g

Mohamed Dekhil
Thomas C. Henderson

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112, USA

Abstract

Sensor systems are becoming ubiquitous throughout society, yet
their design, construction, and operation are still more of an art than
a science. In this paper, we define, develop, and apply a formal se-
mantics for sensor systems that provides a theoretical framework for
an integrated software architecture for modeling sensor-based con-
trol systems. Our goal is to develop a design framework that allows
the user to model, analyze, and experiment with different versions
of a sensor system. . This includes the ability to build and modify
multisensor systems and to monitor and debug both the output of
the system and the effect of any modification in terms of robustness,
efficiency, and error measures. The notion of Instrumented Logi-
cal Sensor Systems (ILSS) that are derived from this modeling and
design methodology is introduced. The instrumented sensor ap-
proach is based on a sensori-computational model that defines the
components of the sensor system in terms of their functionality, accu-
racy, robustness, and efficiency. This approach provides a uniform
specification language to define sensor systems as a composition
of smaller, predefined components. From a software-engineering
standpoint, this addresses the issues of modularity, reusability, and
reliability for building complex systems. An example is given that
compares vision and sonar technigues for the recovery of wall pose.

1. Introduction

In any closed-loop control system, sensors are used to provide
the feedback information that represents the current status of
the system and the environmental uncertainties. Building a
sensor system for a certain application is a process that in-
cludes the analysis of the system requirements, a model of the
environment, the determination of system behavior under dif-
ferent conditions, and the selection of suitable sensors. The
next step in building the sensor system is to assemble the
hardware components and develop the necessary software
modules for data fusion and interpretation. Finally, the sys-
tem is tested, and the performance is analyzed. Once the
system is built, it is difficult to monitor the different com-
ponents of the system for the purpose of testing, debugging,

The International Journal of Robotics Research,
Vol. 17, No. 4, April 1998, pp. 402417,
© 1998 Sage Publications, Inc.

402

Instrumented Sensor
System Architecture

and analysis. It is also hard to evaluate the system in terms
of time complexity, space complexity, robustness, and effi-
ciency, since this requires quantitative measures for each of
these attributes. .

In addition, designing and implementing real-time systems
are becoming increasingly complex, owing to many added
features such as fancy graphical user interfaces (GUISs), visu-
alization capabilities, and the use of many sensors of different
types. Therefore, many software engineering issues such
as reusability and the use of COTS (Commercial Off-The-
Shelf) components (Profeta 1996), real-time issues (Simon
et al. 1993; Schneider, Chen, and Pardo 1994; Hu et al.
1995), sensor selection (Giraud and Jouvencel 1994), relia-
bility (Kapur, Williams, and Miller 1996; Kim and Subbara-
man 1997; Stewart and Khosla 1997), and embedded testing
(Weller, Groen, and Hertzberger 1990) are now getting more
attention from system developers.

In a previous paper (Dekhil and Henderson 1996a), we
proposed to use formal semantics to define performance
characteristics of sensor systems. In this paper, we address
these and other problems related to sensor-system modeling
and evaluation. We start by presenting a theoretical frame-
work for modeling and designing sensor systems, based on
a formal semantics in terms of a virtual sensing machine.
This framework defines an explicit tie between the specifi-
cation, robustness, and efficiency of the sensor system by
defining several quantitative measures that characterize cer-
tain aspects of the system’s behavior. Figure 1 illustrates
our proposed approach, which provides static analysis (e.g.,
time/space complexity, error analysis) and dynamic handles
that assist in monitoring and debugging the system.

1.1. Sensor Modeling

Each sensor type has different characteristics and functional
descriptions. Therefore, itis desirable to find a general model
for these different types that allows modeling sensor sys-
tems that are independent of the physical sensors used, and
enables studying the performance and robustness of such
systems. There have been many attempts to provide “the”
general model, along with its mathematical basis and de-
scription. Some of these modeling techniques concern error

MacKenzie and Arkin / Evaluating the Usability of Robot Programming Toolsets 401

Striking a Balance: Conf. on Human Factors in Comput-
ing Systems, pp. 373-380.

Opaluch, R. E., and Tsao, Y. C. 1993. Ten ways to improve
usability engineering—designing user interfaces for ease
of use. AT&T Tech. J. 72(3):75-88.

Rosenblatt, J. K. 1995. Damn: A distributed architecture for
mobile navigation. AAAI Spring Symposium: Lessons
Learned from Implementing Software Architectures for
Physical Agents. Menlo Park, CA: AAAT Press, pp. 167-
178.

Rosenblatt, J. K., and Payton, D. W. 1989. A fine-grained al-
ternative to the subsumption architecture for mobile robot
control. JEEE INNS Int. Joint Conf. on Neural Networks,
vol. 2, pp. 317-323. :

Stewart, D. B., and Khosla, P. K. 1995. Rapid development
of robotic applications using component-based real-time

software. Proc. Intelligent Robotics and Systems (IROS"

95), vol. 1. Los Alamitos, CA: IEEE Press, pp. 465-470.

Turnell, M., and de Queiroz, J. 1996. Guidelines—an ap-
proach in the evaluation of human-computer interfaces.
Proc. IEEE Int. Conf. on Systems, Man, and Cybernet-
ics, vol. 3. Los Alamitos, CA: IEEE, pp. 2090-2095.

Virzi, R. A., Sokolov, J. L., and Karis, D. 1996 (Vancouver,
BC Canada). Usability problem identification using both
low- and high-fidelity prototypes. Proc. CHI *96: Com-
mon Ground—Conference on Human Factors in Comput-
ing Systems, pp. 236-243.

Weinschenk, S., and Yeo, S. C. 1995. Guidelines for
Enterprise-Wide GUI Design. New York: John Wiley
and Sons.

