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Abstract

We compare vision and sonar techniques for the recovery of wall pose. A vision algorithm
is developed which is based on known target geometry, and a sonar technique based on a wedge
model is described.

1 Introduction

In any closed-loop control system, sensors are used to provide the feedback information that repre-
sents the current status of the system and the environmental uncertainties. Building a sensor system
for a certain application is a process that includes the analysis of the system requirements, a model
of the environment, the determination of system behavior under different conditions, and the selec-
tion of suitable sensors. The next step in building the sensor system is to assemble the hardware
components and to develop the necessary software modules for data fusion and interpretation. Fi-
nally, the system is tested and the performance is analyzed. Once the system is built, it is difficult to

monitor the different components of the system for the purpose of testing, debugging and analysis.
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Itis also hard to evaluate the system in terms of time complexity, space complexity, robustness, and
efficiency, since this requires quantitative measures for each of these measures.

In previous work (Dekhil & Henderson, 1996a), we have developed techniques to evaluate sys-
tems, and in this paper we use these techniques to compare two alternative methods to recover wall
pose. One computes wall pose from a single image using the known geometry of a visual target,

while the other uses two sonar readings (Henderson et al., 1996c¢).

2 Wall Pose Estimation

The following example illustrates the use of the proposed framework to model and analyze two al-
ternatives for determining flat wall position and orientation: one using vision and one using sonar
sensors (Dekhil & Henderson, 1996b; Henderson et al., 1996b; Henderson et al., 1996a; Henderson
et al., 1997). The camera and sonar sensors are mounted on a LABMATE mobile robot designed
by Transitions Research Corporation. The LABMATE was used for several experiments in the De-
partment of Computer Science at the University of Utah. It was also entered in the 1994 and 1996
AAAIRobot Competition (Schenkat et al., 1994) and it won sixth and third place, respectively. For
that purpose, the LABMATE was equipped with 24 sonar sensors, eight infrared sensors, a camera
and a speaker. ' Figure 1 shows the LABMATE with its equipment.

In this example, we consider two different logical sensors to determine wall pose and find the
corresponding errors and time complexity for each. The first Instrumented Logical Sensor System

(ILSS) uses a camera and known target size and location. The second ILSS deals with the sonar

!The LABMATE preparations, the sensory equipments, and the software and hardware controllers were done by L.

Schenkat and L. Veigel at the Department of Computer Science, University of Utah.



Figure 1: The LABMATE robot with its equipment.

sensor as a wedge sensor (i.e., it returns a wedge centered at the sonar sensor and spread by an angle
26.) Figure 2 shows the two logical sensors. (See (Henderson ez al., 1996a) for an overview of the
sonar pose recovery technique, and (Henderson & Dekhil, 1997) for target-based calibration.)

In this figure, image is the 128x128 gray scale image acquired by the Camera, and ry and r are
the two sonar readings generated from Sonarl and Sonar2, respectively. Target Points extracts
three reference points from the image, while Vision Line produces two points on the line of inter-
section of the wall with the x-z plane of the camera system. Wedge Sonar_Line takes the two
range values r; and ry, and the spread angle of the sonar beam 4, and returns two 2D points on the

line representing the wall.

2.1 System Modeling and Specification

The main ideas behind our visual target technique are shown in Figure 3. The basic idea can be
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Figure 2: Two Instrumented Logical Sensors for determining wall position.
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Figure 3: Visual Target Method

described by assuming the standard unit focal length camera model:

1 000
0100
0010

which implies that the coordinates on the image plane will be:
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We put a horizontal line at a known height, Y5, on the wall, with vertical lines crossing it at a known
distance apart, d3. Then we can determine the range of points on the horizontal line using the fact

that

where y is the y location of the line in the image plane.
Using the perspective relation, we recover the range to the projections, P/ and Pj, onto the  — 2-

plane of the two points marked /7, and P, in Figure 3, call those z; and z,, respectively. We then
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find the range to the projected point, P’, of the horizontal target line for the center column; call that
z. Next we consider the triangle A Py P, P; shown in Figure 4. The orientation of the wall is found

from the fact that

5in(a) _ 1 T %2 _ PPy
' ds d
and the range is then given by:
. s
p=FP, = :3271(5 — a) = zcos(a)

Finally, the line is represented by two points: (0, z) which is the intersection of the wall plane with
the camera’s z — azis and (cos(«), z + sin(«)), a point a unit distance along the wall on the line
of intersection of the camera’s « — z plane and the wall.

As shown in Figure 2, ILSS1 is composed of three modules, a Camera module, a Target Points
module and a Vision Line module. On the other hand, LSS2 has three modules, two Sonar modules
and a Wedge_Sonar_Line module followed by a C'ombine operator.

