Parallel Simulation of Embedded S-Net Processes

Thomas C. Henderson and Sriram Karra
University of Utah
Salt Lake City, UT 84112 USA
tch@cs.utah.edu

Abstract

We have developed Smart Sensor Networks (S-Nets)
which are comprised of non-mobile devices which can
compute, communicate and sense. We have demon-
strated through simulation experiments the feasibility
and performance capabilities of this approach, and we
are now studying them via parallel simulation of the
devices. In particular, we are looking at distributed al-
gorithms for leadership protocols, coordinate frame cal-
culation and level set based shortest path computation.
These algorithms are being studied on an SGI Origin
2K, and include a Uniz process approach, a threads im-
plementation, as well as an MPI implementation.

1. Introduction

Our major area of study is the robustness of embed-
ded systems, including relevant organizational prin-
ciples (e.g., spatial structure, redundancy, modular-
ity, diversification, and hierarchy), operational issues
(e.g., noise, stability, resistance, resilience, and recov-
ery) and consequences for system fitness, adaptability
and evolvability. As a particular effort, we study Smart
Sensor Networks (S-Nets); these are embedded systems
comprised of algorithms, computer architectures, com-
munications capability, and sensors. The S-Net forms a
rich information field to be exploited by various mobile
autonomous agents.

Current computing systems are plagued with the in-
ability to adapt or to perform outside a very narrow
range of specified parameters. The failure of a single
element or module can cause the whole system to fail.
We study how robustness relates to system structure,
modules and their redundancy. This includes commu-
nication methodology, power allocation, multi-sensor
integration, computational reliability, and element di-
versification (e.g., analog vs. digital and qualitative vs
quantitative).

The utilization of nonmobile, distributed sensor and
communication devices by a team of mobile robots may
offer performance advantages in terms of speed, energy,
robustness and communication requirements. Models
of mobile robots with on-board sensors, a communi-
cation protocol and the S-Net system have been es-
tablished. Algorithms are defined for the S-Net which

perform cooperative computation and provide informa-
tion about the environment. Behaviors include robots
going to or surrounding a temperature source. We have
run simulation experiments that show that the S-Net
performs well, and is particularly robust with respect
to noise in the environment. System cost versus perfor-
mance has been studied, and guidelines are formulated
for which the S-Net system out-performs the non-S-Net
system.

At one extreme, mobile robots can be provided with
a wealth of on-board sensing, communication and com-
putational resources [1, 2]; at the other extreme, robots
with fewer on-board resources can perform their tasks
in the context of a large number of stationary devices
distributed throughout the task environment [3]. We
call the latter approach the Smart Sensor Network, or
the S-Net. We have performed simulation experiments
on sequential machines using software (C and Matlab),
and the performance of robot tasks with and without
the presence of an S-Net (i.e., a set of distributed sensor
devices) has been evaluated in terms of various mea-
sures. See [4, 5] for a more detailed account.

Our ultimate goal is to develop the S-Net as an em-
bedded system. In particular, this requires:

e Develop algorithms amenable to embedded sys-
tems use.

e Develop prototype computer architectures for S-
Nets.

e Model and study the communications aspect of S-
Nets.

e Model and study one or more sensor modalities for
S-Net exploitation.

In order to facilitate the study of these different as-
pects of the system, we are developing a distributed
simulation capability. This will allow us to study: (1)
distributed algorithms (2) communication models and
experimentally determined parameter values, (3) the
S-Net architecture (includes computation, sensing and
communication), and (4) sensor models and experimen-
tally determined parameter values. Local and global
frames are defined and created. A method for the



production of global patterns using reaction-diffusion
equations is described and its relation to multi-robot
cooperation has been demonstrated. In addition, we
have shown how to compute shortest paths in the S-
Net using level set techniques [7]. Heretofore, however,
all these have been developed in simulation as sequen-
tial codes.

The results of our sequential simulation experiments
helped us better understand the benefits and draw-
backs of the S-Net. We have shown that for behav-
iors of one mobile robot going to a temperature source,
and multiple mobile robots surrounding a temperature
source, in the ideal situation (which means no noise),
the S-Net takes more time and distance. When noise is
added in, which is more realistic, the S-Net system is
more robust than the non-S-Net system. For the task
of multiple mobile robots going back and forth to a
temperature source, there are thresholds above which
the S-Net system out-performs the non-S-Net system.