Dekhil and Henderson / Instrumented Sensor System Architecture 403

Space and time
complexity
robustness
efficiency

RO

~
AN

\
\ Help select
1 instrumented :

1 .
, components

Monitoring

' Debugging

Fig. 1. The proposed modeling approach.

analysis and fault toleranice of multisensor systems (Prasad
et al. 1991; Brooks and Iyengar 1993; Nadig, Iyengar, and
Jayasimha 1993; Iyengar and Prasad 1995; Prasad etal. 1994;
Dekhil and Henderson 1997a). Other techniques are model
based, and require a priori knowledge of the scanned object
and its environment (Durrant-Whyte 1988; Groen, Antonis-
sen, and Weller 1993; Joshi and Sanderson 1994). These
techniques help fit data to a model, but do not provide the
means to compare alternatives. Task-directed sensing is an-
other approach to devise sensing strategies (Hagar and Mintz
1989, 1991; Briggs and Donald 1994), but again, it does not
provide measures to evaluate the sensor system in terms of
robustness and efficiency.

Another approach to modeling sensor systems is to define
sensori-computational systems associated with each sensor to
allow design, comparison, transformation, and reduction of
any sensory system (Donald 1995). In this approach, the con-
cept of information invariants is used to define some measure
of information complexity. This approach provides a very
strong computational theory that allows comparing of sensor
systems, reducing one sensor system to another, and measur-
ing the information complexity required to perform a certain
task. However, as stated by Donald, the measures for infor-
mation complexity are fundamentally different from perfor-
mance measures. Also, this approach does not permit one to
judge which system is “simpler,” “better,” or “cheaper.”

404 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

!
1
1
i
1
1
1
I
I
I
I
1
!
1
I
i

Mathematical §
| Model f
‘
Real System

Performance
Analysis
Embedded
Testing

ILSSand F
Specification

On-line
Monitoring

J
1
1
]
i
I
I
1
i
1
!
i
I
i
i
1
1
i
I
!

Fig. 2. The instrumented logical sensor system components.

To that end, we introduce the notion of an Instrumented
Logical Sensor System (ILSS), which represents our method-
ology for incorporating design tools and allows static and
dynamic performance analysis, on-line monitoring, and em-
bedded testing. Figure 2 shows the components of our
framework. First (on the left), an instrumented logical sensor
specification is defined, as well as F, a set of functions that
measure system properties of interest. This specification is
derived from a mathematical model, simulation results, or
from descriptions of system components. Analysis of some
aspects of the ILSS are possible (e.g., worst-case complexity
of algorithms). Next (the center of the figure), an implemen-
tation of the system is created; this can be done by hand or can
be automatically generated in a compile step (note that the
original logical sensor specifications [Henderson and Shilcrat
1984] could be compiled into UNIX shell script or Function
Equation Language [FELY], an applicative language). Either
way, the monitoring, embedded testing, or taps are incorpo-
rated into the system implementation. Finally (the right-hand
side), validationis achieved by analyzing the system response
and performance measures generated during system execu-
tion. In this way, there are some semantic constraints on the
values monitored which relate the system output measures to
the original question posed for the specification.

Currently, an ILSS library is under development as part
of an interactive graphical programming environment called
CWave, which is used to design and execute real-time con-

System
Response

Validation

Implementation

trol systems.! Currently, we have a theoretical framework
and validation strategy with a partial implementation within

CWave. CWave is a graphical program-specification lan-

guage that has been created to design measurement systems

and has been funded by Hewlett-Packard. CWave has been

applied to broad robot systems (e.g., Lego robot warehouse

demos) in our software-engineering projects class here at

Utah. Finally, CWave is a specification language, and can

be linked to simulation tools, or executed in an interpreted

mode, or compiled for incorporation in embedded systems.

2. Performance Semantics of Sensor Systems

The use of sensors in safety-critical applications, such as
transportation and medicine, requires a high level of reli--
ability. However, increased robustness and reliability of a
multisensor system requires increased cost through redun-
dant components, and more sensor readings and more com-
putation. In contrast, increasing the efficiency of the system
means less-redundant components, fewer sensor readings,
and less computation. Performance analysis is crucial to
making an informed trade-off between design alternatives.
Performance analysis consists of a static analysis of a spec-
ification of the system and its parameters, as well as a dynamic

1. Refer to http://easy.cs.utah.edu/cwave/index.htm for more information
about the CWave project.

Dekhil and Henderson / Instrumented Sensor System Architecture 405

analysis of the system’s run-time behavior. The static analy-
sis can be based on some formal description of the syntax and
semantics of the sensor system, while the dynamic analysis
requires on-line monitoring of some quantitative measures
during run time.

Our goal is to achieve strong performance analysis and
provide information that allows the user to make informed
choices concerning system trade-offs. This involves asensor-
system model that permits quantitative measures of time and
space complexity, error, robustness, and efficiency, and fa-
cilitates analysis, debugging, and on-line monitoring.

Formal semantics of programming languages provides
techniques to describe the meaning of a language based on
precise mathematical principles. These formal techniques
should provide the following: precise machine-independent
concepts, unambiguous specification techniques, and a rigor-
ous theory to support reliable reasoning (Gordon 1979). The
main types of formal semantics are: denotational semantics,
which concerns designing denotations for constructs; opera-
tional semantics, which concerns the specification of an ab-
stract machine together with the machine behavior when run-
ning the program; and axiomatic semantics, which concerns
axioms and rules of inference for reasoning about programs.

Our view is that performance semantics should allow us
to compute measures of interest on program structures. De-
notational semantics is the closest to our view; according
to Ashcroft (1982), to specify the semantics of a language
denotationally means to specify a group of functions that as-
signs mathematical objects to the program and to parts of
programs (modules) in such a way that the semantics of a
module depends only on the semantics of the submodules.
Thus, given a set of programs, P, from a language, and an
operating context, C, the semantics is a set of functions:

F={fi}h

where

fiI‘PXC—>§R,

where R is the measurement domain.

The static semantics defines structural measures over the
syntax of p € P. This includes standard measures such as
the maximum depth of the program graph, branching mea-
sures, data structure properties, storage estimates, and stan-
dard computational complexity measures. Note that these
can be determined without reference to C (i.e., f : P — R).
This can be extended to include functions of the operational
context C, including sensor models, accuracy, precision, re-
dundancy, and replacement, as well as operating system ef-
fects, communication strategies and protocols, and processor
properties.

