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Abstract

The physical layout of organs and neural structures in biological systems is important to their functioning, and is the result
of evolutionary selection forces. We believe this is true even at the individual neuron level, and should be accounted for in any
bio-based approach. In particular, when transmission delay is taken into account, the physical layout problem (PLP) of neural
centers and individual neurons has a great impact on any computation they perform. We demonstrate on a simple example
that: (1) performance can depend crucially on the physical layout of the computational nodes in a system, and (2) evolutionary

schemes can be used to find near-optimal solutions to PLP.
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1. Introduction

A large literature exists on the study of bio-
based computing systems, including neural networks
[4,5], artificial neurons [1,7], and analog computing
schemes[9]. The main issues generally concern the
model of the individual neurons, and the connectivity
structure of the neurons in a network. Rarely does
anyone take into consideration the issue of signal
transmission delay due to the physical layout and the
length of connections between nodes.

We believe that the physical layout of biological in-
formation processing systems is not random, but is the
product of an evolutionary bias which selects based
on performance. For example, it is most likely no ac-
cident that the visual field (which falls on the left of
the retinas) maps to the right side of the human brain.
It makes sense that there is a direct physical relation
between the location of processing in the body versus
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the 3D origin of the attention getting activity in the
world.

2. A simple test model

In order to explore this notion of optimal physical
layout, we have developed the following simple artifi-
cial amoeba (AA) shown in Fig. 1. The AA is square-
shaped and exists in the plane; its motion is restricted
to be along the x-axis. AA has sensors S; to S4 which
sense toxins in its environment. There are two propul-
sion units, P; on the left which can propel AA to the
right, and P> which can propel AA to the left.

AA also has four processing nodes, Nj to Ny, and
N; receives input from sensor S;. The node connec-
tivity in Fig. 1 aims to organize the computation of
a control value on each propulsion unit while allow-
ing a comparison of the toxin levels at the two ends
of AA (top and bottom are compared independently).
Moreover, two nodes are allocated in a top/bottom
disposition in order to add redundancy to the control
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Fig. 1. Artificial amoeba.

AA

Fig. 2. Environment (bath) for AA.

of the actuators. Each node N; has a location in the
square body of AA, and this location determines the
distances between sensors, nodes and actuators. The
time required for a signal to travel along an arc is pro-
portional to the length of the arc. Each arc can thus
be viewed as a queue of values which propagate along
the arc to the destination. ‘

This AA model allows us to pose the following
question concerning node layout: What physical place-
ment of the nodes N\ to Ny yields the best performing
AA?

Here we assume that the locations of the sensors
and propulsion units are fixed. This is done to reduce
the number of variables in the problem; moreover, al-
lowing them to migrate would confuse the results of
the processing node migration, but would not signifi-
cantly alter the nature of the evolutionary process. We

also need to give a more precise definition of perfor-
mance.

The life of the AA is its time history when placed in
a planar bath which includes one or more toxin sources
(see Fig. 2). The toxin follows a 1/r% law (i.e., the
concentration of toxin falls off inversely proportional
to r2). '

The performance of AA at the ith time step, P,
is just the sum of the sensor values (a toxin has a
negative value):

4
PO =%"5;.
j=1

The overall performance of AA is the sum of the per-
formances over all time steps:
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Node Layout for Toxin at (-100,0)
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Fig. 3. Node layout for environment 1 — Toxin at (—100, 0).

t
P(AA) = Z PO,
i=0

Thus, the best performance is one which produces
the greatest value for P; this corresponds to moving
quickly away from the toxin source.

Before giving our solution to the PLP for this AA,
we need to describe the internal computation of the
AA. Each node N; has its value initialized to zero, as
does each arc. The simulation proceeds with the sen-
sors relaying their values along the sensor-node arc. If
the transmission rate along the arc is v units per time
unit, then each arc is basically a fixed-length queue
with ¢ = d/v values on it, and these move along
the queue at one element per time unit. Each process-
ing node N; has two inputs, A and B, and outputs
max(—(A + B), 0). The propulsion unit sums its in-
puts and if the result is a positive value, then it causes
the AA to move that many units (if both propulsion
units are activated, the net result is the difference of
the two with resultant motion in the direction of the
stronger push).

