UPE: Utah Prototyping Environment
For Robot Manipulators

M. Dekhil, T. M. Sobh, T. C. Henderson and R. Mecklenburg
Department of Computer Science

University of Utah

Salt Lake City, Utah 84112.

Abstract. Developing an environment that enables optimal and flexible design of robot manip-
ulators using reconfigurable links, joints, actuators, and sensors is an essential step for efficient
robot design and prototyping. Such an environment should have the right “mix” of software and
hardware components for designing the physical parts and the controllers, and for the algorithmic
control of the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, ana-
log control and digital computer control). Specifying object-based communications and catalog
mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator
and sensor components is a necessary step in the prototyping activities.

In this paper, we propose a flexible prototyping environment for robot manipulators with the
required subsystems and interfaces between the different components of this environment. This
environment provides a close tie between the design parameters of the robot manipulator and
the design constraints imposed by the required tasks and desired behaviors of the robot and by
the different subsystems involved in the design process. The design and implementation of this
environment along with the implementation of some of the subsystems are presented, and some
examples that demonstrate the functionality of the environment are discussed. This work was -
supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a Univer-
sity of Utah Research Committee grant. All opinions, findings, conclusions or recommendations
expressed in this document are those of the author and do not necessa.nly reflect the views of the -
sponsoring agencies. . :

Key words: Robot Design, Prototyping, Concurrent Engiheering, Object-oriented Design

1. Introauctidn

Prototyping is an important activity in engineering. Prototype development is a
good test for checking the viability of a proposed system. Prototypes can also
help in determining system parameters, ranges, or in designing better systems.
The interaction between several modules (e.g., S/W, VLSI, CAD, CAM, Robotics,
and Control) illustrates an interdisciplinary prototyping environment that includes
radically different types of information, combined in a coordinated way.

Our particular focus is in designing and building a robot manipulator. Many
tasks are required, starting with specifying the performance requirements, deter-
mining the robot configuration and parameters that are most suitable for the
required tasks, ordering the parts and assembling the robot, developing the nec-
essary software and hardware components (controller, s1mulator, momtor), and
finally, testing the robot and measuring its performance.

Our goal is to build a framework for optimal and flexible design of robot manip-
ulators with software and hardware systems and modules which are independent

2 M. Dekhil et al.

of the design parameters and which can be used for different configurations and
varying parameters. This environment is composed of several subsystems. Some of
these subsystems are:

— Design.

— Simulation.

— Control.

— Monitoring.

— Hardware selection.

— CAD/CAM modeling.
— Part Ordering.

- Physical assembly and testing.

Each subsystem has its own structure, data representation, and reasoning strat-
egy. On the other hand, much of the information is shared among these subsystems.
To maintain the consistency of the whole system, an interface layer is proposed
to facilitate the communication between these subsystems, and set the protocols
that enable the interaction between the subsystems to take place. Figure 1 shows
a schematic view of the prototyping environment with its subsystems and the
interface. :

This environment incorporates a unique constraint compllatlon and manage-
ment scheme to ensure consistency of design changes across subsystems, and con-
stitutes a major contribution of this paper.

A prototype 3-link robot manipulator was built to help determine the required
sub-systems and interfaces to build the prototyping environment, and to provide
hands-on experience for the real problems and difficulties that we would like to
- address and solve using this environment. '

2. Background and Review

To integrate the work among different teams and sites working in such a large
project, there must be some kind of synchronization to facilitate the communica-
tion and cooperation between them. A concurrent engineering infrastructure that
encompasses multiple sites and subsystems, called Palo Alto Collaborative Testbed
(PACT), was proposed in [5]. The issues discussed in that work were:

— Cooperative development of interfaces, protocols, and architecture.

paper.tex; 17/06/1995; 2:04; no v.; p.3

Utah Prototyping Environment 3

Optimal
Design

Simulation : Hardware
Selection

CAD/CAM

Control 1 ' Modeling

Monitoring Ordering

Assembly
and

Testing

Fig. 1. Schematic view for the robot pfototyping environment.

— Sharing of knowledge among heterogeneous systems.k
— Computer-aided support for negotiation and decision-making.

An execution environment for heterogeneous systems called “InterBase” was
proposed in [3]. It integrates preexisting systems over a distributed, autonomous,
and heterogeneous environment via a tool-based interface. In this environment
each system is associated with a Remote System Interface (RSI) that enables
the transition from the local heterogeneity of each system to a uniform system-
level interface. Our proposed system differs from this in that it incorporates a -
set of robotic design parameters and a set of constraints on these parameters.
This provides a doma1n—spec1ﬁc knowledge that does not exist in the InterBase
system. :

Object orientation and its applications to integrate heterogeneous, autonomous,
and distributed systems are discussed in [22]. The argument in this work is that
object-oriented distributed computing is a natural step forward from the client-
server systems of today. An automated, flexible and intelligent manufacturing
based on object-oriented design and analysis techniques is discussed in [19], and a
system for design, process planning and inspection is presented. We have used the

same concept of object-oriented distributed design, but we have improved on this

in UPE by adding the domain-specific constraints compiler as an essential compo-
nent of the system which provides a convenient mean for provxdmg and modlfymg
the required design constraints. 0 ;

paper.tex; 17/06/1995; 2:04; no v.; p.4

4 M. Dekhil et al.,

Several important themes in concurrent software engineering are examined in
[9]. Some of these themes are:

Tools: Specific tools that support concurrent software engmeermg

Concepts: Tool-independent concepts are required to support concurrent soft-
ware engineering. :

Life cycle: Increase the concurrency of the various phases in the software life
cycle. :

Integration: Combining concepts and tools to form an mtegrated software engx—
neering task.

Sharing: Defining multiple levels of sharing is necessary.

A management system for the generation and control of documentation flow
throughout a whole manufacturing process is presented in [10]. The method of
quality assurance is used to develop this system that covers cooperative work
between different departments for documentation manipulation.