The dynamic semantics include validity measures and op-
erational characteristics. Validity measures permit the com-
parison of behavior models to actual run-time performance

(monitors), while operational characteristics are simply mea-
sures of run-time values (taps). The values of a tap or monitor
are represented as a sequence X = (z, : n € N), where z,
is the n*" value produced by the tap or monitor X : N' — S
where S is the structure produced by the tap or monitor.

The selection of functions in F depends directly on the
user’s needs; the functions are defined so as to answer spe-
cific questions. Standard questions include actual running
times, space requirements, bottlenecks, etc., and a complex
application can be investigated in a top-down manner—the
user may define new measurement functions on lower-level
modules once information is gained at a higher level. This
forces the user to identify crucial parameters and to measure
their impact. For example, a computer-vision application
may be data dependent, say on the number of segmented
objects or their distribution in the image. Thus, the user is
coerced into a better understanding of the significant value
regimes of these parameters, and may develop monitors to
ensure that the application stays within a given range, or that
it dynamically switches algorithms when a particular para-
meter value occurs (e.g., more than 1,000 segmented objects
occur in the image). The main point is that the user can con-
struct executable versions of the f; € F to ensure the validity
of the controller as it runs.

Although computational complexity provides insight
for worst-case analysis and for appropriate population-
distribution models, average-case analysis can be performed:
we propose here what might be termed empirical case analy-
sis, which allows the user to gain insight into the system
without requiring a detailed analytical model of the entire
application and its context. Very few users exploit formal
complexity-analysis methods; therefore, we believe that em-
pirical case analysis is a very useful tool. '

2.1. A Simple Example: Time vs. Robustness Using Sonar
Readings

Suppose that we want to determine how many sonar readings
to use to get a robust range estimate, but would like to trade-
off against the time taken to sample. This simple example
demonstrates the motivation of the proposed approach, and
how it can be used to select between alternatives. In this
example, we have a “classical” trade-off between speed (time
to accomplish a certain task) and robustness (a combination
of accuracy and repeatability). Assume that the sonar has
been calibrated to eliminate any environmental effects (e.g.,
wall type, audio noises, etc.). The variables in this case are
the accuracy of the physical sonar sensor and the number of
readings taken for the same position.

Assuming that the time to take one reading is t, the error
standard deviation is o, and the probability of a bad reading is
Pry, taking one reading yields minimum time and worst accu-
racy. By adding a filter (e.g., averaging) and taking multiple

406 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

readings, accuracy increases and time also increases. There-
fore, we need quantitative measures to decide how many
readings are needed to achieve the required accuracy (mea-
sured in terms of the standard deviation of the error) within
a time limit. ,

Invoking the formalism presented earlier, the semantics
of this problem can be defined using the set of functions

F = {time, error, repeatability }. In the case of using a single

reading, these functions can be written as:
time(single) = ¢
.
V(1= Pry)

repeatability(single) = 1 — Pry .

error(single) =

Now, if we take the average of n readings, the semantics
can be written as: ’

time(average) = nt + 7,

o
vnx(1— Pry)

repeatability(average) = 1 — Pry ,

error(average) =

where 7, is the time to calculate the average of n readings,
and 7, = 0.

In this simple example, we were able to get estimates of
the required measures using mathematical models. However,
we did not consider the changes in the environment and how
they affect these measures. In this case, the set of functions F
is a group of mappings from the cross-product of the program
P and the operating context C to the measurement domain
R; that is,

fi:PxC—-R.

To solve this problem, we either have to model the envi-
ronmental effects and include them in our model, or we may
need to conduct simulations if a mathematical model is not
possible. Simulation is a very useful tool to approximate re-

ality; however, in some cases, even simulation is not enough .

to capture all the variables in the model, and real experiments

_ with statistical anaiysis may be required to get more accurate
results. Thus, the formal functions can be operationalized as
monitors or taps in the actual system. -

3. Sensor-System Specification

The ILSS approach is based on Logical Sensor Systems
(LSS), introduced by Henderson and Shilcrat (1984). The
LSS methodology is designed to specify any sensor in such a
* way that hides its physical nature. The main goal behind LSS
was to develop a coherent and efficient presentation of the in-
formation provided by many sensors of different types. This
representation provides a means for recovery from sensor

failure, and also facilitates reconfiguration of the sensor sys-
tem when adding or replacing sensors (Henderson, Hansen,
and Bhanu 1985).

We define the ILSS as an extension to the LSS, and it is
comprised of the following components (see Figure 3):

1. ILS name: uniquely identifies a module;

2. Characteristic output vector (COV): strongly typed out-
put structure, with one output vector (COV ;) and zero
or more input vectors (COV;,,);

3. Commands: input commands to the module (Commands;,,),

and output commands to other modules (Commands,y;);

4. Select function: selector that detects the failure of an
alternate, and switches to another alternate (if possible);.

5.. Alternate subnets: alternative ways of producing the
COV,yt; it is these implementations of one or more
algorithms that carry the main functions of the module;

6. Control' command interpreter (CCI): interpreter of the
commands to the module;

7. Embedded tests: self-testing routines that increase ro-
bustness and facilitate debugging;

8. Monitors: modules that check the validity of the result-
ing COVs; and

9. Taps: hooks on the output lines to view different COV
- values.

These components identify the system behavior and pro-
vide mechanisms for on-line monitoring and debugging. In
addition, they give handles for measuring the run-time per-
formance of the system.

Monitors are validity check stations that filter the output
and alert the user to any undesired results. Each monitor is
equipped with a set of rules (or constraints) that governs the
behavior of the COV under different situations.

Embedded testing is used for on-line checking and debug-
ging proposes. Weller proposed a sensor-processing model
with the ability to detect measurement errors and to recover
from these errors (Weller, Groen, and Hertzberger 1990).
This method is based on providing each system module with
verification tests to verify certain characteristics in the mea-
sured data, and to verify the internal and output data resulting
from the sensor-module algorithm. The recovery strategy is
based on rules that are local to the different sensor modules.
We use a similar approach in our framework called local -
embedded testing, in which each module is equipped with a
set of tests based on the semantics definition of that module.
These tests generate input data to check different aspects of
the module, then examine the output of the module using a
set of constraints and rules defined by the semantics. Also,

Dekhil and Henderson / Instrumented Sensor System Architecture 407

Commands;;, COV

out

ILSS Name

Command Control Interpreter (CCI) I

Select Function

| Monitors

Subnet 2
Subnet 3
Subnet n
Embedded
Tests

I Subnet 1

COVv,

Commands in
Fig. 3. The extended logical sensor module.
. , Functional
From other ’ To other
modules Module modules
Data Check
Generation Results
Local tests

Fig. 4. Local embedded testing.

