Symbolic Pruning in a Structural Approach to Engineering Drawing Analysis

Tom Henderson and Lavanya Swaminathan
School of Computing
University of Utah
Salt lake City, Utah 84112, USA
tch@cs.utah.edu

Abstract

Interpretation of paper drawings has received a good
deal of attention over the last decade. Progress has also
been made in related areas such as direct interpretation
of human drawings (HCI), search and indexing of graph-
ics databases, and knowledge representation in the domain
of graphics and drawing understanding. One of the most
interesting applications in this domain is the analysis of se-
mantics in engineering drawings.

We propose a structural modeling approach combined
with a nondeterministic agent system to produce interpre-
tations of scanned images of CAD drawings. We allow a
broad set of thresholds during the image analysis and show
how this large search space can be effciently pruned by tak-
ing advantage of constraints from the model or specifc ap-
plication.

1. Introduction

The semantic interpretation of industrial drawings is a
very diffcult problem. Tombre summarizes the state of the
£eld for CAD drawings [11] and as a document image anal-
ysis problem [12, 13]. An earlier overview by Haralick [7]
gives insight into the scale of the technical drawing problem
(e.g., about 250 million drawings are generated annually),
as well as a discussion of performance measurement. A
major problem pointed out by these reviewers is that there
is a dearth of work relating high-level models of documents,
drawings or graphics to the various levels of analysis. The
goal of technical drawing analysis is to interpret the con-
tents of an image, such as that shown in in Figure 1.

Several systems have been developed along these lines,
although none works well in an automated fashion. Various
problems arise; e.g., when text touches graphics or when
there is noise in the scanned image or when the thresholds
of the image-analysis codes support only a few classes of
drawings. One notable system is CELESSTIN [1, 9]; how-

0-7695-1960-1/03 $17.00 © 2003 IEEE

180

$72..875

‘\ D 005 0
\
\

7

Figure 1. Part of a Scanned Technical Drawing

ever, as pointed out by Haralick, CELESSTIN suffers from
the fact that it is based on a hierarchical rule system and has
many rules; furthermore, whatever interpretive models the
rules instantiate exist only in the thresholds and logic of the
hand-coded rules.

In the standard form of analysis, the scanned drawing
is digitized, noise is removed, text and graphics are rec-
ognized, graphics is vectorized, dimensions are extracted
and the whole-drawing is analyzed by applying knowledge
rules. Each of these steps normally uses just a single set of
thresholds. Our goal is to allow a wide range of thresholds
to generate a potentially large search space (hopefully in-
cluding the correct components), and then to apply domain
constraints to prune the space.

1.1. A High Level Model for Technical Drawings

We de£ne the layout of the technical drawings in terms
of a structural grammar (see [6] for an overview of the
£eld). The components of a technical drawing, such as rext,

(¢
a

u

pointer arrows, dimensions, etc., are defned as either ter-
minal symbols in the grammar (e.g., line segments), or as
nonterminal symbols (e.g., dimension description) def£ned
in terms of rewrite rules that describe their sub-components
and the relations that must be satisfed between the sub-
components.

The combination of the structural approach and nonde-
terministic agent analysis is a natural £t and provides a
means to control the exploration of the exponentially large
search space.

Annotation models have been presented in the literature
(e.g., see [2, 3, 4, 5]), and we have extended these ideas
and developed a novel approach to high-level modeling. We
have also implemented the basic image analysis tools to ex-
tract text, graphics, graphical primitives. These form the
basis actions for the agent architecture approach.

1.2. Agent Architecture

Agents are independent software processes with the fol-
lowing properties: autonomous (react to environment), have
state (beliefs, commitments, etc.), persistent (process never
terminates), can communicate (send and receive messages
related to effort), and perform some action (have abilities to
analyze and create data). For more complete accounts, see
[8, 14].

An agent architecture is a software architecture for de-
cision making with intelligent (Hexible) processes embed-
ded within it. The agents may be proactive or reactive,
and should cooperate (including communicate) to achieve
a goal.

We explore the use of nondeterministic agent systems
(NDAS) to achieve a more Xexible system for technical
drawing analysis. They are called nondeterministic because
the agents explore alternative parts of the solution space si-
multaneously, and every agent works to produce some result
which may or may not contribute to the £nal result. The £-
nal result derives from only a subset of the work put in by all
the agents. We explore nondeterminism in this problem do-
main since deterministic systems usually make irrevocable
decisions (e.g., threshold selection) that eliminate possible
solutions. The technical drawing problem domain contains
many factors that vary with the drawing: thresholds, text
fonts and size, noise levels, etc., and this variation makes
it interesting to explore the possible solution space dynam-
ically and in a breadth-£rst way.