A computer-based architecture program called the Distributed and Integrated
Environment for Computer-Aided Engineering (Dice), which addresses the coor-
dination and communication problems in engineering, was developed at the MIT
Intelligent Engineering Systems Laboratory [25]. The Dice project addresses sever-
al research issues such as, frameworks, representation, organization, design meth-
ods, visualization techniques, interfaces, and communication protocols. This is very
similar to our project except for fact that UPE introduces a closer tie between the
design parameters and the design constraints. The design constraints in our system
are generated based on the required tasks and the desired behavior of the robot.
These constraints are supplied either by a human expert, or by an expert system
for optimal selection of robot parameters such as TOCARD [26]. Such systems
can be integrated into the environment to support this task. Another difference is
that in UPE there are two type of constraints; global constraints maintained by
the central interface, and specific constraints maintained by each individual sub-
system. This approach allows replacing any of the subsystems without modifying.
the global design constraints.

Some important topics in software engineering, such as the lifetime of a software
system, analysis and design, module interfaces and implementation, and system
testing and verification, can be found in [17]. Afso, a report about integrated tools
for product, and process design can be found in [27]. ,

In the environment we are proposing for the design and prototyping of robot
systems involving sensing and actuation, several subsystems communicate through
a central interface layer (CI), and each subsystem has a subsystem interface (SSI)
responsible for data transformation between the subsystem and the CI. The flexi- -
bility of this design arises from the following points:

paper.tex; 17/06/1995; 2:04; no v.; p.5

Utah Prototyping Environment 5

— Adding new subsystem can be achieved by writing an SSI for the new subsys-
tem, adding it to the list of the subsystems in the CI. There are no changes
required to the other SSIs.

— Removing a subsystem only requires removing its name from the subsystems
list in the CL

— Any changes in one of the subsystems require changing the corresponding SSI
to maintain correct data transformation to and from this subsystem.

3. Building a Three-link Robot

To explore the basis of building a flexible environment for robot manipulators,
A three-link robot manipulator, “URK” (Utah Robot Kit), was designed. This
enabled us determine the required subsystems and interfaces for such an environ-
ment. This prototype robot will be used as an educatlonal tool in control and
robotics classes. :

This robot prototype can be easily connected to any Workstatlon or PC through
the standard serial port with an RS232 cable. Also, a controller for this robot was
developed with an interface that enables the study of the manipulator’s behavior
for different design parameters and configurations. The manipulator was designed
in such a way that enables the change of any of its sensors or a,ctuators with
minimal effort.

Figure 2 shows the physical three-link robot, and Figure 3 shows an overall view
of the different interfaces and platforms that can control the robot. More details
about this design can be found in [7, 24].

4. The Prototyping Environment

The proposed environment consists of several subsystems each of which carry out
certain tasks to build the prototype robot. These subsystems share many param-
eters and information. To maintain the integrity and consistency of the whole
system, a central interface (CI) is proposed with the required rules and protocols
for passing information. This interface is the layer between the robot prototype
and the subsystems, and it also serves as a communication channel between the
different subsystems.

The difficulty of building such an mterface arises from the fact that it deals with
different systems, each with its own architecture, knowledge base, and reasoning
mechanisms. In order to make these systems cooperate to maintain the consistency
of the whole system, we have to understand the nature of the reasoning strategy
for each subsystem, and the best way of transforming the information to and from
each of them.

paper.tex; 17/06/1995; 2:04; no v.; p.6

6 , M. Dekhil et al.

Fig. 2. The physical three-link robot manipulator.

Digital Control

Analog Control

PID Controller
3-Link Robot

Fig. 3. Controiling the robot using different sd1emes.

In fhis environment the human role should be specified and a decision should be

taken about which systems can be fully automated and which should be interactive
with the user.

4.1. OVERALL DESIGN

The Utah Prototyping Environment (UPE) consists of a central interface (CI) and
subsystem interfaces (SSI). The tasks of the central interface are to:

paper.tex; 17/06/1995; 2:04; no v.; p.T7

Utah Prototyping Environment 7

— Maintain a global database of all the information needed for the design pro-
cess.

— Communicate with the subsystems to update any changes in the system. This
requires the central interface to know which subsystems need to know these
changes and send messages to these subsystems informing them of the required
changes.

— Receive messages and reports from the subsystems when any changes are
required, or when any action has been taken (e.g., update complete).

— Transfer data between the subsystems upon réques_t.
— Check constraints and apply some of the update rules.

— Maintain a design history coritaining the changes and actions that have been
taken during each design process with date and time stamps.

— Deliver reports to the user with the current status and any changes in the
system.

The subsystem interfaces are the interface layers between the CI and the sub-
systems. This makes the design more flexible and enables us to change any of the
subsystems without much change in the CI — only the corresponding SSI need to
be changed. The role of an SSI is:

— Report any changes to the CI.
— Receive messages from the CI with required updates.
— Perform the necessary updates in the actual files of the subsystem.

— Send acknowledgments or error messages to the CI.

The assumption is that there is a user at each subsystem (by a user here we
mean one or more skilled persons who understand this subsystem), and there is a
user operating the central interface as a general director and coordinator for the
design process. In other words, the CI is to assist in the coordination of the job
and to help communicate Wlth all subsystems. Figure 4 shows an overall v1ew of
the suggested design.

‘In the first phase of implementing UPE, the users have more work to do. The
CI and SSIs maintain the information routing between the subsystems by sending
messages to the corresponding user at each subsystem, then the action itself (e.g.,
update a file) is accomplished by the user. Later on, the system will be automated
to perform most of these actions itself and the user will simply be informed of the
actions taken.

paper.tex; 17/06/1995; 2:04; no v.; p.8

8 M. Dekhil et al.

Subsystem 1 Subsystem 2

Central Interface

«o] Global Database [
SSIG) Yo" , “ron] SSI@))
Subsystem 3) Subsystem 4

Fig. 4. Overall design of the prototyping environment.

4.2. COMMUNICATION PROTOCOLS

The main purpose of this environment is keep all the subsystems informed of
any changes in the design parameters. Therefore, passing information between the
subsystems is the most important part of this environment. To be able to control
the information flow, some protocols were developed to enable the communication
between these subsystems in an organized manner. In our design, all subsystems
communicate through the CI which is responsible for passmg the information to
the subsystems that need to know. :
There are two types of events that can occur in this system:

1. Change reported from one of the subsystems.
2. Request for data from one subsystem to another.

Figure 5 shows the protocol used for the first event represented by a finite state
machine (FSM). The states of this FSM are:

1. Steady state: Do nothmg

2. Change has been reported send lock message to all subsystems Apply rela—
tions and check constraints. If constraints are satisfied, go to state 3. If con- -
straints are not satisfied, report these to sender and go to steady state.

paper.tex; 17/06/1995; 2:04; no v.; p.9

Utah Prototyping Environment 9

Send Ack. to
subsystems

Teported
Constraints Ok

Constraints not

Negative Ack.

