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Abstract

We develop theoretical and practical techniques to recover
the pose of planar surfaces with minimal sensor readings
and motion. A proof is given that two sonar readings suf-
fice to precisely locate a single planar surface that returns
the sonar’s signal. An implementation is described that takes
into account the physical restrictions on actual Polaroid sen-
sors and experiments are described based on actual Polaroid
Sensor data.

1 Introduction

Many authors have written about the use of sonar sensors for
mapping indoor environments [2, 3, 4, 10]. Others have ad-
dressed special sensor configurations to disambiguate walls
from corners and edges [1, 7, 11], or have shown the min-
imum number and arrangement of sonar sensors to detect
obstacles[8, 9]. However, no one has addressed the optimal
pose recovery of planar surfaces in sonar data. In this pa-
per, we address the simplest version of the k-wall/m-sonar
(EWmS) problem:

Problem: Given m sonar transmitter/receiver
sensors situated on a circular ring placed in a k wall
enclosure, what is the optimal sensing strategy to
determine the pose of the k walls?

The sonar sensor is assumed to have a non-zero beam spread
(e.g., 22.5 degrees for a Polaroid sensor), and optimal is de-
fined in terms of the recovery of the wall’s pose with the min-
imum number of sensors used and moves made.

We consider the 1W1S problem in the plane (of the sonar
ring) here and show that two independent sonar readin gs suf-
fice to determine the pose of any wall that returns the sonar
signals. (Walls show up as lines in this analysis.) This ap-
proach works better in practice than other methods currently
in use.

The 1W1S Problem
Suppose we are given a single sonar located at s on a cir-
cular platform of radius a as shown in Figure 1, and that it
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Figure 2: Qualitative Line Sets

indicates a return at range r. The sensor is assumed to have
a beam spread 20, and to reflect back a signal incident to a
surface at any angle (the fact that there is in practice a mini-
mum incident angle that gives a reflection will be accounted
for later). Furthermore, assume that there is only one wall in
the vicinity of the sonar and it reflects a signal (i.e., it inter-
sects the sonar wedge).

Then Figure 2 shows the three qualitatively different sets
of possible lines that could have produced a range reading of
r. The qualitative line sets are:

1. S1: The set of lines found by rotating /o about E into!;.

2. S§2: The set of lines found by sliding the tangent line
along the circular arc EF from; to ;.

3. 53: The set of lines found by rotating l; about F into

We will show that the line which caused the range return
value of r can be disambiguated by taking one more sonar




Figure 4: Set 2 Distances

reading after rotating the sonar sensor about the origin by an
amount less than ZAEC (call that angle ) to the new posi-
tion B. The sonar range distances from B to the lines in sets
S1, 52, and S3 are monotonically decreasing, which permits
a simple determination of the line that produced r.

Now, consider a clockwise rotation of angle 6 of the sonar
located at A rotated about O from A to B where 0 < 0 <
(see Figure 3). Any ray in the second sonar scan to the right of
l; willintersect all lines in S1 at a greater distance than /; will.
In addition, the distance along /; monotonically decreases to
aline ! as it starts at line /o and is rotated about E to line I;.
To see this, drop a perpendicular from E to segment HG of
beight h = d x sin(f) (whered =| EH |,and B is LEHG).
It is clear that as segment EG rotates clockwise around E,
segment H I goes monotonically to length zero, where point
I is the intersection of lines /; and . (Note that the perpen-
dicular to [, through F is past {;.) This follows from the fact
thatif b =| HT |, then the area of triangle A E H I monoton-
ically decreases, so that bk does, too, which implies that b
does since h is constant.

Now, to show that the distance from B to the tangent lines
along the circular arc E'F decreases monotonically, consider
the more general case shown in Figure 4. Given a circle, C},
of radius r and a point, P, in the circle not at the center, C,
then the minimum distance from P to a tangent line of the
circle is maximum to the tangent line at A. It is minimum
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Figure 5: Set 3 Distances

to the tangent line at B, and monotonically decreases to the
tangent line at D as point D moves from A to B along the
circle.

First, let’s show that the distance decreases monotonically.
Suppose not; then there exist two points D; and D, on the
circle between A and B such that P is equidistant from the
tangent lines to circle C; at D; and D, (let F; and E, be
the points of intersection of the perpendiculars to the tangent
lines at D; and Dy, respectively). Then there is a circle, Cs,
centered at P of radius | PE; | such that there are two lines
ta;xgem to the two circles C and C, on the same side of line

AB. @

This applies directly to all points along arc E'F in Figure 3
since at no point ) along this arc is B(Q) perpendicular to the
tangent at @ (this can’t be since AQ is perpendicular to the
tangent line there). Thus, the claim holds for the set 52.