Each ILSS is defined in terms of a set of components that characterize the module. The data and
the corresponding performance measures start from the C'amera or Sonar module and propagate
upward until they reach the COV of the main ILSS. On the other hand, the commands start from
the main ILSS and propagate downward until they reach the C'amera or Sonar module. The COV

is composed of two parts: data and performance measures. For example, C'OV,,; for Sonarl is

({r1,0}.{t. A1 Ag})

where { is the time taken to execute the module and A,; and Ay are the error variances for r; and
f, respectively. In this example, each module has only one alternate subnet, therefore, the select

function is trivial.



2.2 Performance Semantic Equations

Using worst case analysis, the performance semantic equations of the time and error for ILSS1 and

ILSS2 can be written as:
time(ILSS1) = time(Serial(Camera, Target Points, VisionLine))

error(ILSS1) = error(Serial(Camera,Target Points, VistonLine))
time(ILSS2) = time(serial (combine(Sonarl, Sonar2), Wedge_sonar_line))

error(ILSS2) = error(serial(combine(Sonarl, Sonar2), Wedge_sonar_line))

Now, we need to calculate the time and error for the subcomponents. Assume that? .41, Lsonar2s
Leameras ETargetPointss WisionLine a0 Lyedge_sonar_tine are the time for the subcomponents, and A,
Ao, Ay Ay Ay, and Ay are the error measures for 1y, 7o, yi, Y., y- and 0, respectively. The time
for LSS1 and LSS2 can be easily calculated using the propagation operations discussed earlier as
follows:

thG(ILSSl) = tcamera. + tTa.rgetPoints + tViséo'n.L?ﬁne
tzme([LSSQ) = 7‘na$(tsonar17 tsonrm"z) + twedge_sonar_line

Propagating the error requires more elaborate analysis for each component. For ILSS1, we start
with the error in the physical sensor which is the camera in this case. The camera generates two-
dimensional arrays of intensity values, P(x,y), where P is an m x n matrix. The error we are
concerned abound in this example is the error in position (z, y) of a point on the CCD array (which
corresponds to rows and columns in the image.) This erroris affected by the resolution of the camera

and the distance between the CCD elements. Let’s assume that the error is Gaussian with mean 0



and variance (A, A, ) at any point (2, y). This can be written as:
error(Camera) = {(Ay, Ay )mxn }

This error translates directly into the second component, T'arget _Points, which extracts the y value
for three different points in the image; i, y., and y,. Assuming that the variance in the y direction

(A,) is the same at any pixel, the error at this stage will be:
error(Target _Points) = {A,, Ay, A, }

The last component in ILSS1, Viston_Line performs several operations on these three values
to generate the two points of the line representing the wall. First, the corresponding = value is cal-

culated for the three points using the equation:

.
0 :
zi = —, =1 c,r

Yi
where Yj is the height of the physical point and is a known constant in our example. The error

associated with z; can be calculated as follows:

(927' ’
/\Z- - —,—‘ ‘Al

By calculating the derivative in the above equation we get:

Y5\ %
A = ( yzu) Ay = ,"y%“Ay

which shows how A, depends on the value of ;. Second, the angle between the robot and the wall

(o) 1s calculated with the function:

a = sin™! (:1 _ Zr)
D(}
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where Dy is the known distance between the two physical points p; and p,. Therefore,

oo\’ da\’
Ao=—1] A, A,
(dz/) o + <02r> ”

2 2

1 ~1
e | A || AL

- () L (o)

After simplifying the last equation we get:

D2
/\(y — Y /\ > /X».
Ty )

Finally, we calculate two points on the line representing the wall as shown in Figure 5. Take
the first point p, at (0, z.) and the second point p; at one unit distance from p; along the wall which
gives the point (cos a, z. + sin «):

=0, ==z
Ty = COSQ, 29 =2.+sina
From these equations, the error for the two points will be:

A~T1 —_ 07 1/\/:1 = /\Zc

A, = sina Ay, A, =AM+ cos’a A,

Now, we can write the error of ILSS1 as:
error(ILSS1) = {A;, AL A, AL}

Notice that we can write the error in terms of A, Yy, Do, y1, v, and y,.. For example, let’s assume
that A, = Imm?*, Yy = 500mm, Dy = 300mm, and y; = y. =y, = 10mm (« is zero in this case),
then the error will be:

error(1LSS1) = {0,25mm?*,0,25mm’ }
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Now we analyze ILSS2 in a similar manner. At the first level, we have the physical sonar sensor
where the error can be determined either from the manufacturer specs, or from experimental data.
In this example we will use the error analysis done by Schenkat and Veigel (Schenkat ez al., 1994)
in which there is a Gaussian error with mean y and variance 2. From this analysis, the variance is
a function of the returned distance r. To simplify the problem let’s assume that the variance in both

sensors is A, = 4.0mm?. Therefore we can write the error in the sonars as:
error(Sonar) = {A,}

Inthe Wedge _Sonar_Line module, there are five possible cases for that line depending on the val-
ues of r; and r, (Henderson et al., 1996a). In any case, the two points on the line can be written
as:

Ty = Ty COS (v, Z1 =" sinal

Ty = Ty COS (g, 2y = 'y SIN (y
where the values of o1 and « are between —# to 6 (see Figure 6).