Fig. 5. Finite state machine representation for the change protocol.
3. Constraints are satisfied: Notify the subsystems with the changes and wait for
acknowledgments.

4. Acknowledgments received from all subsystems: Send the final acknowledg—
ment to the subsystems and go to steady state.

5. Acknowledgments not Ok: Send a chang&back” command to the subsystems
and go to steady state.

Figure 6 shows the protocol for the second event. The states in this FSM are:

1. Steady state: Do nothing.
2. Request for S2 received from S1. Send the request to S2.
3. Required data found at S2. Send data to S1 and go to steady state.

4. Required data not found at S2. Send report to S1 and go to steady state.

The suggested protocol can be described in algorithmic notation as follows:

do while true
if change reported then
lock messages
apply relations
check constraints

paper.tex; 17/06/1995; 2:04; no v.; p.10

10 M. Dekhil et al.

Send data
Data found
at SS2

Request from SS1 to SS2

Data not
found

to SS1

Fig. 6. Finite state machine representation for the data request protocol.

if constraint satisfied then
report changes to subsystems
wait for subsystems acknowledgment
if all acknowledgments ok
update database
report the new status
else , :
send a change-back message to subsystems
report failure to sender
else
report nonsatisfied constraints to sender
send final acknowledgment to subsystems
else if data-request reported then
send request to the appropriate subsystem
if data received then
~ send data to sender
else :
send negative acknowledgment to sender.

Figure 7 shows a possible scenario when applying this protocol. In this algorithm
we assume that all system constraints are located in the CI; however, any subsys-
tem may reject the proposed values by other subsystems due to some unmodeled
constraints. This can happen either because there are some “new” constraints that
are not reported to the CI, or because some constraints are too hard to be easily

represented in the constraint format in the CI.

paper.tex; 17/06/1995; 2:04; no v.; p.1i1

Utah Prototyping Environment

11

@

(©)

Report | Change

Central
Interface

C‘

(1) Change reported by subsystem S2

..

—

@

Central
Interface

(2) Send lock messag to the other subsystems

3

®

Check constraints

(3) Check constraints and apply relations

Central
Interface

\.

-
@

(

®)

(®

Acknowledgment

L (5) Receive acknowledgments from S1 and S3

J o

(6) Final acknowledgment to all subsystems

Fig. 7. Possible scenario for the communication between the subsystems.

paper.tex; 17/06/1995; 2:04; no v.; p.12

12 M. Dekhil et al.

4.3. DESIGN CYCLES AND INFINITE LOOPS

One problem that arises in UPE is that in some cases infinite design loops might
occur due to some conflict between the constraints in different subsystems. For
example, assume that the design system changed the link length to some value,
say from 3.0 to 2.0 inches, to satisfy some performance requirements. This would
alter the link mass as well, say from 1.5 to 1.0 Ibs. According to the mass change
the gear ratio has to change or the motor should be replaced, but if there is a
constraint on the sprocket radius such that it can be increased, and there is no
other motor with lower rpm, then the mass should be changed again to be 1.5 lbs,
which requires the length to be 3.0 inches again. If we let the system continue, the
design system will change the link length again and the loop will continue.

There are several solutions to this problem. One way is to make the user part of
this loop so that some of the performance requirements can be changed, or a solu-
tion can be selected even if it' does not meet some required criteria. This requires
the user to be a skilled person who has the knowledge and experience in the design
process, and also to have the authority to change and select solutions irrespective
of the original requirements. Another solution is to put some limitations on the
subsystem regarding its ability to change some of the design parameters. These
limitations should guarantee infinite loop prevention in the system. A third solu-
tion is to put all the constraints in the CI. This allows the CI to check the solution
and detect any violation to any of the constraints; then it may ask the user to
decide on another solution or to change some of the performance requirements
and run the design subsystem again. The last solution has the user in the loop
as well, but incorporating all the constraints in the CI reduces the interprocess
communication and speeds up the checking process. This last solution was chosen
in our design.

4.4. PROTOTYPING ENVIRONMENT DATABASE

A database for the system components and the design parameters is necessary to
enable the CI to check the constraints, to apply the update rules, to identify the
subsystems that should be informed when any change happens in the system, and
to maintain a design history and supply the required reports.

This database contains the following:

— Robot configuration.

= Design parameters.

Available platforms.
- Design constraints.
— Subsystems information.

— Update rules.

paper.tex; 17/06/1995; 2:04; no v.; p.-13

Utah Prototyping Environment : 13
— General information about the system.

Now the problem is to maintain this database. One solution is to use a database
management system (DBMS) and integrate it in the prototyping environment. This
requires writing an interface to transform the data from and to this DBMS, and
this interface might be quite complicated. The other solution is to write our own
DBMS. This sounds difficult, but we can make it very simple since the amount
of data we have is limited and does not need sophisticated mechanisms to handle
it. A relational database model is used in our design, and a user interface has
been implemented to maintain this database. For the current design, by making a
one-to-one correspondence between the classes and the files, reading and writing
a file can be accomplished by adding member functions to each class. In this case
there is no need for a special DBMS and all operations can be performed by simple
functions. ‘

4.5. DESIGN PARAMETERS

The design parameters are the most important data items in this environment.
The main purpose of this system is to keep track of these parameters and notify
the subsystems of any changes that occur to any of these parameters. For the
system to perform this task, it needs to know the following data:

Figure 8 shows a list of the design parameters along with the subsystem that
can change them and the subsystems that should be notified by a change in any
of these parameters. Notice that some of these parameters are changed by the CI,
and this change is accomplished using the update rules. In this figure note that one
of the design parameters can be removed from this figure, which is “display rate.”
The removal of this parameter is valid because only one subsystem needs to know
about this parameter and it is the same subsystem that can change it. However,
we will keep it for possible future extensions or additions of other subsystems that
might be mterested in this parameter. : -

— A complete hst of the design parameters.

