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Abstract

We propose to represent major shape clements in digital images in terms
ol the topographical features (e, ridges and ravines) of (he intensity imape,
We will describe a new ridge/ravine extraction technique motivated by vector
field considerations. The shapes are then defined by the geometric constraints
that exist between the featnres. These can be represented as relation matrixes.
These require manipulation and are quite large (perhaps 1000x1000), and we
are exploring the use of compression techniques applied directly to the relation
matrixes in order to reduce the computational complexity of graph matehing.

1 Introduction

Image databases have been the focus of el recent work in the computer vision and
multimedia fields. Methods have been proposed for image compression, storage and
query. Most query methods are hased on the use of color, or intensity statistics (usually
some form of histogram), as well as various texture parameters, and some limited kinds
of shape analysis. In this paper we propose o base shape queries on the topographic
[eatires of the image, and in particular on the ridge and ravine features described here.
For other approaches; see [3, 1],

Wedirst deseribe our method for recovering ridges and ravines in a grayscale image,
and then explain how we segment the image and compute geometric relations bhetween
the segments. These relations are nsed as the keys by which image querying is achieved.
We describe several techniques for compressing the relations matrixes, including the
nse ol image compression transforms and the SVD technique; linally, we describe an
approach to graph matching by comparing a subsample of the transform coellicients of

the node adjacency graphs.
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2  Ridge and Ravine Detection

Ridges and ravines are important features in some image analysis tasks and represent. a
basic topographic type in digital terrain data. Several methods have heen proposed to
recover these features, but they have major shorteomings ineluding (1) their sensitivity,
and (2) their computational cost (nsnally as a result of fitting a polynomial).  We
describe here an approach hased on the Laplacian operator that has a Grm theoretical
foundation and which is relatively inexpensive to compnte.

Havalick[2] describes how the facet model approach can he used o recover ridges
and ravines. A bicubic polynominal is it to a pateh in the image; ridges are then char-
acterized by anegative second derivative across the ridge line and a zero fivst derivative
in the same direction. The only dillerence Tor a ravine is that the second derivative
across the ravine is positive. (Haralick’s hook reviews several carlier technuiques for
ridge and ravine detection; note that Rosenfeld and Kak maintain that the Laplacian
can be used to detect lines.) The computational cost is high dire to the ten coellicients
that arc computed at cach pixel.

A more recent technique related to our approach is that proposed by Gauch and
Pizer[1]. In their approach, they find places where the “intensity falls ofl sharply in
two opposite directions.” They determine curvature extrema of the level curves of the
mmage inorder to achieve this. Unfortunately, their calculation requires the evaluation
ol o large polynominal in the first-) sccond- and thurd-order partial derivatives of the

image, where cubic splines are used to caleulate the partial derivatives.

2.1 Curl Method

Onr method is hased on the following sequence ol observations concerning the behavior
ol the gradient in the neighborhood of a ridge or ravine. Iigure | shows an image with
2 parallel horizontal ridges.  Figure | shows an image as a surface in 31 (this is a
subimage of a medical image with intensity bands). 'T'he gradient produces vectors
on the side of a ridge which point toward the ridge and which point away from a
ravine. (sce Figure 2). Although the gradient can he analyzed directly to determine
Lhe docation of ridges and ravines, it is computationally more convenient to do the

ﬂ)”n\\'illgi
e Rotate (locally) cach gradient vector -90 degrees about, the out of image axis.

e Calculate the curl at cach point to determine the opposed flow thal exists af

ridge lines.

e Calculate the extremum of this function across the ridge.
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[ligure 1:

FFigure 2: Ridges Viewed as Topography

[ignre 3 shows the rotated gradient for the image of IYigure 1, while IFigure 4 shows
the extracted ridge pixels.
Now that the ideas should he clear; we give a formal development of this technique.