408 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

COV1 COV2
Serial: ILSS1 ILSS2 COV3
...................................... ILSS3
Select: COVv3
Combine: COV3

Fig. 5. Some operations used for propagating the performance measures.

these tests can take input data from other modules if we want
to check the operation for a group of modules.

Figure 4 illustrates the idea of local embedded testing. Lo-
cal embedded testing increases the robustness of the system,
and provides the user with possible locations to tap into when
there is a problem with the system.

3.1. Construction Operators

In our proposed framework, a sensor system is composed of
several IL.SS modules connected together in a certain struc-
ture. We define operations for composing ILSS modules, and
then define the semantics of these operations in terms of the

performance parameters. Some of these operations are (see
Figure 5):

 Serial (ILSSI, ILSS2): two logical modules are con-
nected in series. Here, COV3 = COV2;

* Select (ILSS1, ILSS2): COV3 is equal to either COV1
or COV2; and

* Combine (ILSS1, ILSS2): COV3 is the concatenation
of COV1 and COV2.

For these simple constructs, the semantics is defined as
a set of functions that propagate the required performance
measures. Several techniques can be used for propagation:
best-case analysis, worst-case analysis, average, etc. Select-
ing among these depends on the application; hence, it should

Dekhil and Henderson / Instrumented Sensor System Architecture 409

Y={X)

Y2

Fereo————> Y0

Fig. 6. A simple approach for error propagation.

be user defined. As an example, the time of the resulting
logical system using worst-case analysis can be calculated as
follows:

o time(serialILSS1,ILSS2))

= time(ILSS1) + time(ILSS2),
o time(select(TLSS1,ILSS2)

= max(time(LSS1), time(ILSS2)), and
e time(combine(ILSS1,ILSS2)

= max(time(ILSS1), time(ILSS2)).

Hence, the semantic functions of the composite system are
defined in terms of the semantic functions of the subcompo-
nents, similarly, functions that define the propagation of other
performance measures can be defined in the same way.

For error propagation, we use a simple approach that does
not require carrying a lot of information through the sys-
tem. This approach is based on the uncertainty propaga-
tion described in Holman and Gajda (1978) and Faugeras
(1993). Assume that we have a certain module with o inputs,
X = (z1,Z2,...,Ty), and m outputs, Y = (Y1, Y2, .-+ Ym)
such that Y = f(X), and assume that the error variance as-
sociated with the input vector is Ax = (Agy, Agysv. 5 As,)
(see Figure 6). Then, the error variance for the output vector
is calculated using the equation

oYy oy \T
Ay = (ﬁ) Ax (5;—() ’
oY

where §% is the partial derivative of Y with respect to X
evaluated at the measured value of the input vector X. If
all the elements in X are independent variables, then this
equation can be written as

i (:?yi 2 .
Ay’=z<ga_;;> Azj,z=1,2,...,m.
=1

Our overall goal is to provide a tightly coupled mechanism
to map high-level performance measures onto an appropriate
set of monitors, tests, and taps so as to provide the required
information.

4. Implementation

The ultimate goal of this project is to utilize the proposed
theoretical framework in a usable modeling and prototyping
environment with tools for analysis, debugging, and moni-
toring sensor systems with emphasis on robot-control appli-
cations. Thus, we are developing an ILSS library within a
visual programming system called CWave, targeted toward
the development of control systems for measurement devices
and hardware simulations. CWave is developed by the Com-
ponent Software Project (CSP) research group in the De-
partment of Computer Science at the University of Utah, in
cooperation with the CSP group at Hewlett-Packard Research
Labs in Palo Alto, California.

The CWave system is based on a reusable-software compo-
nents methodology, where any system can be implemented
by visually wiring together predefined and/or user-created
components and defining the data flow between these com-
ponents. The CWave design environment includes several
important features that make it suitable to use as a framework
for implementing ILSS components (see Figure 7). Some of
these features are:

+ open architecture with ease of extensibility;

e drag-and-drop interface for selecting components;

o several execution modes, including single step, slow,
and fast execution;

 on-line modification of component properties;

o the ability to add code interactively using one of sev-
eral scripting languages, including Visual Basic and
Java Script. This is particularly useful to add moni-
tors and/or taps on the fly;

« parallel execution using visual threads; and

 on-line context-sensitive help.

4.1. Implementing ILSS Components

An object-oriented approach is used to develop the ILSS com-
ponents, using Visual C++ for implementation. Each compo-
nent is an object that possesses some basic features common
to all components plus some additional features that are spe-
cific to each ILSS type. The following are some of the basic
functions supported by all components:

initialize performs some initialization steps when the com-
ponent is created,

calibrate starts a calibration routine,

sense generates the COV corresponding to the current in-
put and the component status,

reset resets all the dynamic parameters of the component
to their initial states,

test performs one or more of the component’s embedded
tests,

410 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

~-ote Wait for value

Fig. 7. The CWave design environment.

Fig. 8. The LABMATE robot with its equipment.

select selects one of the alternate subnets, which allows
for dynamic reconfiguration of the system,

monitor observes the COV and validates its behavior
against some predefined characteristic criteria, and

tap displays the value of the required variables.

We used several design patterns in designing and imple-
menting the components. Design patterns provide reliable
and flexible object-oriented designs that can accommodate
rapid modifications and extensions (Gamma et al. 1995).

For example, the decorator pattern is used to dynamically
attach additional functionality to the object. This is par-
ticularly useful in our case, where the user can dynami-
cally choose the performance measures to be propagated
and the values to be monitored while the system is run-
ning. Note that monitors, tests, and taps can be exploited
to analyze CWave (or any implementation language) mod-
ule performance, independent of the sensor aspects of the
system. This is rendered more efficient and transparent to
the user by incorporating them directly as language fea-
tures.