— Which subsystems should be notified if a certain parameter is changed.

The optimal design subsystem is responsible for selecting most of the design
parameters shown in Figure 8. The role of this subsystem is to assist robot design-
ers in determining the optimal configuration and parameters given some task spec-
ifications and some of the parameters.

Designing an optimal manipulator is not yet well defined, and it depends on the
definition and criterion of optimality. There are several technlques and methodolo-
gies to formalize this optimization problem by creating some objective functions
that satisfy certain criteria, and solving these functions with the existence of some
constraints. Some of the criteria that can be used to form objective functions
are:

" paper.tex; 17/06/1995; 2:04; no v.; p.14

14 M. Dekhil et al.

Design Parameter | CI | Design | Control [Simulation| Monitor | HW-Select | CAD/CAM| Ordering | Assembly]
robot model @) ® @) O @) , @) 0]
link length 0] ® | O 0| O O O
link mass (-] @) @) ©) (@]
link density o] .k O O
link cross area O e O O
joint friction O ® @) @) @] @)
joint gear-ratio ® O ©)
update rate 0] ® | O O | O O

comm. rate O O| O O ®

motor rpm '®) ® @)
motor range O ® | O O | O O O
esorge | O | @ | O | O O] O o| o
PID parameters | O @ | O | O

display rate O e

plateform O @) e @)

O To be notified

@ Make change

Fig. 8. Subsystem notification table according to parameter changes.

— Manipulability.

— Total motor power consumption.
— Arm weight.

— Total weight of robot.

— Cost.

paper.tex; 17/06/1995; 2:04; no v.; p.15

Utah Prototyping Environment k 15
— Workspace.
— Joint displacement limit.
— Maximum joint velocity and acceleration.
- Deﬂgction.
— Natural frequency.

— Position accuracy.

To form the objective functions, we need to find quantitative measures for
the manipulator specification and the performance requirements. In some cases,
a closed form expression is not available. In such cases, the simulation programs
can be used to determine the required quantitative measure. For example, the
maximum velocity is a function of most of the parameters (link lengths, masses,
friction, motor parameters), but it is not easy to get a closed form expression
for the velocity as a function of all of these parameters; therefore, the simulation
program can be used to measure the maximum velocity for different values of these
parameters.

In addition to these quantitative measures, there are some rules and assump-
tions that can be used to solve for some of the parameters, and to give guidance
during the design cycle. Some of the assumptions we made to simplify the problem
are:

— The robot type and the degree’s of freedom are given.

— Only revolute and prismatic joints are considered.

— The links are uniform with recta,ngula,r or cylindrical cross section.
— There is a finite set of materials used to build the robot with known densities. -

— There is a finite number of actuators and sensors with known spec1ﬁcat10ns
that can be used in the design.

Some of the rules that can serve as additional constraints are:

— Select the solution with equal link lengths or masses because this will simplify
the manufacturing process (i.e., minimize the cost).

— Choose the feedback controls k,, k, that glve cntlcally damped beha,vxor (k

2/Fy)-

— Consider a minimum length for each link to satisfy some assembly and man-
ufacturing constraints, such as actuator and sensors sizes.

paper.tex; 17/06/1995; 2:04; no v.; p.16

16 M. Dekhil et al.

Considerable research efforts has been done in this area. For example, The sue
of kinematic criterion for the design evaluation of manipulators was investigated
in [4, 20, 21, 16]. Another criterion is to achieve optimal dynamic performance;
that is to select the link lengths and actuator sizes for minimum time motions
along specified trajectory [18, 23].

TOCARD (Total Computer-Aided Design System of Robot Manipulators) is a
system designed by Takano, Masaki, and Sasaki [26] to design both fundamental
structure (degrees of freedom, arm length, etc.), and inner structure (arm size,
motor allocation, motor power, etc).

Any of these techniques and systems can be mcorporated in UPE by writing
an SSI for that system and adding it as a new subsystem.

4.6. DATABASE DESIGN

A simple architecture for the database design is to make a one to one correspon-
dence between classes and files; i.e., each file represents a class in the object anal-
ysis. For example, the robot file represents the robot class and each of the robot
subclasses has a corresponding file. This design facilitates data transfer between
the files and the system (the memory). On the other hand, this strong coupling
between the database design and the system classes violates the database design
rule of trying to make the design independent of the application; however, if the
object analysis is done independently of the application intended, then this cou-
pling is not a problem.

Now, we need to determine the format to be used to represent the database
contents and the relations between the files in this database. Figure 9 shows the
suggested data files that constitute the database for the system, and the data
items in each file. The figure also shows the relations between the files. The single
arrow arcs represent a one-to-one relation, and the double arrow arcs represent a
one-to-many relation.

4.7. CONSTRAINTS AND UPDATE RULES COMPILER

A compiler is provided to generate C++ code for the constraints and the update
rules. First, the syntax of the language that is used to describe the constraints and
the update rules is described. Second, the generated code is determined.

Using a compiler instead of generic on-line evaluator for the constraints and the
update rules has the following advantages: '

— All constraints are saved in one text file (likewise the update rules). This makes
the data entry very easy. We can add, update, and delete any constraint or
update rule using any text editor.

- Comphca,ted data structures are not reqmred for evaluation.

— The database is very s1mple, which facilitates mamtammg the design hlstory

paper.tex; 17/06/1995; 2:04; no v.; p-17

Utah Prototyping Environment 17

general-info platforms
name | date| institution platform# |brand | model | max-rate
! , I
sub-systems design-parameters 5
SS# | name |date I— param#| name{ internalname | status :
] SS-pMs Teports :'
-+ SS#| param#| status rep# | date|type |from |file name| |
T : i
| messages P history E
E msg# | date |from |type | lock ver# |startdate |end date | platform# }--'
E msg-to o o L_i update-rules
i |msg#| to | ack |rep# - ver #| file name| date | rules-num
~ § robot ' constraints

— ver#| name |date |modelnum| |ver#]| file name| date | constraint-num

links joints
ver # | link#| length| area | density ver #| joint#| friction| type| gear-ratio
motors 2 $ensors

~tver #| brand | type| rpm |range | parameters| |ver #|brand | type |range| scale

control ! results

== ver # | update rate Kprop| Kderiv| Kint | Kfwd ver #| date |type| file name

— One to one
——s= 0One to many
--=>'cross reference

Fig. 9. Database design for the system.

paper.tex; 17/06/1995; 2:04; no v.; p.18

18 M. Dekhil et al.

— Format changes, or changes in the‘generated code require only changes to the
compiler, and no changes in the system are required.