We demonstrate this through the design and analysis of
the NDAS system and provide experimental results to sup-
port the claims. (See [10] for more detail.)

181

2. A Structural Model for Engineering Draw-
ings

Higher-level models describe the semantics of the draw-
ings, and as such involve determining the relations between
the primitives of the drawing and their meanings. We use
graph models (semantic nets), which are explored through
a grammatical paradigm. After the document is digitized,
vectorized and the connected components extracted, the re-
sult is a set of image primitives such as segments, arcs, ar-
rows and text blocks. Based upon the relationships that exist
between these primitives, a structural model is used to rec-
ognize important features like dimensions, annotations, and
legends in the document.

Figure 2 shows an instance of dimensioning taken from
the scanned image of an actual technical drawing. A struc-
tural rewrite rule for this dimension set is:

dimension_set := ptr_rayl + ptr_ray2 + text
where
collinear(ptr_rayl,ptr_ray2)
collinear(ptr_rayl text)
collinear(ptr_ray2 text)
[between(ptr_rayl text, ptr_ray2))

2.282
2.280

e —_—

T T

I

Figure 2. Example of dimension set

In order to organize the activity of the analysis agents, we
have developed an engineering drawing model comprised of
structures typically found in such drawings, and relations
between those structures. This approach is based on struc-
tural and syntactic shape methods (e.g., see [6]); however,
our method is novel in that it allows for the natural applica-
tion of the NDAS agent system to recover the desired struc-
tures from an image.

Terminal structures correspond to the terminal symbols
of a shape grammar, and include: text, box, poeinter_ray,

pointer_line, pointer_arc, circle, line_segment, and
graphic.

Higher-level structures correspond to the nonterminal
symbols in a shape grammar, and can be described by
rewrite rules which defne sub-structures which comprise
the new structure, and the relations that must exist between

the sub-structures. Some examples of these include:
e dimension: text with a symmetric_pointer_pair.

e dimension_set: a dimension enclosed by a symmet-
ric_line_pair or an angle_dimension enclosed by an
asymmetric_line_pair.

e dimension_description: a dimension_set and corre-
sponding graphic. Complete dimension information,
including the graphic being described.

2.1. Analysis Complexity Reduction

Given a strategy of generating as much of the search
space as possible, it is necessary to £nd ways to reduce
the number of alternatives; however, this must be done in
a systematic and correct way. We have developed symbolic
pruning to exploit the formal aspects of the grammar and
the algebraic relations to eliminate duplications and redun-
dancies.

Our goal is to determine the complexity of the total num-
ber of possible symbols for the given grammar generated
from a set of ground structures with respect to a specifc
image. Let G be a grammar, and for the current context,
let it represent the rewrite rules. We de£ne a production se-
quence as a correct application in some order of the rewrite

rules of G. Thus: .
ps = H 1;
j=1

defnes a production sequence, ps, where ¢; is the index of
the j*" production (repeating an index is allowed).

Symbol redundancy of a vocabulary symbol, v, called
SR(v), is the count of the number of distinct production se-
quences that produce the symbol. This is the same as the
number of ways the ground structures can be mapped onto
the terminal symbols to produce the symbol v. For a termi-
nal symbol, a, we have

SR(a) = |g|

where |g| is the number of ground structures of this terminal
symbol.

In order to calculate SR(v) for a non-terminal symbol
v, we introduce the following notion. An 0-form rewrite
rule is one with only terminal symbols on the right hand
side. An 0-form grammar is one with only O-form rewrite
rules. Algorithm 0-form produces an O-form grammar from
a general grammar.

182

Algorithm O-form

On input: a general grammar, G
On output: an O-form grammar, G2
Gl <- G

G2 <- empty set

whenever there exists a rewrite
rule, R, in Gl such that lhs(R)
is a non-terminal and there are
only terminals in the rhs(R):

Add R to G2

For every R’ in Gl such that

lhs(R) is in the rhs(R’)
Replace each occurrence of
lhs(R) in R’ with rhs(R)
and call new rule R'’
Add R’’’ to G1

Note that this applies to non-recursive grammars, but if
there is a recursive rewrite rule, then it can be easily Magged,
and the user can set a maximum depth for it. For example,
any number of section lines can occur in a technical drawing
so long as they are parallel.