S. An Example: Wall-Pose Estimation

The following example illustrates the use of the proposed
framework to model and analyze two alternatives for deter-
mining flat-wall position and orientation: one using vision,
and one using sonar sensors (Dekhil and Henderson 1996b;
Henderson et al. 1996a, 1996b, 1997). The sonar sensors are
mounted on a LABMATE mobile robot (designed by Tran-
sitions Research Corporation). The LABMATE was used
for several experiments in the Department of Computer Sci-
ence at the University of Utah. It was also entered in the
1994 and 1996 AAAI Robot Competition (Schenkat, Veigel,
and Henderson 1994), and it won sixth and third places, re-
spectively. For that purpose, the LABMATE was equipped
with 24 sonar sensors, 8 infrared sensors, a camera, and a

Dekhil and Henderson / Instrumented Sensor System Architecture 411

Wall

Returned Points

(X pZ 13X2 722)

Vision

Line

(x p21X2.%)

Fig. 9. Two instrumented logical sensors for determining wall position.

speaker.? Figure 8 shows the LABMATE with its equip-
ment.

In this example, we consider two different logical sen-
sors to determine wall pose and find the corresponding errors
and time complexity for each. The first ILSS uses a cam-
era and known target size and location. The second ILSS
deals with the sonar sensor as a wedge sensor (i.e., it returns
a wedge centered at the sonar sensor and spread by an angle

2. The LABMATE preparations, the sensory equipment, and the software
and hardware controllers were done by L. Schenkat and L. Veigel at the
Department of Computer Science, University of Utah.

26.) Figure 9 shows the two logical sensors. (See Hender-
son et al. [1996a] for an overview of the sonar pose-recovery
technique, and Henderson and Dekhil [1997] for target-based
calibration.)

In this figure, image is the 128x 128 black-and-white im-
age acquired by the Camera, and r| and r; are the two sonar
readings generated from Sonarl and Sonar2, respectively.
Target_Points extracts three reference points from the image,
while Vision_Line produces two points on the line of inter-
section of the wall with the z-z plane of the camera system.
Wedge_Sonar_Line takes the two range values 7y and r2,
and the spread angle of the sonar beam 0, and returns two 2D
points on the line that represents the wall.

412 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

5.1. System Modeling and Specification

As shown in Figure 9, ILSS1 is composed of three modules:
a Camera module, a Target_Points module, and a Vision_Line
module. On the other hand, ILSS2 has three modules: two
Sonar modules and a Wedge_Sonar_Line module followed by
a Combine operator.

Each ILSS is defined in terms of a set of components that
characterizes the module. The data and the corresponding
performance measures start from the camera or sonar module,
and propagate upward until they reach the COV of the main
ILSS. On the other hand, the commands start from the main
ILSS and propagate downward until they reach the camera or
sonar module. The COV is composed of two parts: data and
performance measures. For example, COV ,; for sonarl is

({rla 0}’ {t, ATI& AG})a

where ¢ is the time taken to execute the module and A,;
and Ay are the error variances for r; and 6, respectively. In
this example, each module has only one alternate subnet;
therefore, the select function is trivial.

5.2. Performance Semantic Equations

Using worst-case analysis, the performance semantic equa-
tions of the time and error for ILSS1 and ILSS2 can be written
as:

time(ILSS1) = time(serial(Camera, Target_Points, Vision_Line))
error(ILSS1) = error(serial(Camera, Target_Points, Vision_Line))
time(ILSS2)

= time(serial(Combine(Sonarl, Sonar2), Wedge_Sonar_Line))
error(ILSS2)

= error(serial(Combine(Sonarl, Sonar2), Wedge_Sonar _Line))

Now, we need to calculate the time and error for the sub-
components. Assume that tsonart, tsonar2> teameras ttarget_points»
tvision_tine aNd Twedge_sonar_tine are the times for the subcom-
ponents, and Ay, Arg, Ay, Ay, Ay, and Ay are the error
measures for 1, 12, Y1, Ye, Yr, and 0, respectively. The times
for ILSS1 and ILSS2 can be easily calculated using the prop-
agation operations discussed earlier, as follows:

time(ILSS1) = tcamera + ttarget_points T Tvision_tine and

time(ILSS2) = max(tsonart» tsonar2) + twedge_sonar_line .

Propagating the error requires more elaborate analysis for
each component. For ILSS1, we start with the error in
the physical sensor, which is the camera in this case. The
camera generates two-dimensional arrays of intensity val-
ues, P(x,y), where P is an m X n matrix. The error we
are concerned about in this example is the error in position
(z,y) of a point on the CCD array (which corresponds to
rows and columns in the image). This error is affected by

the resolution of the camera and the distance between the
CCD elements. Let’s assume that the error is Gaussian, with
mean 0 and variance (A, A,) at any point (z,y). This can
be written as

error(camera) = {(Az, Ay)mxn} -

This error translates directly into the second component,
Target_Points, which extracts the y value for three differ-
ent points in the image; y;, y., and y,. Assuming that the
variance in the y direction (A,) is the same at any pixel, the
error at this stage will be '

error(Target Points) = {Ay, Ay, Ay} .

The last component in ILSS1, vision_line, performs sev-
eral operations on these three values to generate the two
points of the line representing the wall. First, the corre-
sponding z value is calculated for the three points using the
equation '

_%

(2 yi]

where Y} is the height of the physical point and is a known

constant in our example. The error associated with z; can be
calculated as follows:

0z \
A, =2 .
7 (ayz > Ayt

By calculating the derivative in the above equation, we get

—Y0>2 Y2
Ay, = <-_ Ay= 0,
“ y? T

i=1lcr,

which shows how A, depends on the value of y;. Second,
the angle between the robot and the wall () is calculated
with the function:

where Dy is the known distance between the two physical
points p; and p,.. Therefore,

oa\?
Aa_(%—) A

- ! = | A
())
2
+ — = | A,
- ()

Dekhil and Henderson / Instrumented Sensor System Architecture

(cosot,z. +sino) P

P,

Fig. 10. The two points on the line representing the wall.