On the other hand, it has the following disadvantages:

— The generated code has to be included in the system and the whole system
must be recompiled.

— A compiler needs to be implemented.

Notice that the changes in the constraints or the update rules are not frequent;,
so recompiling the system is not a big problem. Also, the syntax used is very
simple; therefore the compiler for this language is not difficult to implement.

4.8. LANGUAGE SYNTAX

By analyzing the design constraints and the update rules, we constructed a simple
description of the language to be input to the compiler. There are two options in
this design, either to have one compiler for both the constraints and the rules, or
to build two compilers, one for each. From the analysis of the constraints and the
rules we found that there are many similarities between them; thus building one
compiler for both is the logical option in this case.

The following is the language definition in Ba.ckus Naur Form (BNF):

<program> :: <constraint-prog> | <rule-prog>
<constraint-prog> :: begin-constraints
<constraint-sequence>
end-constraints

<rule-prog> :: begin-rules.
<rule-sequence>
end-rules
<constraint-sequence> :: <constraint> ; <constraint-sequence> |
‘ <constraint> ; ‘ '
<rule-sequence> :: <rule> ; <rule-sequence> | <rule> ;
<constraint> :: <exp> <comparison-op> <exp>. .
<rule> :: <variable> = <exp>)
<exp> :: <exp> * <term> | <exp> / <term> | <term> ,
<term> :: <term> + <factor> | <term> - <factor> |
o <factor>
<factor> :: <variable> .| <constant> | (<exp>)
<variable> :: <alphabet> <alphanum> | <alphabet>
<constant> :: <int>.<int> | - <int>.<int> |
, <int> | - <int> '
<int> :: <digit> <int> | <digit>
<alphanum> :: <alphabet> <alphanum> |

<digit> <alphanum> |
<alphabet> | <digit>
<alphabet> :: a..z | A..Z | _

paper.tex; 17/06/1995; 2:04;>no v.; p.-19

Utah Prototyping Environment : 19

<digit> :: 0..9 ,
<comparison-op> :: = <] >l <=1]>]<

The following is an example of some constraints described using this syntax:

begin-constraints
linki_length > 1.2 ;
link2_length > 1.5 ;
link3_length > 0.8 ;
‘link2_length + 1link3_length < MAX_TOT_LEN ;
linkil_mass < 1.4 ; o)
link2_mass + link3_mass < 4.0 ;
jointl_gear_ratio < 5.0 ;
end-constraints

Another example shows some update rules using the same syntax:

begin-rules
linkil_mass = linkl_length * linkl_density * linkl_cross_area ;
1ink2_mass link2_length * link2 density * link2_cross_area ;
link3_mass link3_length * link3_density * 1link3_cross_area ;
jointl_gear_ratio = motoril_speed / linkl_max_speed ;

end-rules

nouu

From these examples it is clear that adding arrays to this language can reduce
the length of the programs, but given the fact that these constraints and rules
will be entered once at installation time, then adding or changing these rules and
constraints will not be so frequent; thus, we will not complicate the compiler,
at least in the first design phase. Some error detection and recovery modules for
syntax error handling can be added to this compiler later.

4.9. THE GENERATED CODE

As mentioned before, this compiler generates C++ code which is integrated with
the CI system to check the constraint or apply the update rule. Each variable
in the input to the compiler corresponds to one design parameter. For example,
“link1_length” corresponds to the variable in the CI system that represents the
length of link number one in the robot configuration. The code generator uses a
lookup table to find the corresponding variable name, and this table is part of the
CI database. A simple flat file is used to store this table since the number of the
design parameters is small.

The generated code for the constraints is the function “pe.check_constraints”
that returns true if all constraints are satisfied, else it returns false, and reports

paper.tex; 17/06/1995; 2:04; no v.; p.20

20 M. Dekhil et al.

which constraints are not satisfied. For the rules, the code generated is the function
“pe.apply_rules” which calculates all corresponding design variables according to
the given rules. The following examples are the code generated for the two examples
shown in the previous section.

bool

ci::check_constraints()

{
bool status[no_of_constraints] ;
int 1 = 0 ;

robot.configuration.link[0].length > 1.2 ;
robot.configuration.link[1].length > 1.5 ;
robot.configuration.link[2].length > 0.8 ;

status [i++]
status [i++]
status [i++]

status[i++] = robot.configuration.link[1].length +
robot.configuration.link[2].length < 3.0 ;
status[i++] = robot.configuration.link[0].mass < 1.4 ;

status[i++] = robot.configuration.link[1].mass +
robot.configuration.link[2].mass < 4.0 ;

robot.configuration. joint[1].gear_ratio < 5.0 ;

status[i]
constraints.generate_report(status) ; // report the result

return (and_all(status)) ;

void
ci::apply_rules()
{

robot.configuration.link[0].mass =
robot.configuration.link[0].length *
robot.configuration.link[0].cross_area *
robot.configuration.link[0].density ;
robot.configuration.link[1].mass =
robot.configuration.link[1].length *
robot.configuration.link[1].cross_area *
robot.configuration.link[1] .density ;
robot.configuration.link[2].mass =
robot.configuration.link[2].length *
robot.configuration.link[2].cross_area *
robot.configuration.link[2] .density ;
robot.configuration. joint[0].gear_ratio =
robot.motor[0].speed /
robot.configuration. joint [0].max_speed ;

In the first example, the function generate_report reports the results of checking
the constraints; if all constraints are satisfied it reports that, otherwise, it will

paper.tex; 17/06/1995; 2:04; no v.; p.21

Utah Prototyping Environment 21

generate a list of the unsatisfied constraints. The function and_all returns the
result of ANDing the elements in the array status.

In the second example, some of the design parameters are calculated given the
values of some other parameters. The compiler should not allow the change of any
parameter that should not be changed by the CI system. This can be detected
using the alter_flag in the design parameters table.