Here we will describe distributed frameworks for the
simulation of the S-Net. The set of distributed algo-
rithms studied includes: (1) S-Cluster formation with
leader, (2) coordinate frame calculation, (3) gradient
calculation, (4) reaction-diffusion computation, and (5)
shortest paths using level sets. The distributed simu-
lation frameworks include:

e Unix processes,
e SGI Origin 2K threads, and
e SGI Origin 2K MPL.

We still use the Unix process framework, as well as
the MPI implementation. However, the threads version
is no longer in use and is described in Appendix A.
(Details of algorithms are given there, to00.)

2. Basic Code Layout and Unix Process

Simulation
The code must handle a set of independent S-elements,
and each S-element has associated state (known to it-
self):

e unique ID: UID

o leader flag: leader € True, False
e broadcast range: range

e sensor value; e.g., temperature

and state necessary for the simulation (unknown to the
S-element); e.g.,

e location: (z,y, z)

e working or not

The UID is assigned by the user, the locations are ei-
ther randomly picked or assigned by the user.
For example, the following layout has been used:

8
I
I
—m—4-=-5-==T---9
[

|
6

B o—— N — — W

with nodes located at:

g
IS
gy}

X-Location | X-Location

© 00 ~J O Ui W N =
BWwWwwNn - OO O
=R O = N O

We assume a broadcast range of 2.1 units.

The S-elements communicate through simulated RF
broadcast and receive functions, which can be imple-
mented in various ways. Here the RF communication
is handled through files.

In the overall simulation, the first step is to deter-
mine clusters of S-elements which act together to pro-
vide redundancy and robustness of sensing, as well as
to provide a local coordinate frame to communicate
direction to autonomous agents which use the S-Net.
A cluster consists of a leader S-element and set of S-
elements within the broadcast range of the leader. The
leader is selected as that S-element having the lowest
UID[S8].

To determine the clusters and leaders, each S-
element must do the following things:

e determine its neighbors, and
o determine whether it is a leader or not.

The leadership algorithm is a 3-phase algorithm:
1. Phase 1: Each S-element broadcasts its UID.

2. Phase 2: Each S-element receives the broad-
casted UID’s and this sets its neighbors; it then
follows a protocol to determine the distance be-
tween it and its neighbors.



3. Phase 3: FEach S-element determines if it is a
leader; if so, this is communicated to its neigh-
bors, who determine that they are not leaders, and
broadcast the known cluster to their neighbors.
This allows the formation of any further clusters.

For more details on the algorithm and its correctness,
see [8].

Once leadership is determined, each leader calcu-
lates a local coordinate frame. This is done by find-
ing 3 S-elements in the cluster such that they are not
collinear. An agent can then use this coordinate frame
after determining whether it is right- or left-handed.

The Unix process simulation is a relatively conve-
nient framework for developing algorithms on a small
number of S-elements. Once too many processes are
created, the system will not perform very well.

3. SGI Origin 2K MPI Simulation

The major simulation in use now is an MPI implemen-
tation; MPI stands for Message-Passing Interface, and
is a specification for a set of C, Fortran and C++ rou-
tines that provide message passing capability[9]. The
basic Unix program is easily modified to run in the
MPI environment, where each S-element is assigned a
unique processor. In fact, MPI allows overloading of
logical processes on the physical processors.

We have already described the algorithms and prob-
lem type, and here we simply give results of running the
leadership protocol and calculation of local coordinate
frames.

We use the 9-node problem described in Section 2.
The neighbors found for the 9-node system are de-
scribed in the execution trace as:

Neighbors of Device
Neighbors of Device
Neighbors of Device
Neighbors of Device
Neighbors of Device
Neighbors of Device
Neighbors of Device
Neighbors of Device
Neighbors of Device

cot\)ooo:o)?!ft—;.c_'l
= 01O D= NN
D WO NN O WD
N N0 WO
o o
0 N

o O © ©

The resulting leaders and clusters are described as:

Device 1 leader: Yes
Device 3 leader: No
Device 4 leader: No
Device 2 leader: No
Device 5 leader: Yes
Device 8 leader: No
Device 9 leader: No

Device 7 leader: No
Device 6 leader: No

Cluster 0: 1 2 3 4
Cluster 1: 2 4 6 7 8 9
The coordinate frames calculated are:

Device 1 leader: Yes

Frame nodes: (1,2,4)

Frame(1) dist: (1.000000,1.414214,1.000000)
Device Frame (1)