After simplifying the last equation, we get:
D§

Ay = ——7——=
* D(Z)““(Zl—zr)z

Az +A).

Finally, we calculate two >points on the line representing
the wall, as shown in Figure 10. Take the first point p; at
(0, 2,), and the second point p, at one unit distance from p;
along the wall, which gives the point (cos ¢, z¢ + sin a):

1=0, 2z =2

T, =cosq, z =2 +sina.

From these equations, the error for the two points will be:

. A:tl = 09 Azl = A-Zc

Ag, = sinfa Ny, Ay =AM, + cos*a Aq .

Now, we can write the error of ILSS1 as:
error(ILSS1) = {Aw;, Az Asyo Asy} -

Notice that we can write the error in terms of Ay, Yo, Do, ¥t Yes
and y,. For example, let us assume that A, = 1mm?, Y, =
500mm, Dy = 300mm, and y; = y. = ¥r = 10mm (a is
zero in this case). Then, the error will be

error(ILSS1) = {0,25mm?, 0,25mm’} .

Now we analyze ILSS2 in a similar manner. At the first
level, we have the physical sonar sensor where the error can
be determined either from the manufacturer specs, or from
experimental data. In this example, we will use the error
analysis done by Schenkat, Veigel, and Henderson (1994), in
which there is a Gaussian error with mean g and variance 6.
From this analysis, the variance is a function of the returned
distance r. To simplify the problem, let’s assume that the
variance in both sensors is A, = 4.0mm?. Therefore we can
write the error in the sonars as:

error(Sonar) = {A} .

413

Fig. 11. The general case for the points returned by the
Wedge_Sonar_Line.

In the Wedge_Sonar_Line module, there are five possible
cases for that line, depending on the values of 7 and 7
(Henderson et al. 1996a). In any case, the two points on the
line can be written as:

Ty =Tricosqy, 2 =Trisinag

Ty =TpCOSQp, 2 =Tpsinap,

where the values of a; and o are between —@ and & (see
Figure 11).

Considering the worst-case error, we can set iy = 0 = 0.
Assuming that the error in 6 is zero, then the errors in the
calculated points are:

3x,~ 2
A:vi = (—8-7) A, and

62,; 2
Azi - (_6_7'> A'r B

A, = cos? 6 A,

Ag, =cos? A, A, =sin®6A,.
Finally, the error function for ILSS2 is:

which result in

A, =sin’0 A,

error(ILSS2) = {Ag,, Az, Mgy, Ay}

As an example, if A, = 4.0mm?, and § = 11° (approxi-
mately correct for the Polaroid sensor), we get:

error(ILSS2) = {3.85mm?, 0.15mm?, 3.85mm?, 0.15mm’} .

This example illustrates the importance and usefulness of
the ILSS library, since all these analyses can be performed

414 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

Rangeinz

0.4 . L L . L L : i
[} 5 10 15 20 25
Image Row Number

Fig. 12. The relation between the image row number and the
range.

once and put in the library for reuse and the user does not have
to go through these details again. For example, if a different
sonar sensor is used, then the same error analysis can be used
by supplying the sensor’s error variance. In addition, given
that the error range has been determined, redundancy can be
added using different sensor pairs to sense the same wall and
a monitor can be added to detect error discrepancies.

5.3. Experimental Results

We do not have a very good model of our camera, and there-
fore actual experiments were required to compare the pose
error for the two proposed techniques. The two instrumented
- logical sensors were used with the LABMATE to find the
location of walls using real data. The goal of the experi-
ment was to use the framework to obtain measures to help
choose between a vision-based wall-pose technique and a
sonar-based wall-pose estimator.

First, we calibrated the range of our visual target (a hori-
zontal line at a known height, ¥, with vertical stripes regu-
larly spaced 34.2 mm apart) with its y-location in the image.
This was done by aligning the z-axis of the mobile robot
camera to be normal to the wall; the mobile robot was then
backed away from the wall a known distance and the image
row number of the horizontal target line recorded. Figure
12 shows the results of this step. (Note that we digitized
a 128128 image; greater resolution would produce more
accurate results.)

Once the target-range calibration was done, the robot was
placed in eight different poses with respect to the wall and
the visual target acquired. Each image was constrained to
have at least two vertical stripes, and neither of them could
be centered on the middle column of the image. The test
images are shown in Figure 13.

Fig. 13. Visual target test images.

350 - — . - : v

300

250

g

Range Error in mm
g

2

Fig. 14. Error in p for sonar (dashed line) and vision (solid
line).

Sonar data was also taken at each pose. The actual pose of
the mobile robot with respect to the wall was independently
measured by hand. Table 1 gives the hand-measured, sonar,
and image-calculated results.

The error values of the sonar and vision results with respect
to the hand-measured data are plotted in Figures 14 and 15.

These results allow the user to decide whether to use one
technique or the other, given the global context. For exam-
ple, our application was a tennis ball pick-up competition in
which we were using vision to track tennis balls anyway, and
we needed to locate a delivery location along the wall; if we
could get by with a pose error of less than 0.3m range and a

Dekhil and Henderson / Instrumented Sensor System Architecture 415

Angle Error in Degrees

Fig. 15. Error in @ for sonar (dashed line) and vision (solid line).

Table 1. Pose Results from Measured Data, Sonar, and Vision Techniques

Test No. || Measured p | Measured 6 || Sonar p | Sonar § || Vision p | Vision 8
1 919 =21 915.6 -20.6 888 | —29.66
2 706 =27 7154 -22.7 667 -35.51
3 930 20 924.0 232 783 23.99
4 1,242 0| 1,226.3 46 1,128 10.27
5 764 32 778.5 46.1 593 43.62
6 1,164 -11 || 1,164.9 -13.7 1,084 | -13.33
7 1,283 6 || 1,277.4 37 979 -6.53
8 1,319 -10 || 1,300.8 -9.8 1,084 | -13.33

15° angle, then ILSS1 would suffice. If less error were re-
quired, then a costly sonar system with hardware and software
would need to be added to the robot, or else the use of higher
resolution imagery could be explored. However, decisions
made with respect to all of these considerations would now
be defensible and well documented. (For another detailed
example comparing two alternative sonar-sensor techniques
for obtaining wall pose, see Henderson et al. 1997.)