To update the constraints or the update rules the file containing the old def-
inition will be displayed and the user can add, delete, or update any of the old
definitions. Then the new file will be compiled and integrated with the system.

5. Implementation

We have implemented this framework in order to prototype robotic systems. The
subsystems include a CAD design system (Alpha_1 [11]), a robotic part-ordering
system, a robot simulation package [6], and a robot control and monitoring sys-
tem [8]. Figure 10 shows the graphical user interface used to control and monitor
the three-link robot manipulator which was built as part of this project.

In the following subsections some implementation issues are investigated, and
the different components in our design and how we implemented each of them are .
described.

5.1. THE CENTRAL INTERFACE

The central-interface (CI) is the core program that handles the communication
between the subsystems, and maintains a global database for the current design
and a history of previous designs. There are several types of messages used in
the communication. Table I shows the different types of messages with a brief
description and the direction of each.

The CI is the implementation of the communlcatlon protocols described in
Section 4.2, with some enhancements. For example, when the CI receives a change
message from an SSI, it directly sends lock messages to the other subsystems so
that no more changes can be sent from any SSI until they receive a steady message. -
This solves the concurrency problem of more than one system sending changes to
the CI at the same time. The first message received by the CI will be handled and
the others will be ignored. If an SSI receives a lock message after it sent a change
message, that means its message was ignored. Another feature added to the CI

is the ability to detect if an SSI is worklng or not by tracing the SSI_.S’tart and e

SSI_Stop messages.

The CI is managing a number of data files that contam mformatlon about
the robot configuration, platforms, reports, design history, subsystems, and some
general information about the project. The basic file operation was implemented

paper.tex; 17/06/1995; 2:04; no v.; p.22

22 M. Dekhil et al.

Link-] Link-2 Link-3

g g
]
g

Esbkdlionses

Animation Control

X Shading

O View Point & Light Source
® Light Sowce

O Zoom

O Par

R Prop lm;lmma Gatn Prop lmgwilollﬂml‘\: Gain Prop. IntegralDerivat:

-3
L
M
5
8
4
-

PP NWEAD N B WS

=
8
orNwrABDw® oS

OHNWERD~N®®
O M MNWNEON®

erNmNAGD N O ®
o rNWEND D@
ohNwABD DB S
e NMNANON®D@ S

1
QN W
-l
oo

Fig. 10. The Interface Window for the PID Controller Simulator.

by defining a file class, and by adding some member functions to each class in the -
system that performs the required file management operations.

5.2. THE PE CoNTROL SYSTEM

The CI as described above has no user interface. To be able to control and manage
the coordination between the subsystems, the PE control system (PECS) was
implemented with some functionalities that enable the user to have some control
over the CI. ‘

The PECS is on top of the simple DBMS and a simple compiler for the update
rules and the constraints. The user specifies the constraints and/or the update
rules using a certain format (a language), then the compiler transforms this to
C code that will be integrated with the system for constraint checking, and for
applying the update rules. The compiler consists of two parts, a parser and a
code generator. In the first phase the complexity of the compiler was reduced by
making the user language less sophisticated. Later on this can be easily replaced
by a more complicated compiler with an easier interface and more sophisticated
error checking and optimization capabilities. Figure 11 shows the user interface for
the PECS.

paper.tex; 17/06/1995; 2:04; no v.; p.23

Utah Prototyping Environment

TABLE I
Message types used in the communication protocols.

Type Description Direction
Change Data change reported SSI — CI
Const_Not_Ok | Constraints not satisfied CI — SSI
Notify Send changes to subsystems CI — SSI
Ack. Positive acknowledgment SSI —» CI
Neg-Ack. Negative acknowledgment SSI — CI
Back Change back CI — SSI
Steady Final acknowledgment CI — SSI
Request Request for data CI +— SSI
Found Data found CI +— SSI
Not_Found Data not found CI +— SSI
Lock lock messages CI — SSI
SSI_Start SSI is activated SSI — CI
SSI_Stop SSI is terminated SSI — CI
Terminate Terminate the CI. UPE control — CI

Queries

Information

Configuration

Sub-systens

11811

g

- T
gl o

Platforns

Robot Prototyping Environment

Actions

o trains
Upd, Rules

Compile

Reports

Read

List

5

«.. Mle - waiting for action ...

Fig. 11. The main window for the PE control system.

23

paper.tex; 17/06/1995; 2:04; no v.; p.24

24

M. Dekhil et al.

Robot Configuration
[Version# 31 Date 11611994 Platform SUN-SPARCStation-10-¢1 ~ Update Rate 40]
- ! 3
Links Joints
Length 29 54 41 Friction 249 a1 1.38
Mess 609 7932 44455 Gear Ratio s ¢ 2
Density 175 L75 175
Motors
Brand NTX-303 NTX-304 NTX-30¢
Sensors
Brand SENS-28 SENS-28 SENs-28 Type ne be nC
Type Position Position Position Speed 500 600 600
Range -5,5 -5,5 -5,5 Range -20,20 -10,10 -10,10
EXIT
Fig. 12. The current robot configuration window.

The PECS functions include:

Queries: these are simple reports about the current robot configuration, previous
configuration, general information about the system, the platforms, and the
subsystems of the prototyping environment. Figure 12 shows a query for the
current robot configuration.

Actions: these are the actual operations that control the CI. These actions include
updating the constraints and the update rules, compiling the CI after including
the new constraints and update rules, activating, and terminating the CI.

Reports: these are operations to manage the reports in the system, and to send
and receive reports to and from the subsystems. The report can be text, graph,
figure, postscript, or data file. Each report is saved with its type, date, sender,
and the file that contains the report contents.

5.3. INITIAL IMPLEMENTATION OF THE SSIs

In the first phase of implementation, the SSIs serve as a simple interface layer
between the CI and the user at each subsystem. They receive messages from the
CI and display them to the user who takes any necessary actions. They also report
any changes to the CI, and this is done by sending a message to the CI with the
changes. Figure 13 shows the user interface for one of the SSIs.

paper.tex; 17/06/1995; 2:04; no v.; p.25

Utah Prototyping Environment 25

Optimal Design Subsystem Interface

Requests Changes . Reports
e
Send Changes Request Send
[S
Accept Data Found - Read
fmI—TY ey
Reject Not Found QuIT
... Idle .. Walting forevent ...