Let the image function be f(x,y). Then the gradient is:
Vo= LGy b Ly Gey) g0k

The rotation is: 7 v
rol(7f) = [,(e y) -1 — faleyy)- )+ 0-k

The curl of this is:

) ] /
curl(rol(7[)) = 3:_ ﬁ ’T’;
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Figure 5: Carl of Rotated Gradient,
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which is just the negative of the Laplacian.,

Finally, a principal direction of curvature for a ridge pixel is:

alan2(foys fyw = [or)
‘)

(=

as well as a + 2. We scarch in these directions to determine that the pixel is a local

maximum across the ridee,

3  Encoding and Matching Geometric Relations

3.1  Geometric Relation Graphs

Image segmentation is achieved by thresholding the ridge image. 'The resulting image is
then Tabeled (connected components are grouped together into segments). Propertics
arc then computed on the resulting segments. For example, consider the 100 by 100
mmage in Migure 6. 'The segments are shown in the following ligure. Next, the original
angle matrix is shown (this has the angle between the principal axes of the segments
pairwise). [rom this matrix various geometric relations matrixes can be formed; for
example, Parallel(i,j) by setting the (i) entry to | wherever the angle hetween two

segments is close enough in value to 90 degrees.

3.2  Graph Matching

Il set of geometric relations graphs are used to represent an image in the image
database, then when a guery is posed, it is necessary to compare the graphs. We have
studied the effectiveness of compressing the geometric relations graphs by means of
the SV, or standard compression transforms. Iigure 9 shows our generic approach;
instead of matching matrixes (graphs), we transform the graph matrix, and compare
the transform coellicients.

Hthe ginpabin vadues are compuated, then the SVD difference (caleulated as the
mflintty norm on an n-vector for an n by nomatrix), correlates very well with the
matrix difference (see Figure 10). This graph shows the results for a relations matrix
with 80% edge density. If the singular value difference is large, then the graphs are
unrelated; however, if it is small, the graphs may still difler significantly. That is, low
singular value difference is a necessary but not suflicient condition for graph similarity.
Il the singular values from several geometric relations are used, then the likelihood of

signilicantly different graphs matching is unlikely.
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[Migure 6: Test Tmage

Figure 7: Test, Image Ridge Segments




Figure 8: Test Tmage Segment. Angle Matrix
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Figure 9: Transform-Based Graph Matching




Graph Matching Using SVD. Nodes = 64, Edges = %80
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Figure 100 Graph Matching Using SVD

We are also exploring the use of standard image compression techniques (e.g., the
Hadamard transform). First, we examined whether the Hadamard transform could
cfliciently encode a binary relations matrix. IYigures 11 and 12 show the graph difference
(the s of the 1) entries which differ) versus the nmber of Hadamard cocellicients
nsed for graphs with 64 nodes at 30% edge density and 256 nodes at 20%, respectively.
O experiments indicate that using about 1H00 of the coctlicients Teads Lo abont o 1090
crror in graph reconstruction.  As for the relationship hetween coellicient diflerence
versus graph dilference; Figures 13 and 14 show results for 64 and 128 node graphs,

respectively,

4 Suminary

We have shown that geometric relations hetween topographic features of an intensity
mmape can be exploited as a shape representation and query method. TFurthermore,
the curl of the rotated gradient provides an excellent hasis upon which to construct a
robnst ridge and ravine detector. It s comparable to existing operators, but much less
costlv. We have tried this techmque on a number of types of images and found the

resilts to he very good.
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Graph Recovery: Nodes = 64, Edges = 30%
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Figure 11 Quality of Inverse Transform Matrix versus Cocllicients

Graph Recovery: Nodes = 256, Edges = 20%
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Fignre 12: Quality of Inverse Transform Matrix versus Coeflicients
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Graph Matching Using Haramard. Nodes = 64, Edges = 80%

250 T T T T T T T T T+
+
I +
) '
| o+ o+
200 4
+ +
. [
gt
8 o
S Lenl +
g 150 by +y +
— +
=
K + 4
L2 | |
= +
T 100 b
%
] +4
+
+
[=% -
501 4
+
0 1 L I ] 1 1 1 ] 1
0 5 10 15 20 25 30 35 40 45 50

Graph Difference
Figure 13: Graph Diflerence versus Coelflicient. Difference (64 nodes)
Graph Matching Using Haramard. Nodes = 256, Edges = 80%
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Figure 14: Graph Difference versus Coellicient. Difference (256 nodes)
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