For a terminal symbol w and a rewrite rule R, defne
count(w,R) to be the number of times that w appears on
the right hand side of R. Then, for a rewrite rule in O-form
and a non-terminal symbol, v, we have:

SR(v) = >_[][ISR(w)(SR(w) - 1)...
R w

(SR(w) — count(w, R) + 1)]

where R is in the rewrite rules, and the sum is taken over all
rules with v in the left hand side, and w is a distinct symbol
in the right hand side of R. If any summand is negative or
zero, then it is not added in; if all summands are negative or
zero, then v cannot be produced.

Consider the following example grammar for a Parallel
Pair of Segments (PPS, where SLP1 and SLP2 corre-
spond to the individual segments in the pair); we assume
that all are symmetric:

G = { PPS -> SLP1 + SLP2
SLP1 -> SLP
SLP2 -> SLP
SLP -> linel + line2
linel -> line_seg
line2 -> line_seg

}

The G1 set produced by Algorithm O-form is:

Gl =

{ PPS -> SLP1 + SLP2

SLP1 -> SLP

SLP2 -> SLP

SLP -> linel + line2

linel -> line_seg

line2 -> line_seg

SLP -> line_seg + line2

SLP -> line_seg + line_seg

SLPl -> line_seg + line_seg
SLP2 -> line_seg + line_seg

PPS -> line_seg + line_seg + SLP2
PPS -> SLP1 + line_seg + line_seg
PPS -> line_seg + line_seg

+ line_seg + line_seg

The G2 set produced by Algorithm 0-form is:

{ linel -> line_seg
line2 -> line_seg
SLP -> line_seg + line_seg
SLP1 -> line_seg + line_seg
SLP2 -> line_seg + line_seg
PPS -> line_seg + line_seg
+ line_seg + line_seg

G2

)

Consequently, we have the following results:

Suppose that R(line_seg) = 4

then R(linel) = 4
R(line2) = 4
R(SLP) = 12
R(SLP1) = 12
R(SLP2) = 12
R(PPS) = 24

Note that the symbolic redundancy depends on the number
of ground structures (terminal symbols in image). For ex-
ample:

Suppose that R(line_seq)

then R(linel)
R(line2)
R(SLP)
R{(
R(
R(

SLP1)
SLP2)
PPS)

2
2
2
2
2
0

fails!

There are not enough ground structures to satisfy the need
for four distinct terminal symbols to produce nonterminal
symbol PPS.

The symbol redundancy measure is a worst case estimate
for the number of redundant symbols produced since for a

183

specifc set of ground structures, the required relations be-
tween the terminal symbols may not hold; this would pre-
vent the generation of the nonterminal symbol. However,
this does give a useful measure of the complexity of the
analysis to be performed (and, in fact, makes it possible to
know when there are too few ground structures to produce
a complete parse).

The symbol redundancy measure of the number of ways
in which a given symbol can be produced allows an analysis
to determine if any of the redundant production sequences
can be eliminated. There are two approaches to actually
eliminate redundancies:

e compile out one rewrite rule: start symbol, with
relations between terminals; eliminate combinations
where only relations are symmetric; synthesize the re-
lations for this rewrite rule.

e allow only one production sequence from a symmet-
ric relation equivalent set when they differ only in the
assignment of the same symbol in right hand side.

We describe a solution using the second approach. To
do this requires the following de£nition: two production se-
quences are symmetric relation equivalent if they differ only
in assignment of same symbol in right hand side of rewrite
rule. Likewise, a set of production sequences are symmetric
relation equivalent if they are all pairwise symmetric rela-
tion equivalent. One approach to symbolic pruning then is
to £nd sets of symmetric relation equivalent production se-
quences and to allow only one during the structural analysis.
This is a parse time operation.

3. Experiments

To determine how well the structural analysis is per-
formed, we applied NDAS to the image in Figure 1; all
four dimension sets were found. Table 1 gives the sym-
bol redundancy for the vocabulary symbols in our grammar
for engineering drawings. Several examples were run with
good success and are reported in [10].

4. Conclusions and Future Work

The results of these experiments are encouraging. The
structural analysis proceeds currectly, and the agent system
seems to be robust and explores much of the interesting part
of the search space. The percentage of dimensions found
ranges from 16.6 % for noisy images to 100 % for clean
images, and the pruning methods lead to orders of magni-
tude reductions in the number of symbols considered during
the analysis.