Considering the worst case error, we can set a; = ay = . Assuming that the error in 6 is zero,

then the error in the calculated points is:

8:1,’7' :
Az" — P - Lxp

827; ?
()

Ay, =cos®O A, A, = sin? 4 A,

which results in:

‘/\l‘> = COSZ 0 /\ry 1'\2_2 = Sinz 9 J"\r
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Finally, the error function for /L.552 is:
error(ILSS2) = { A, As L Ay, AL}

As an example, if A, = 4.0mm?, and § = 11° (approximately correct for the Polaroid sensor), we
get:

error(1LS52) = {3.85mm”, 0.15mm?, 3.85mm?, 0.15mm”}

This example illustrates the importance and usefulness of the ILSS library since all these analy-
ses can be performed once and put in the library for reuse and the user does not have to go through
these details again. For example, if a different sonar sensor is used, then the same error analysis
can be used by supplying the sensor’s error variance. In addition, given that the error range has
been determined, redundancy can be added using different sensor pairs to sense the same wall and

a monitor can be added to detect error discrepancies.

2.3 [Experimental Results

We do not have a very good model of our camera, and therefore actual experiments were required
to compare the pose error for the two proposed techniques. The two instrumented logical sensors
were used with the LABMATE to find the location of walls using real data. The goal of the experi-
ment was to use the framework to obtain measures to help choose between a vision based wall pose
technique and a sonar based wall pose estimator.

First, we calibrated the range of our visual target (a horizontal line at a known height, Y, with
vertical stripes regularly spaced 34.2mm apart) with its y-location in the image. This was done by
aligning the z-axis of the mobile robot camera to be normal to the wall; the mobile robot was then

backed away from the wall a known distance and the image row number of the horizontal target line
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Test No. || Measured p | Measured 6 || Sonar p | Sonar 8 || Vision p | Vision 0
1 919 21 915.6 -20.6 888 | -29.66
2 706 -27 715.4 -22.7 667 | -35.51
3 930 20 924.0 232 783 23.99
4 1,242 0] 1,226.3 4.6 1,128 10.27
5 764 32 778.5 46.1 593 43.62
6 1,164 -11 || 1,164.9 -13.7 1,084 | -13.33
7 1,283 6| 1,277.4 3.7 979 -6.53
8 1,319 -10 || 1,300.8 -9.8 1,084 | -13.33

Table 1: Pose Results from Measured Data, Sonar, and Vision Techniques.

recorded. Figure 7 shows the results of this step. (Note that we digitized a 128x128 image; greater
resolution would produce more accurate results.)

Once the target range calibration was done, the robot was placed in eight different poses with
respect to the wall and the visual target acquired. Each image was constrained to have at least two
vertical stripes and neither of them could be centered on the middle column of the image. The test
images are shown in Figure 8.

Sonar data was also taken at each pose. The actual pose of the mobile robot with respect to
the wall was independently measured by hand. Table 1 gives the hand measured, sonar and image
calculated results.

The error values of the sonar and vision results with respect to the handmeasured data are plotted
in Figures 9 and 10.

These results allow the user to decide whether to use one technique or the other given the global
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context. For example, our application was a tennis ball pickup competition in which we were using
vision to track tennis balls anyway, and we needed to locate a delivery location along the wall; if
we can get by with pose error of less than 0.3m range and 15° angle, then ILSS1 will suffice. If less
error were required, then a costly sonar system with hardware and software would need to be added
to the robot, or else the use of higher resolution imagery could be explored. However, decisions
made with respect to all these considerations would now be defensible and well documented. (For
another detailed example comparing two alternative sonar sensor techniques to obtain wall pose,
see (Henderson et al., 1997).)

Note that, to keep things simple, we did not consider the error in the sonar location and orien-

tation. However, these errors can be incorporated into the model in the same manner.

3 Conclusions

In this paper we presented a theoretical and empirical analysis of two wall pose estimation tech-

niques.
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Figure 5: The two points on the line representing the wall
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Figure 6: The general case for the points returned by the wedge _sonar _line.
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Figure 8: Visual Target Test Images
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