F[0,:]: (0.000000,0.000000,0.000000)
F[1,:]: (1.000000,0.000000,0.000000)
F[2,:]: (1.000000,1.000000,0.000000)

Device 5 leader: Yes

Frame nodes: (5,2,6)

Frame(5) dist: (2.000000,1.414214,3.162278)
Device Frame (5)

F[0,:]: (0.000000,0.000000,0.000000)
F[1,:]: (2.000000,0.000000,0.000000)
F[2,:]: (-1.000000,1.732051,0.000000)

The code is organized so that one process serves
as the simulation master and knows the S-element lo-
cations, etc., and calculates the distances between S-
elements in order to control the broadcast and receive
semantics. Once it performs an MPI broadcast, the
other processes can proceed. All the other processes
handle a unique S-element.

3.1. Scaling Results

A sequence of experiments were run using from 1 to 9
S-elements laid out as shown in Section 2. The times
for these 9 runs are:

S-elements/Processors | Ezecution Time
1 3.90

4.52
6.94
9.51
13.63
18.51
17.29
26.54
9 41.99

0 -3 O O W N

There were from 2 to 10 processors used, respectively,
as there is one process per S-element, and one master
simulation process.

Figure 1 shows the times taken to run from 1 to 9
S-element problems, as well as a least squares linear fit
to the data. Figure 2 shows the per process time across
the same set of experiments.



Time vs. Number of Devices

40 T T T T T T T T T

351 B

30 1

251

20

Figure 1.
sors)

5 T T T T T T T T T

4.5

4+

351

3+

25K

Figure 2. Times for 1 to 9 S-elements on 1 to 9 proces-
sors)

4. Summary

The results so far are very encouraging, and the MPI
implementation demonstrates good scaling. Our future
MPT work includes:

e run with large number of S-elements
e study distributed reaction-diffusion algorithms
e study distributed level set algorithms

e study communication issues.

Appendix A - SGI Origin 2K Threads Simula-
tion

The simulation code was written using the POSIX
threads (pthreads) library on an SGI Origin 2000. The
S-Net was modeled as a set of threads all executing
the same code, each thread corresponding to an S-
element. The communication between threads was
done using mutexes and condition variables provided
by the pthreads library. The goal was to abstract an
S-element into a thread, and to spawn multiple threads
this way, so as to model the independent device nature
of the S-elements.

Cluster Formation
To simulate the cluster formation phase, a number
of assumptions are made:

e Each thread has a unique ID that is assigned at
time of spawning.

e There is a global queue which is shared by all the
threads for communicating with other threads.

e Each device is aware of its position in some global
frame. This point is worthy of further elucidation.
It is expected that real S-element will not have this
luxury. This information is provided to S-elements
to decide which of the others are within range. In
the physical world, this can be trivially decided -
if the device can receive RF signals from any other
device, then they are neighbors, otherwise they are
not.

Each thread runs the following algorithm:

e Construct a message with its ID and its positional
information and enqueue it in the shared queue.

e Go to sleep for fixnum seconds (2, say)

e Go through the entire queue, and check to see if
any of the other S-elements are within range. If
so, add them to the list of neighbors.

e Remaining neighbors = list of neighbors (copy the
list)

e while (!done) do

— If own ID is smallest in remaining neighbors

x self is a leader

* Form a new cluster comprised of all
neighbors in cluster

* Broadcast this information
* done = true

— else



* sleep until neighbor with lowest ID makes
up its mind
* list = Obtain the list it broadcasts
* if self exists in that list
1. self is not leader
2. broadcast the obtained list
3. done = true
* else
1. foreach item in list do
(a) remove item from remaining neigh-
bors
2. endfor
x endif

— endif
e endwhile

One important thing to note is that a single S-
element can be a constituent of more than one cluster.
This is not just an artifact, it is absolutely essential
for inter-cluster navigation if the clusters each calcu-
late their own local coordinate frames. It would not be
possible to transform one coordinate system to another
unless we know the coordinates of at least two points in
both coordinate frames. This is possible only if there
are some S-elements in both frames under considera-
tion.

Coordinate Frame Determination

Now, we are faced with the following problem:
Gwen a cluster of S-elements and the distances between
pairs of them, form a 2-D coordinate frame and com-
pute the positions of all the S-elements in the cluster.