Note that, to keep things simple, we did not consider the
error in the sonar location and orientation. However, these
errors can be incorporated into the model in the same manner.

6. Conclusions

In this paper we presented a theoretical framework for sen-
sor modeling and design, based on defining the performance
semantics of the system. We introduced the notion of in-
strumented sensor systems, which is a modeling and design
methodology that facilitates interactive, on-line monitoring
for different components of the sensor system. It also pro-
vides debugging tools and analysis measures for the sensor
system. The instrumented sensor approach can be viewed
as an abstract sensing machine that defines the semantics of

sensor systems. This provides a strong computational and
operational engine that can be used to define and propagate
several quantitative measures for evaluating and comparing
design alternatives. The implementation of this framework
within the CWave system was described, and examples were
presented.

Currently, we are workmg on building an ILSS library
with several design tools that will assist in rapid prototyp-
ing of sensor systems and will provide an invaluable design
tool for monitoring, analyzing, and debugging robotic sensor
systems.

Acknowledgment

We would like to thank Professor Robert Kessler and
Christian Mueller for providing the CWave program that we
used to implement the instrumented sensor library, Professor
Gary Lindstrom for his helpful discussions of program se-
mantics, and Kevin Linen of North Carolina A & T for help
with the experiments. This work was supported in part by
NSF grant CDA 9024721 and a glft from Hewlett-Packard
Corporation.

416 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1998

References

Ashcroft, E. A. 1982. R for semantics. ACM Trans. on Pro-
gramming Languages and Systems 4(2):283-295.

Briggs, A. J., and Donald, B. R. 1994 (Los Alamitos, CA).
Automatic sensor configuration for task-directed plan-
ning. Proc. of the 1994 IEEE Int. Conf. on Robotics and
Automation, pp. 1345-1350.

Brooks, R. R., and Iyengar, S. 1993. Averaging algorithm
for multi-dimensional redundant sensor arrays: Resolving
sensor inconsistencies. Technical report, Louisiana State
University. Also published in Iyengar, S. S., Prasad, L.,
and Min, Hla., 1995, Advances in Distributed Sensor In-
tegration: Application and Theory. Englewood Cliffs, NJ:
Prentice Hall. ‘

Dekhil, M., and Henderson, T. C. 1996a (Piscataway, NJ).
Instrumented sensor systems. IEEE Int. Conf. on Multi-
sensor Fusion and Integration (MFI 96), pp. 193-200.

Dekhil, M., and Henderson, T. C. 1996b (Washington,
DC). Optimal wall pose determination in a shared-
memory multi-tasking control architecture. IEEE Int.
Conf. on Multisensor Fusion and Integration (MFI 96),
pp. 736-741.

Dekhil, M., and Sobh, T. M. 1997 (January). Embedded toler-
ance analysis for sonar sensors. Invited paper to the special
session of the 1997 Measurement Science Conference,
“Measuring Sensed Data for Robotics and Automation,”
Pasadena, CA.

Donald, B. R. 1995. On information invariants in robotics.
Art. Intell. 72(1&2):217-304.

Durrant-Whyte, H. F. 1988. Integration, Coordination and
Control of Multisensor Robot Systems. Boston, MA:
Kluwer Academic.

Faugeras, O. 1993. Three-Dimensional Computer Vision—A
Geometric Viewpoint. Cambridge, MA: The MIT Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley.

Giraud, C., and Jouvencel, B. 1994 (Las Vegas, NV). Sensor
selection in a fusion process: A fuzzy approach. Proc. of
the IEEE Int. Conf. on Multisensor Fusion and Integra-
tion, R. C. Luo (ed.). ¢, pp. 599-606.

Gordon, M.J.C. 1979. Denotational Description of Program-
ming Languages. New York: Springer-Verlag.

Groen, F.C.A., Antonissen, PP.J., and Weller, G. A. 1993
(Piscataway, NJ). Model based robot vision. IEEE Instru-
mentation and Measurment Technology Conf., pp. 584—
588.

Hager, G., and Mintz, M. 1991. Computational methods for
task-directed sensor data fusion and sensor planning. Int.
J. Robotics Research 10(4):285-313.

Hager, G. D., and Mintz, M. 1989 (Washington, DC). Task-
directed multisensor fusion. Proc. of the IEEE Int. Conf.
Robotics and Automation, pp. 662-667.

Henderson, T. C., Bruderlin, B., Dekhil, M., Schenkat, L.,
and Veigel, L. 1996b. Sonar sensing strategies. Proc. of
the IEEE Int. Conf. Robotics and Automation, pp. 341
346.

Henderson, T. C., and Dekhil, M. 1997 (July). Visual tar-
get based wall pose estimation. Technical report UUCS
97-010, University of Utah, Department of Computer Sci-
ence.

Henderson, T. C., Dekhil, M., Bruderlin, B., Schenkat, L.,
and Veigel, L. 1996. Flat surface recovery from sonar data.
DARPA Image Understanding Workshop. San Francisco:
CA, Morgan-Kaufmann, pp. 995-1000.

Henderson, T. C., Dekhil, M., Bruderlin, B., Schenkat, L., and
Veigel, L. Forthcoming. Wall reconstruction using sonar
sensors. IEEE Int. J. of Robotics Research.

Henderson, T. C., Hansen, C., and Bhanu, B. 1985. The spec-
ification of distributed sensing and control. J. of Robotic
Sys. 2(4):387-396.

Henderson, T. C., and Shilcrat, E. 1984. Logical sensor sys-
tems. J. of Robotic Sys. 1(2):169-193.

Holman, . P,, and Gajda, W. J. Jr. 1978. Experimental Meth-
ods for Engineers. New York: McGraw-Hill.

Hu, H., Brady, J. M., Du, F., and Probert, P. J. 1995. Dis-
tributed real-time control of a mobile robot. J. of Intell.
Automation and Software Computing.