We have demonstrated that the nondeterministic agent
system (NDAS) combined with a complementary structural

Symbol worst after

case | pruning
line_segment 21 21
pointer_ray 4 4
text 2 2
circle 1 1
box 1 1
pointer_rayl 4 4
pointer_ray2 4 4
line_segment1 21 21
line_segment2 21 21
line_segment3 21 21
text] 2 2
text2 2 2
text_.comb 2 0
text_£nal 4 2
symmetric_pointer_pair-in 12 0
symmetric_pointer_pair_out 12 2
dimension_rays_in 48 0
dimension_rays_out 48 2
dimension 96 2
dimension_set 40320 2
pointer_ray_extn 84 0
check_sign 420 0
check_pair 1680 0
dimension_description > 100000 2
text.in_box 4 0
text_in_box1 4 0
text_in_box2 4 0
text_in_box3 4 0
text_in_box4 4 0
one_datum_ref 0 0
datum_ref 0 0
datum_below_text 0 0
dashed_lines 7980 3
dash_lines1 7980 3
dash_lines2 7980 3
circle_center_dim > 100000 1

Table 1. Symbol Redundancy for Grammar

184

modeling approach can achieve a coherent analysis of an-
notations in technical drawings. This process can be made
more effcient by means of symbolic pruning as introduced
here. The experimental data indicates that this is a feasible
approach and gives a £rm basis upon which to de£ne error,
precision and performance measures.

Acknowledgment: This work was supported in part by
ARO grant number DAAD19-01-1-0013.

References

[1] C. Ah-Soon and K. Tombre. A step towards reconstruction
of 3-d cad models from engineering drawings. In Proceed-
ings 3rd International Conference on Document Analysis
and Recognition, pages 331-334, Montral (Canada), 1995.

[2] S. Collin and D. Colnet. Syntactic analysis of techni-
cal drawing dimensions. International Journal of Pattern
Recognition and Artifcial Intelligence, 8(5):1131-1148,
1994.

[3] D. Dori. A syntactic/geometric approach to recognition
of dimensions in engineering drawings. Computer Vision,

Graphics and Image Processing, 47:271-291, 1989.
[4] D. Dori and A. Pnueli. The grammar of dimensions in ma-

chine drawings. Computer Vision, Graphics and Image Pro-

cessing, 42:1-18, 1988.

[5] A. Habed and B. Boufama. Dimension sets in technical
drawings. In Proceedings of Vision Interface, pages 217-
223, Trios-Rivieres, CA, 1999.

[6] T.C. Henderson and A. Samal. Shape grammar compilers.
Pattern Recognition, 19(4):279-288, 1985.

[7] T. Kanungo, R. M. Haralick, and D. Dori. Understanding
engineering drawings: A survey. In Proceedings of First
IARP Workshop on Graphics Recognition, pages 217-228,
University Park, P.A, 1995.

[8] V. Subrahmanian. Heterogeneous Agent Systems. MIT
Press, Cambridge, MA, 2000.

[9] K. T. Suzanne Collin and P. vaxiviere. Don’t tell mom i’m
doing document analysis; she believes i’m in the computer
vision £eld. In Proceedings of 2nd International Confer-
ence on Document Analysis and Recognition, pages 619-

. 622, Tsukuba Science City (Japan), October 1993.

[10] L. Swaminathan. Agent-based engineering drawing analy-
sis. Master’s thesis, University of Utah, Salt Lake City, Utah,
December 2002.

[11] K. Tombre. Analysis of engineering drawings: State of art
and challenges. In Graphics Recognition - Algorithms and
Systems, volume 1389 of Lecture Notes in Computer Sci-
ence, pages 257-264, Springer Verlag, April 1998.

[12] K. Tombre. Graphics documents: Achievements and open
problems. In Proceedings of the 10th Portuguese Confer-

ence on Pattern Recognition, Lisbon (Portugal), 1998.

[13] K. Tombre. Ten years of research in the analysis of graphics
documents: Achievements and open problems. In Proceed-
ings of the 10th Portuguese Conference on Pattern Recogni-
tion, Lisbon (Portugal), 1998.

[14] G. Weiss. Mulri-Agent Systems. MIT Press, Cambridge,
MA, 1999.