Local Frame Formation

Let us consider three S-elements Sy, Sa, and S3, with
distances between them being di2, d13 and dz3. Now,
care should be taken such that the three S-elements are
not collinear. This can be done by using the Law of
Cosines; if:

| (dgg * d23 - d12 * d12 - d13 * d13)/(2.0 * dlg * Cllg) I

is close to 1, then the points are collinear.

We can choose S; to be (0,0), the origin in the local
frame, and the line 515 to be the X-axis of the frame.
Thus the coordinates of Sy are (dy3,0).

Now we can compute the coordinates, (x3,ys3), of
the S3 by solving:

- 3y + di; — d3s
3= 2d1o

d?, +d3, — d3
— /g2, — 212 13 23
Y3 \/ 13 2d12

Coordinates for other places in the frame

Let (z;,y;) be the location of S;. Then z; and y;
can be computed in the coordinate frame, provided the
distances to S1, Sy and S3 are known.

Let d;1, di2, and d;3 be the distances of S; to S1, So
and Ss, respectively. Then:

(y3 = y1)C1 + (y1 — y2)C2

xT; =
b oyi(rs — z2) + ya(z1 — 23) + ya(w2 — 1)
vi = (r1 —23)C1 + (22 — 21)C4
" yi(es — 22) + ya(zr — 23) + ys(z2 — 71)
where,

Cr = =(d}y —diy — x7 + 25 — ¥} + y3)

N =

and

1
Cy = §(d121 —dy -} + 23— yi + i)

System Details
The system has been built on a 64-node SGI Origin
2K. The call line is:

./leader [-t <int>] [-n <int>]

-t <n> : Set the gloabl trace level to n.
Simulate an S-Net with n S-elements.
The default is 50.

Given a number of S-elements to simulate, the driver
routine generates global positions at random for that
many S-elements so that they are within a square grid
(whose size can be controlled as mentioned below) and
spawns that many threads.

There are more parameters that can be set, but
there is no command line interface to them. The two
most interesting parameters that can be tweaked in the
source are BROADCAST RANGE and NUMBERR.
These are #defined macros in the file driver.c. The
former is a number (int or float), that limits the range
of the communication between S-elements. The latter
is an integer that is half the size of a square that acts as
a bounds for the randomly generated coordinates. In
other words, if NUMBERR, is 3, then the S-elements’
coordinates are generated at random and adjusted such
that they all lie in +3 to -3 in both x and y directions.

A sample output is given below:

-n <n> :

Thread id = 65574
x_pos of S-Element 1.970
y_pos of S-Element = -0.130



neighbors = 0145689 12 15
16 20 22 24 26 27 29
31 34 35 39 41 42 45
48 49

leader_p? =0

leader->index =0

Local Coordinate Information:
In Cluster #1, x_pos = 1.646,
y_pos = -1.524
In Cluster #3, x_pos = 1.354,
y_pos = 0.000

cluster # =1

Results and Analysis

The implementation makes poor use of threads, and
is difficult to run. In maintaining a very explicit com-
munication model between the S-elements, the shared
memory paradigm has caused trouble. Although effort
was made to abstract the communications code into
modular functions (for the most part), there are many
instances when making it explicit is cumbersome.

Acknowledgment
Partial support for this effort was provided by NSF
grant ASC-89-20219.

References

[1] Bares J E, Wettergreen D S 1999 Dante II: Technical
description, results, and lessons learned. Int J Rob Res.
18(7):621-649 July

[2] Smith R, Frost A, Probert 1999 P A Sensor System for
the navigation of an underwater vehicle. Int J Rob Res.
18(7):697-710 July

[3] Henderson T C, Dekhil M, Morris S, Chen Y, Thomp-
son W B 1998 Smart Sensor Snow. IEEE Conf IROS.
Oct, pp 1377-1382

[4] Chen Y 2000 S-Nets: Smart Sensor Networks. MS The-
sis, University of Utah

[5] Henderson T C, Chen Y, 2000 Smart Sensor Networks.
IEEE Conf ISER. Dec, pp 85-94

[6] Lynch N 1996 Distributed Algorithms. Morgan Kauf-
man Pub, San Francisco

[7] Sethian J A 1999 Level Set Methods and Fast Marching
Methods. Cambridge University Press, Cambridge UK

[8] Henderson T C 2001 Leadership Protocol for S-Nets.
IEEE Conf MFI Aug, to appear

[9] Gropp W, Lusk E., Skjellum A. 1999 Using MPI. MIT
Press, Cambridge MA