Fig. 13. The user interface for the SSI.

In the next implementation phase, some of the actions will be automated and
the user at each subsystem will be notified with any action taken. For example,
 updating a data file that is used by the subsystem can be automatically done by
the SSI, given that it has the necessary information about the file format and the
location of the changed data.

5.4. THE CENTRAL INTERFACE MONITOR

The central interface monitor (CIM) enables the user to monitor the actions and -
the messages passing between the CI and the SSIs with a graphical interface. This
interface shows the CI in the middle and the SSIs as small boxes surrounding the
CI. The CIM also has a small text window at near the bottom. This text window
describes the current action (see Figure 14). The messages are represented by an
arrow from the sender to the receiver. Some results of testing the CI and the SSIs
are presented in Section 6 with sequences of the CIM window showmg the activities
that took place in each experiment.

- 6. Results

In this section, we will show several test cases for the prototyping environment. In
the first test (Figure 15), the optimal design subsystem sent a data-change message

paper.tex; 17/06/1995; 2:04; no v.; p.26

26 M. Dekhil et al.

Central VInterface Monitor

Opebmal-Design

HW-Selecion Controler

Pore—(ndering Adoaitar

CAD/CAM

oo Ide = walting for ection ...

(D4

Fig. 14. The graphical interface for the monitor system.

to the CI. The Cl in turn sent lock messages to all other subsystems notifying them
that no changes will be accepted until they receive a final acknowledgment message.
Then, the CI applied the relations and checked the design constraints. In this test
case the constraints were satisfied, so the CI sent these changes to the subsystems
that needed to be notified. After that, the CI waited for acknowledgments from the
subsystems. In this case it received positive acknowledgments from the specified
subsystems. Finally, the CI updated the database and sent final acknowledgment
messages to all subsystems.

The second test case (Figure 16), was the same as the ﬁrst case except that one
of the subsystems (the CAD/CAM subsystem) rejected the changes by sending
a negative acknowledgment message to the CI. Thus, the CI sent a change-back
message to the specified subsystems and then sent a final acknowledgment message
to all subsystems. No changes in the database took place in this case.

In the last test case (Figure 17), the design constraints were not satisfied. There-
fore, the CI sent a report about the nonsatisfied constraints to the sender (the
optimal design subsystem) Then it sent final acknowledgment messages to all
subsystems. Again, in this case, no changes in the database took place.

paper.tex; 17/06/1995; 2:04; no v.; p.27

Utah Prototyping Environment

27

(¢Y]

Central Interface Monitor @

Hardware Selection

|
§

E
I

Central
Interface

Controller

Central Interface Monitor

Simulation

Monitor

p—

Change reported from Optimal Design subsystem

S
—

Send lock message to the other subsystems

emascnciet

[€)

«

U

Central Interface Monitor [O)

Hardware Selection

Pant-Ordering

E
i

Interface

Controller

Central Interface Monitor

M Part-Ordering.

I
H l I

PU—

Apply relation and check constraints.

J

)
~)

Constraints satisfied ... send changes to subsystems.

SR

®

Central Interface Monitor ' [6)

Hardware Selection

g
H

Design

Coutrolier Hardware Selection
Ceatnal
- Assembl

Central Interface Monitor

Asscmbly

Part-Ordering

oR
0

Interface

CAD/CAM

- Simulation

i

d Tnterfwe
Hener o

—

Receive positive acknowledgments from subsystems.

J
S

P

Update database and send final acknowledgment.

e

Fig. 15.

CI test case one, success case for data change.

paper.tex; 17/06/1995; 2:04; no v.; p.28

28 M. Dekhil et al.

o Central Interface Monitor @ Central Interface Monitor

Ceatrel
Asscmbly Interface Simalation
:M .

CAD/CAM
[Change reported from Optimal Design subsystem] [Send lock mlldét to the other subsystems]
® Central Interface Monitor | @ Central Tnterface Monitor
=

; . Convoe

e
i L]

Centrsl Ceatral
Assembly - 1' Simulation | F— Simalati
CAD/CAM
[Apply relation, check constraints, and send changes.] [Recsive negative acknowledgment from CAD/CAM subsystem.]
© Central Interface Monitor ® Central Interface Monitor

s e
CAD/CAM c . I CAD/CAM I

[Sand change-back message to subsystems. J [Send final acknowlsdgmant to all

| |
[]
J

Fig. 16. CI test case two, negative acknowledgment case.

paper.tex; 17/06/1995; 2:04; no v.; p.29

Utah Prototyping Environment 29

[6)) * Central Interface Monitor

N

)

<. Idle - waiting for action ...

| S—

@

Central Interface Monitor

PR

Change reported from Optimal Design subsystem

e

[[6) Central Interface Monitor -

Send lock

P

the other sub]

“

Central Interface Monitor

i

] Design

Hardware Selection

e

Applyrelation and chwkomglrdm.

SRR

® Central Interface Monitor

——

Constraints not satisfied ...

send report to sender.]

©

Central Interface Monitor

Herdware Selection

Send final acknowledgment to subsystems. j

Fig. 17. CI test case three, nonsatisfied constraints case.

- paper.tex; 17/06/1995; 2:04; no v.; p.30

30 M. Dekhil et al.

7. Conclusions and Future Work

The design basis for building a prototyping environment for robot manipulators
was investigated and the design options were explained. An initial implementation
of a central interface and some of the subsystem interfaces was done to demon-
strate the functionality of the proposed environment. This framework facilitates
and speeds the design process of robots.

The following are some possible extensions and enhancements to the current
design.

— Complete implementation for the central interface with more functionality
and a user friendly interface.

— Use a database query language to enable generating more sophlstlcated queries
and to enhance the report generating capabilities.

— Implement some of the subsystems with their SSIs and increase the automa-
tion in these interfaces. ‘

— Extend this environment to deal with generic n-link robots by using automatic
generation of the kinematics and dynamics equations. Also this will require a
robot description language to specify the robot configuration and parameters.

