Storing Feature Descriptions as 2-D Trees

Thomas C. Henderson

Dept. of Computer Science
University of Utah

Salt Lake City, Utah 84112

Ernst Triendl
DFVLR Oberpfaffenhofen
8031 Wessling, W. Germany

Abstract

Many methods have been proposed which produce low-level features from
digital images, e.g., the raw primal sketch or intrinsic images. However,
in some cases the features occur sparsely in the image, and a more
efficient storage scheme can be used than a registered array of feature
images.

Edges constitute one of the most useful sorts of information for scene
analysis. Even though edge responses usually occur sparsely throughout an
image, the output from an edge detector in most image analysis systems is
itself an image of the same dimensions (but possibly multi-channel) as the
original intensity image. Appreciable savings in space and time can be
achieved if the full edge descriptions (orientation, radius and likelihood
information) are stored as a 2-D tree. This is a binary tree which uses
the (x,y) locations of the pixels as keys and splits the data at the median
along the key with greatest spread. (I.e., this is a k-d tree for k = 2.)



Introduction

Most machine vision systems include some processing which produces
low-level features of the image, for example: edges, surface orientations,
illumination, etc. (see Barrow and Tennenbaum 1978). However, some of these
features produce very sparse results in terms of the class of images under
study. The 2-D tree is proposed as a more efficient representation of such
features. The following discussion addresses the problem of edge
information, but it applies equally well to many other types of features.

Edge information can serve as the basis for many purposes, including
segmentation, shape analysis and image registration. The edge-guided
registration of LANDSAT images with other types of imagery and drawings
motivates the approach described here. In order to achieve a sub-pixel
registration accuracy, full edge descriptions of multi-channel LANDSAT
images are computed (see Henderson et al 1981). Edges are described at
each pixel as a triple: (orientation, radius, edge likelihood). The
orientation and radius locate the edge with respect to the center of the
pixel which serves as the origin, and the horizontal and vertical image
axes serve as the x-axis and y-axis, respectively. The edge 1likelihood
gives a measure of the similarity of an edge model and the intensities in
the neighborhood of the pixel. Thus, the output of the edge detector is a
3-channel image with the same number of pixels in each channel as in the
originali the 3 channels give the orientation, radius and edge likelihood
of the most likely edge at a given pixel. For a UY-channel LANDSAT image,
then, the output is a 12-channel edge description image. Note that many
image processing systems provide only the edge likelihood as the output

image.



Various data compaction schemes have been proposed for images, the
most important being the quad-tree. A quad-tree is a successive
subdivision of an image into quadrants, where a non-terminal node
represents a non-uniform quadrant and leaf nodes represent a uniform
quadrant at some level. This data structure is inappropriate for feature
encoding since edges usually occur in thin strips throughout an images;

moreover, quad-trees are most useful in conjunction with binary images.

Storage Comparisons

Let us consider now the advantages of storing the edge description as
a 2-D tree. (For a description of k-d trees see Friedman et al 1977 .)
Suppose that the input image is a k-channel m by n image; let p = mn, and
suppose there are ap significant edge responses (i.e., above some
likelihood threshold), where 0 < a < 1, and finally, suppose that each edge
description consists of e eleme;ts.- Then in the standard case, the number
of storage elements required is ekp. If the 2-D tree scheme is used, then
there are (e + 2)ap storage elements required for each leaf of the tree, as
the (x,y) location must be stored in addition to the e channels of edge
description; also, there is a ldapk storage element overhead for the

__g_

nonterminals in the tree, where b is the bucket size or number of records

per leaf and assuming 4 storage elements per non-terminal. Thus, the 2-D

tree is more economical whenever

(—== +e+2)
b

For single channel input image and edge descriptions, the breakeven point

is around 14% edge density when the bucket size is 1; below this percentage



of edge responses needing to be stored, the 2-D tree is more economical,
while above it, the standard image representation requires 1less space.
When the bucket size is Y4, the breakeven point is at 25% edge density. In
our application, i.e., edge data associated with a given control point,
this efficiency can only become more important as the library of control

points is increased.

Processing Comparisons

Typical operations on edge descriptions include channel grouping and
spatial grouping. A comparison of the cost of these grouping operations
reveals that the 2-D tree representation offers time advantages, too.
Consider first the time required to perform channel grouping.

In the usual case, i.e., multi-channel edge description, the number of
memory accesses required for channel grouping is kp since at each pixel the
edge likelihood channel must be checked for each of the k output edge
descriptions. However, if the edge descriptions are organized as a 2-D
tree using the (x,y) location in the image as the two keys, then the tree
will contain multiple entries with the same (x,y) Kkeys if there are edge
responses at the same pixel in more than one channel. Multiple responses
can be stored as a linked list associated with a single entry for the (x,y)
location. This means that channel grouping can be accomplished by simple
tree traversal and the number of memory accesses is 2apk + Udapk for

- o

b
terminals and non-terminals respectively.

Thus, whenever



then the 2-D tree representation is more efficient. For bucket size of 1,
this is around 17% edge responses, and at b = 4, the breakeven point is
33%.

Spatial grouping of edge responses requires computing a weighted
average of edge responses occurring in some predefined neighborhood of a
given pixel. In the standard array image representation, these neighbors
can be found in constant time; thus, if spatial grouping is performed on
the m-neighborhood of a pixel, then m memory accesses must be performed for
every pixel in the image, i.e., mp memory accesses. For the 2-D tree
representation, the entire tree must be traversed, and for each leaf
record, all neighbors within the prescribed distance must be found. This
gives a number of memory accesses that is proportional to:

log (2ap)2ap + lap

b

Although no direct comparison is possible, there are two major reasons why
the 2-D tree representation will be more efficient than the standard one.
First, the 2-D tree only performs spatial grouping at pixels where an edge
response occurred and then only accesses those locations in the prescribed
neighborhood where edge responses occurred. Second, given the sizes of the
representations, it is much more likely that the complete 2-D tree will fit
in core memory, whereas with the complete array representation, there will

be significant disk I/0 overhead.



CONCLUSION

The 2-D tree representation of feature images has been shown to be
more efficient under certain conditions than the standard image array
representation. In practice, we have found the 2-D tree to offer
significant advantages. Obviously, the 2-D tree representation does not
offer an immediate visual representation. However, in the case of edge
descriptions, this is not a significant disadvantage in that an edge
visualization image is computed from the multi-channel edge description
image anyway. Thus, this intermediate step applies equally well to the 2-D

tree representation.

Ref'erences

Barrow, H.G. and J.M. Tennenbaum, "Recovering Intrinsic Scene
Characteristics from Images," SRI Tech. Rept. 157, April 1978.

Friedman, J.H., J.L. Bentley and R.A. Finkel, "An Algorithm for Finding
Best Matches in Logarithmic Expected Time," ACM Trans. on Math. Soft.,
Vol.3, No.3, Sept. 1977, pp. 209-226.

Henderson, T.C., E. Triendl and R. Winter, "Edge-Guided Image

Registration,” 2nd Scand. Conf. On Image Analysis, Helsinki, Finland, June
1981, pp. 106-111.



