This range finding emulation system provides an
important unifying crossover point between the simulated
and real environments. Simulation of the emulated range
finding sensors is a much more tractable task than direct
simulation of video images.

The vision system takes advantage of fixed geometric
elements and color properties within the physical maze
environment to calculate the ranges and angles of walls,
robots, and other objects. Each robot camera is attached at a
fixed angle and altitude. Maze walls are of a constant height
so distance can be calculated from a monocular image taken
from a set altitude within the maze environment. In addition,
each robot is fitted with a skirt that has a colored band of
fixed width. Robot distances can be calculated from an
image by determining the relative width of the colored band
within the image. Likewise, stationary goal objects are also
fitted with colored bands of fixed width. The vision system
can detect five object or substance types. These are walls,
red robots, green robots, red goal objects and green goal
objects. Range values are reported over a spread of 48
degrees centered on the forward direction of the robot body
frame of reference.

The system works by successively decomposing a video
image of fixed resolution. First, each pixel is identified as
being red, green, black or other (all ‘other’ colors are
ignored). The image is then converted to a 2D numerical
array where the index of each element is its xy-location in
the original image, and its value is an identifying integer
depending on the determined color of that pixel. The matrix
is subdivided along the horizon into upper and lower regions
to distinguish  between goal objects and robots.
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Figure 2. Examples of image decomposition into vectors of range data to be fed into neural network controller inputs. One vector of length
equal to the horizontal resolution in pixels of the image is produced for each ‘substance’ type in the physical robot environment.

The vertical sum of pixels, Zp, of each object type is
calculated and stored in a set of arrays spanning the
horizontal spread of the image. These numerical arrays are
then fed element by element through a simple distance
formula to produce the final vectors of ranges d for each
object type:

d:K_H_

2.p

Here H is the physical height of each object type and K is an
empirically derived constant. Each array element, d,
represents the distance of a substance or object type
associated with each vertical slice of the processed image.
We will call these ‘object elements’ because groups of them
can be interpreted by humans as making up whole objects.
No such interpretation is given to the robot neural
controllers. The final form of the data is (for each object
type) a vector of numbers spanning the horizontal angular
spread of the original image. Each number element
represents the distance of the closest object element type
associated with each direction (or angular position). If no
object element is detected at an angular position, the
maximum sensor range is returned. The angle of a detected
object element is implicit in the location of each numerical
distance value within each data array. Each array spans the

ey

horizontal spread of the robot camera’s field of view, and
each successive element represents an incremental angular
step from left to right across the horizontal field of view.
Figure 2 shows three example robot-eye-view images and
their successive decomposition into range data vectors. The
object range data vectors shown in Figure 2 were further
reduced in length by extracting the minimum distance over
successive groups of horizontal elements. The end results
are sets of data similar to those that would be obtained from
groups of 30 laser range finding sensors that were selective
for a particular object type. This makes a set of 150 total
process sensor inputs. This large number of input provides
the neural controllers with a very high level of information
about their environment. Other work in the field of ER has
generally relied on 5 to 15 IR sensors, photo-detectors,
single-input sonar or a combination of these [2][3][11].

Controller neural networks are only given the resulting
numerical data vectors. All associations relating numerical
values to physical distances, angles, and object types must be
learned by the neural networks.

IV. THE EVOLUTIONARY NEURAL NETWORK
ARCHITECTURE

Neural networks are the most commonly used controller
structures in ER. This is mainly due to their flexibility and



their close association with the research field of evolutionary
computing.

In general, behavioral robotics tasks are not well
characterized. Hence, it is not always possible to select the
best neural network architecture for a particular behavioral
robotics application. Much of the ER work to date used very
simple network topologies and restricted weight values [13-
16].  Such restrictions limit the scalability of the methods
studied. We have developed a generalized evolvable neural
network architecture capable of implementing a very broad
class of network structures. Networks are not limited to any
particular layered structure and may contain feed forward
and feedback connections between any of the neurons in the
network. Networks may contain mixed types of neurons, and
a variable integer time delay may be set on the inputs of any
neuron in the network. Internal neuron activation function
types include sigmoidal, linear, step-threshold, and Gaussian
radial basis functions. All weighting and connectivity
information for a network is stored in a two dimensional
matrix of weights, W. A non-zero value, w, at the index (m,
n) in W indicates that the mth neuron has a connection to the
nth neuron. This formulation allows for the addition or
removal of individual neurons and all associated connections
without altering the connectivity relationships of other
neurons in the network (by inserting or deleting the row and
column associated with the added or removed neuron).

The neural controllers were trained using population-
based artificial evolution. Networks were trained to play the
competitive team game Capture the Flag (see Section V.B.
below). At the beginning of training (or evolution) a
population of neural networks is randomly initialized. The
population is then cycled though an iterative series of
generations (or training epochs). At each generation, a
tournament of competitive games is played in which the
individual controllers networks compete against each other.
Fitness and selection are based on number of game wins
achieved during a tournament.  After a generational
tournament, offspring generated from the fittest neural
controllers replace the least fit members of the population.
The fittest 50% of the population produce offspring that
replace the least fit 50% each generation. Offspring are
generated using mutation only. Weights, connectivity, and
overall neuron structure can all be mutated.