We have done a lot of work on robot behavior specification and analysis [1, 6, 12,
14, 13, 2]. One opportunity to tremendously increase the scope of the prototyping
system we would like to explore is the use of a behavior analysis subsystem as
part of the design feedback in order to constrain the system. Thus, a complete
system can be tested in a simulated environment and the results used to modify
the design.

Another area of interest is the use of information from the manufacturing side of
the prototyping endeavor. Oftentimes changes are made to expedite the production
of the system (e.g., mechanical parts are modified to make machining easier).
We have done a good bit of work on reverse engineering of mechanical parts[15],
and believe that is will be useful to feedback to UPE details concerning such -
changes. Their impact can be determined by propagating the results to all the
other subsystems

References

1. Brapakis, M., HENDERSON, T. C.; AND ZACHARY, J. Reactive behavior design tools.
In IEEE International Symposium Intelligent Control (Glasgow, Scotland, 1992), Phantom
House.

2. Brapakis, M., HENDERSON, T. C., AND ZACHARY, J. Reactive behavior design tools. In
International Symposium on Intelligent Control (Glasgow, Scotland, 1992), pp. 173-183.

3. BukHRES, O. A., CHEN, J., Du, W., AND ELMAGARMIDD, A. K. Interbase: An execution
environment for heterogeneous software systems. IEEE Computer Magazine (Aug. 1993),
pp. 57-69.

paper.tex; 17/06/1995; 2:04; no v.; p.31

10.
11.
12.

13.

14.
15.
16.
17.
18.

19.

20.

21.
22.
23.
24.
25.
26.

27,

- Utah Prototyping Environment 31
CHiu, S. L. Kinematic characterization of manipulators: An approach to defining optimality.

In IEEE Int. Conf. Robotics and Automation (1988), pp. 828-833.

Cutkosky, M. R., ENGELMORE, R. S., Fikes, R. E., GENESERETH, M. R., GRUBER,

T. R., Mark, W. S., TENENBAUM, J. M., AND WEBER, J. C. PACT: An experiment

in mtegratmg concu.trent engineering systems IEEFE Computer Magazine (Jan. 1993), pp.

28-37.

DavroN, P. J. Z-infinity: A framework for reactive autonomous agent specification and

analysis. Master’s thesis, University of Utah, Salt Lake City, Utah, 1994.

DexkHIL, M., SoBH, T. M., AND HENDERSON, T. C. URK: Utah Robot Kit - a 3-link robot

manipulator prototype. In IEEE Int. Conf. Robotics and Automation (May 1994).

Dexknm, M., SoBH, T. M., HENDERSON, T. C., AND MECKLENBURG, R. Robotic proto-

typing environment (progress report). Tech. Rep. UUCS-94-004, University of Utah, Feb.

1994.

DewaN, P., AND RIEDL, J. Toward computer-supported concurrent software engineering.

IEEE Computer Magazme (Jan. 1993), pp. 17-27.

DunOVNIK, J., TAVCAR, J., AND KOPOREC, J. Project manager with quality assurance.
Computer-Aided Design 25, 5 (May 1993), pp. 311-319.

ENGINEERING GEOMETRY SYSTEMS. Alpha_1 Programmer’s Manual, 1992.

GRUPEN, R., AND HENDERSON, T. C. Autochthonous behaviors: Mapping perception to

action. In NATO ASI on Traditional and Non-Traditional Robotic Sensors (Heidelberg,

West Germany, 1990), T. C. Henderson, Ed., Springer-Verlag, pp. 285-312.

HeNDERSON, T. C., DALTON, P., AND ZACHARY, J. A research program for autonomous

agent behavior specification and analysis. In IEEE International Symposium on Intelligent
Control (Washington, D.C, 1991).

HeNDERSON, T. C., AND GRUPEN R. Logical behaviors. Journal of Robotic Systems 7, 3

(1990), 309-336.

HenDERSON, T. C., AND THOMPsON, W. B. Image understandmg research at the university

of utah. In ARPA 1 994 IU Workshop (Monterey, CA, 1994).

HoLLERBACH, J. Optimum kinematic design for a seven degree of freedom manipulator.

In Robotics Research 2nd Int. Symp. (1985), H. Hanafusa and H. Inous, Eds., MIT Press,

pp. 215-222.

Lams, D. A. Software Engmeermg Planning for Change. Prentice Hall, 1988.

Ma, O AND ANGELES, J. Optimum design of manipulators under dyna.mlc isotropy con-

ditions. In IEEE Int. C’onf. Robotics and Automation (1993), pp. 470-475.

MAREFAT, M., MALHORTA, S., AND KAsHYAP, R. L. Object-oriented intelligent computer-

integrated design, process planning, and inspection. JEEE Computer Magazine (Mar. 1993),

pp. 54-65.

Mavyoraga, R. V., REssa, B., AND Wong, A. K. C. A kinematic criterion for the design

optimization of robot mampulators In IEEE Int. Conf Robotics and Automation (1991),
pp. 578-583.

Mavoraa, R. V., REssa, B., AND WONG, A. K. C. A kinematic design optimization of

robot ma.m'pulat.ors. In IEEE Int. Conf. Robotics and Automation (1992), pp. 396-401.

Nicor, J. R., WILkEs, C. T., AND MaNoLA, F. A. Object orientation in heterogeneous

distributed computing systems. IJEEE Computer Magazine (June 1993), pp. 57-67.
SHILLER, Z., AND SUNDAR, S. Design of robot manipulators for optimal dynamic perfor-

mance. In IEEE Int. Conf. Robotics and Automation (1991), pp. 344-349.

SoeH, T. M., DEkHIL, M., AND HENDERSON, T. C. Prototyping a robot mampulator and

controller Tech Rep. UUCS—93~013 Univ. of Utah, June 1993. : L
SrIRAM, D., AND LoGCHER, R. The MIT dice prOJect IEEE Computer Magazme (Ja.n
1993), pp. 64-71. \

TAkANO, M., MASAKI, H., AND Sasaki, K. Concept of total compute -alded design system -

of robot manipulators In Robotics Research: 3rd Int. Symp. (1986), Pp. 289-296.

WL, P. Information technology and manufacturing. CSTB/NRC Prehmma.ry Report 1,

Natlonal Academy Press, Nov. 1993.

paper.tex; 17/06/1995; 2:04; no v.; p.32