Iyengar, S. S., and Prasad, L. 1995. A general computational
framework for distributed sensing and fault tolerant sen-
sor integration. IEEE Trans. Sys. Man and Cybernetics
25(4):643-650.

Joshi, R., and Sanderson, A. C. 1994 (Los Alamitos, CA).
Model-based multisensor data fusion: A minimal repre-
sentation approach. Proc. of the IEEE Int. Conf Robotics
and Automation, pp. 477-484. '

Kapur, R., Williams, T. W., and Miller, E. F. 1996. Sys-
tem testing and reliability techniques for avoiding failure.
IEEE Computer 29(11):28-30.

Kim, K. H., and. Subbaraman, C. 1997. Fault-tolerant
real-time objects. Communications of the ACM 40(1):
75-82.

Nadig, D., Iyengar, S. S., and Jayasimha, D. N. 1993. New ar-
chitecture for distributed sensor integration. IEEE South-
eastcon Proc., pp. 684-691.

Prasad, L., Iyengar, S. S., Kashyap, R. L., and Madan, R. N.
1991. Functional characterization of fault tolerant integra-
tion in distributed sensor networks. IEEE Trans. Sys. Man
and Cybernetics 21(5):1082-1087.

Prasad, L., Iyengar, S. S., Rao, R. L., and Kashyap, R. L.
1994. Fault-tolerence sensor integration using multireso-
lution decomposition. J. of the American Physical Society
49(4):3452-3461.

Profeta, J. A. 1996. Safety-critical systems built with COTS.
IEEE Computer 29(11):54-60.

Schenkat, L., Veigel, L., and Henderson, T. C. 1994. EGOR:
Design, development, implementation—an entry in the

Dekhil and Henderson / Instrumented Sensor System Architecture 417

1994 AAAI Robot Competition. Technical report UUCS-
94-034, University of Utah.

Schneider, S. A., Chen, V., and Pardo-Castellote, G. 1994.
ControlShell: A real-time software framework. AIAA
Conference on Intelligent Robots in Field, Factory, Ser-
vice and Space.

Simon, D., Espiau, B., Castillo, E., and Kapellos, K. 1993.
Computer-Aided design of a generic robot controller han-
dling reactivity and real-time issues. IEEE Trans. on Con-
trol Sys. Tech. 4(1)213-229.

Stewart, D. B., and Khosla, P. K. 1997. Mechanisms for de-
tecting and handling timing errors. Communications of the
ACM 40(1):87-93.

Weller, G. A., Groen, F.C.A., and Hertzberger, L. O. 1990.
A sensor processing model incorporating error detec-
tion and recovery. T. C. Henderson (ed.), Traditional
and Non-Traditional Robotic Sensors. Berlin: Springer-
Verlag, pp. 351-363.

Eric Marchand

Eric Rutten

Hervé Marchand
Francois Chaumette

IRISA/INRIA Rennes
Campus de Beaulieu
35042 Rennes Cedex
Firstname.Name @irisa.fr

Abstract

Activevision-based robot design involves avariety of techniques and
Sformalisms, from kinematics to control theory, signal processing,

and computer science. The programming of such systems there-
Jfore requires environments with many different functionalities, in a
very integrated fashion to ensure consistency of the different parts.

In significant applications, the correct specification of the global
controller is not simple to achieve, as it mixes different levels of
behavior, and must respect properties. In this paper we advocate
the use of a strongly integrated environment that is able to deal with
the design of such systems, from the specification of both continu-
ous and discrete parts down to the verification of dynamic behavior.

The synchronous language SIGNAL is used here as a candidate in-

tegrated environment for the design of active vision systems. Our
experiments show that SIGNAL, while not being an environment
devoted to robotics (but more generally dedicated to control theory
and signal processing), presents functionalities and a degree of inte-

gration that are relevant to the safe design of an active vision-based
robotics system.

1. Introduction/Motivation

The task of designing robot systems based on visual percep-
tion is made intrinsically complex by the very diversity of
the problems that arise. Indeed, they cover a wide range of
techniques and formalisms, including, among others: me-
chanics, kinematics, electronics, signal processing, control
theory, computer science, and discrete events systems. Each
of these aspects is typically handled using dedicated tools
that rely on various formalisms. One of the main issues is
then the integration of these different aspects, as well as the
underlying models of the actual tools. The use of a set of

The International Journal of Robotics Research,
Vol. 17, No. 4, April 1998, pp. 418-432,
© 1998 Sage Publications, Inc.

418

Specifying and
Verifying Active
Vision-Based Robotic
Systems with the SignaL
Environment

independent (or even loosely coupled) tools leads to the ab-
sence of any formal support for the integration. Modules
are developed separately and then manually linked in an
error-prone way. While the underlying models should be
consistent, these tools perform different analysis and trans-
formations using their own semantics. Our claim is that the
concrete representations used by the tools should be as close
as possible, or even, if possible, share a common format. This
enables efficient and safe communication between tools, and
hence, smooth integration of functionalities, and even a for-
mal verification of the whole system.

In this paper we propose a framework that features some
functionalities for the development of active vision-based
robotics systems. These systems contend with various is-
sues from the automatic generation of camera motion using
image-based visual servoing to sensor planning. Each sub-
problem involved in this kind of application (such as visual
servoing, structure estimation, motion detection or segmenta-
tion, and exploration) is a difficult computer-vision problem
on its own. However, one of the main issues is the integra-
tion of all these tasks into a single, reliable, robust and safe
autonomous system. We want to emphasize the fact that, if it
is important to bridge the gap between continuous/local and
discrete/global aspects in the vision and control parts of an
active vision system, it is also important to consider this gap
from a software-engineering point of view to obtain a safe
integration of such systems. Therefore, it is important to use
a design environment that is able to provide tools that allow
us to consider in a unified framework the various aspects
of the perception-action cycle: from continuous data-flow
tasks (or sampled-data systems which include control loops,
estimation, filtering, and data acquisition) to multitasking and
hierarchical task preemption (mission control). Furthermore,
owing to the complexity of the system, and for safety re-
quirements, formal verification tools are necessary to prove
formally that the behavior resulting from the implementation