V. RESULTS
A. Simulated vs. Real Sensors

Figure 3 (a) shows an image of the real maze
environment with a graphical representation of real sensor
readings superimposed on the image. Here, the sensor data
were gathered by the robot in the center of the maze. In part
(b) of Figure 3, the environment and object configuration is
duplicated in simulation. Again, sensor data were taken from
the center of the simulated maze and from the same
orientation as the real robot in the real maze. The simulated
sensor data were also superimposed onto the simulated maze

graphic. Panels (¢) to (f) of Figure 3 show additional
comparative pairs of simulated and real sensor data sets. The
robot and environment simulator used in this work is derived
from, and similar to, the one developed in [17].

To investigate and quantify the fidelity of the video-range
emulation sensor system, sets of real and simulated sensor
readings were compared. 10 images similar to the one
shown in Figure 3 (a), (c) and (e) were taken of the real maze
environment with real robots. The images were then overlaid
with sensor data produced by the robot in the center of the
maze. The cone of dashed lines on each image is the graphic
representation of the sensor readings. The physical maze
environment configurations were then duplicated in the
simulation environment and simulated sensor readings were
recorded. Over the set of 10 test configurations, the real
vision based sensors produced an error of about 12.5 percent
when compared to simulated sensor values.

Figure 3. Comparative real and simulated sensor plots. Real sensor

readings are plotted on images of the real maze environment (a) (c)

(e). These are compared to simulated sensor readings generated in

the simulation environment (b) (d) and (f). For each image pair, the
real and simulated worlds were configured similarly.



B. Evolved Controller Performance Validated in Real
Robots

In this section, we present results of a population of robot
controllers evolved to play robot Capture the Flag. In this
game, there are two teams of robots and two goal objects.
All robots on team #1 and one of the goal objects are of one
color (red). The other team members and their goal object
are of another color (green). In the game, robots of one team
must try to come within a certain distance of the other team’s
goal object while protecting their own. The robot which first
comes within one robot body diameter’s distance of an
opponent’s goal wins the game for its team.

A population of robot controllers using video range-
emulation sensors was evolved in simulation and then
transferred to real robots in a real environment for validation.
The evolution process used a form of relative competitive
performance evaluation for selection. In the evolutionary
process, each generation consisted of a tournament of games
played between the controllers in the evolving population.
Robot controllers were selected and propagated based on
whether they won or lost games in the course of a
tournament (see Section IV above).

Evolved controllers were transferred to real robots and
tested in a physical maze environment. In order to
demonstrate that evolved controller had gained a level of
proficiency, they were placed in competition with
knowledge-base controllers coded to play robotic Capture
the Flag. Figure 4 shows the results of two games played
with teams of real robots in a physical maze environment. In
the games, the best evolved ANN controller from the
population and the hand coded knowledge-based controllers
were used. These were transferred to teams of green (lighter

)

Figure 4. Two example games involving real robots in a physical maze environment. In each panel, the green robots are controller by
evolved neural networks while the red robots are controlled by the knowledge-based controller. The dashed lines indicate the paths taken by
each of the robots during the course of each game. The first game was won by the evolved neural network controllers, while the second was

won by the knowledge-based controllers.

colored) and red (darker colored) robots respectively. In the
figure robots are shown in their final positions at the end of
each game. The darker dotted lines indicate the paths
followed by the green robots while the lighter lines indicate
the paths followed by the green robots.

In the simulations and in the real environment, robots
displayed several learned behaviors. These include wall
avoidance, homing on an opponent’s goal, and avoidance of
other robots. These results show that behaviors relying on a
vision based sensing can be evolved in simulation and
transferred to real robots. This paper’s main focus was on
the design and development of the real and simulated vision
based robot neural controller evolution platform. A more in-
depth analysis of the evolved behaviors is given in [17][18].

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, a new evolutionary robotics research
environment and test bed was described and related
experimental results were presented. Robots relied entirely
on processed video data for sensing of their environment.
This is a departure from the simpler IR and sonar sensors
employed on other ER research robots. The video sensing
system was modeled in a coupled simulation environment.
The simulation environment was used to evolve neural
controllers for teams of small mobile robots.  For the
evolutionary training of the neural controllers, a tournament
training performance evaluation function was implemented.
This fitness function was used to evolve controllers for teams
of robots to play a benchmark competitive game, Capture the
Flag. The fitness function was not based on game specific
factors and could be used on other multi-robot tasks that can
be formulated into competitive games. The use of
competitive performance evaluation allows for the



improvement of behaviors without the need for an absolute
performance measure.

Although the work presented here used only vision-based
sensors, it may be beneficial to incorporate other sensing
modalities into the robots and controllers. Additional sensors
might include tactile sensors, sound sensors, and laser range
sensors. The robot platform is fully extendable and allows
for the incorporation of additional sensor types. The work
will be extended by investigating sensor fusion at the neural
controller level. This will be accomplished by providing the
evolving neural controllers with a larger variety of sensor
inputs and processed sensor data. The evolutionary process
will be used to select controllers that make advantageous use
of available sensor data.
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