In terms of this model, we are looking for the best
locations of nodes N to N4 so as to maximize the
value of P(AA). In order to determine the solution,
we have used a genetic algorithm. First, a population
of 200 random AAs are generated (i.e., 200 AAs with
the nodes located in randomly generated positions).
These are run independently for 200 time steps in a

particular bath, and a standard genetic algorithm is
used to produce the next generation (we use the GEN-
ESIS System [2,3,8] — in particular, see Grefenstette’s
manual for lots more references). The genetic string
comprises the 4-node locations encoded as 6 bits for
each coordinate:

biib1a - bi1abaiba---ba 12 -ba---ba2

where b; 1 to b; ¢ is the 6-bit x location and b;7 to
b; 12 is the 6-bit y location for N;. ;

The genetic algorithms were run with parameters to
achieve 20000 total trials, a population size of 200,
structure length of 48 bits, a crossover rate of 0.6 and
a mutation rate of 0.001.

2.1. Environment 1: negative source at (—100, 0)

First we consider the case when AA is placed in
a bath with a toxin source located at (—100, 0) and
with an intensity of —100000. Fig. 3 shows a typical
resulting physical layout for the nodes (node Nj lies
on the y-axis). A histogram of the x-location values
of the four nodes in the top performing AAs is given
in Fig. 4, while a histogram of the y-location values
is given in Fig. 5.

As can be seen from these graphs, when the toxin
source is located to the left of the AA, then the nodes
connected to the sensors on the left end up being
placed as far left as possible (toward the y-axis) and
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Histogram of Node X Locations
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Node Layout for Toxin at (160,0)
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Fig. 6. Environment 2: —100000 intensity toxin at (100,0).

between the sensor and the propulsion unit, while the
nodes on the right move as far away as possible from.
the sensor to which they are connected. A ready ex-
planation of this is that the resultant location of the
left sensor handling nodes minimizes the time to start-
ing a motion to the right (by firing the left propulsion
units), while at the same time maximizing the time to
the start of the right propulsion units (they cannot start
until the signal travels the distance from the sensor to
the processing node, and then back to the propulsion
unit).

2.2. Environment 2: negative source at (100,0)

When the toxin source is located at (100,0) and
with an intensity of —100000, a symmetric result is
obtained. A histogram of the x location values of the

four nodes in the top performing AAs is given in Fig.7, .

while a histogram of the y location values is given in
Fig. 8. Fig. 6 shows a typical resulting physical layout
for the nodes in this case.

As can be seen, the resulting locations of the pro-
cessing nodes mirror those of Environment 1.

2.3. Environment 3: negative sources at both
(—100,0) and (100,0)

The layout in this case has toxin sources of equal
intensity on both sides of the AA. The performance

scoring is done by running the AA with a left toxin
source and a right toxin source each trial, and summing
the two performances. The result in this case indicates
that each side optimizes to respond to its sensors. Fig.9
shows a typical resulting physical layout for the nodes
in this case. Fig. 10 shows the x location histogram,
while Fig. 11 shows the y location histogram for the
top performing layouts.

3. Discussion and conclusions

This preliminary work supports the claim that
physical layout plays a role in bio-based comput-
ing systems. We are currently looking into several
more complicated scenarios, including the following
Sensors.

Positive and negative sensors: It is important to
include positive reinforcement sensors, as well as
avoidance-like sensors. The interaction of sensors
responding positively, for example, to nutrients,
also plays an important role in biological sys-
tems, and the final layout of processing nodes of
both positive and negative feedback types requires
study.

Activity sensors: Another aspect that we would like
to explore is the use of cells within the organism which
monitor the activity of other nodes and arcs, that is,
activity sensors. These nodes monitor various sets of
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Fig. 7. Histogram of x-locations in top layouts.
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Node Layout for Toxin at (-100,0) and (100.0)
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Fig. 9. Environment 3: —100 000 intensity toxin at (—100, 0) and (100,0).
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Histogram of Node Y Locations
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Fig. 11. Histogram of y-locations in top layouts.

nodes and arcs and respond to activity in that set.
This permits the organism to respond directly to pro-
cessing activity related directly to the 3D world ori-
gin of the stimulation, and this can occur before that
stimulation has been completely analyzed. For exam-
ple, neurons responding to activity in the right visual
field might be monitored by such activity sensors and
cause the head or body to turn in that direction be-
fore the visual information has been completely deci-
phered.

More realistic environments: Real environments do
not present one simple negative or positive source to
which all generations of the organism respond. It is
essential to incorporate environments which have mul-
tiple sources, both positive and negative, as well as
time-dependent variables, etc.

Physical prototypes: While simulation studies are
of interest and provide insight into the nature of evo-
lutionary teleomorphology, we intend to build analog
mechanisms which have the capability of altering their
physical layout in response to environmental forces.
Thus, some form of physical layout learning should
be supported by these artificial organisms. We believe
that our work on artificial neurons provides one ap-
proach to this [6].
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