Now, for the final set of lines, S3, we consider two subsets
(see Figure 5). Let [ be the line between I; and I, which is
perpendicular to .. Then, for all lines between ;. and [,,,, as
lx is rotated around F to l,,,, the shortest distance from B to
the line is along a line clockwise from l,.; therefore, for those
lines the shortest distance in the sonar wedge from B is along
line [, and monotonically decreases.

Finally, for the lines from [; to lx, we claim that the short-
est distance from B dccreases monotonically. Suppose not.
Then there exist two points J, and J; such that the distance
dto B is the same. Since for this set of lines, the shortest dis-
tance is on the perpendicular to B, then there exist two tan-
gent lines to the circle centered at B of radius d such that both
lines go through F' and are on the same side of the circle. Q)

Thus, we have shown that given the set of lines that could
cause a sonar return of r from a single wall, then a second
sonar return from a rotated location is sufficient to disam-
biguate the pose of the wall. However, the proof has imposed
two conditions on the rotated position:

e The angle between the first and second sonar locations
Lad

cannot exceed a, the angle between the lines o and AE
(Figure 3).

e The line ﬁA (Figure 4) should not cut the arc EF' (Fig-
ure 3).




2 Computational Scheme

This approach assumes that a single flat surface gives rise
to the sonar readings. All surface hypotheses determined by
the method must be subsequently verified. A computational
scheme to determine the best estimate of the line ! (the pro-
jection of the flat surface into the robot’s sensor ring plane

is very easily developed based on the above proof (the termi-
nology below is with reference to Figure 2):

Pose Recovery Algorithm
1. Get first sonar reading, r;.
2. Determine ZAEC (AE = ry).
3. Rotate sensor clockwise 6° about O, where § <
LAEC.
4. Get second sonar range reading, rs.
5. Use bisection search to find the line | ¢
S1(J 521 53 such that the sonar distance from B
to [ is closest to rs.

A complete technical description of this method can be found
elsewhere[6].

3 Practical Considerations

In practice, robots are seldom confronted with a single wall,
and, of course, sonars do not get reflections off walls at too
small an angle. We describe here our experimental setup and
the details for exploiting the theory given above.

3.1 Synthetic Data

We have applied the computational scheme to recover the
pose of the line from two sonar readings. In the following
tests, a set of lines taken from the sets S1, S2, and S3 are
generated, and the Pose Recovery Algorithm used to recover
a corresponding line. In order to compare the results with the
originals, we have plotted the difference in their (p, 6) pa-
rameters (p is the shortest distance from the origin to the line,
and 0 is the angle the line makes with the x-axis). Figures 6-
12 give the results for walls placed at a range of 500mm and
2000mm, respectively. Basically, the method consists of pro-
ducing the curve associated with the first sonar reading (e.g.,
Figure 7), then inverting the curve and finding the line corre-
sponding to the distance given by the second range reading.

As can be seen, these are very accurate results. There
should be no error at all in these results, and the error shown is
due to numerical errors in computing the sonar range to a line
and the distance from the second sonar sensor location to the
lines in sets S1, 52, and S3. As can be seen from the plots,
the largest error is associated with the lines farthest from the
direction of the second sonar direction.

3.2 Polaroid Data

Here we demonstrate the results of the method on some actual
Polaroid data on an actual wall located 500mm and 2000mm
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Figure 6: Possible Lines which Generate a Return at 500mm
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Figure 7: Second Sonar Distance Function for 500mm




Rho Parameter Error
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Figure 8: Error in p Parameter of Lines at 500mm

Theta Parameter Error

‘These Ervor (degsees) x 106

200.00

190.00

130.00

170.00

160.00 r

150.00
140.00

130.00
120.00

110.00

100.00

0.00 50.00

Figure 9: Error in § Parameter of Lines at 500mm
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Figure 10: Second Sonar Distance Function for 2000mm
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Figure 11: Error in p Parameter of Lines at 2000mm
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Figite 12: Efi®r in 0 P#%meter dPEines at 2000mm

in front of the mobile robot. Figures 13- 16 show the results.

4 Discussion

We have presented a solution to the 1W1S problem, and be-
lieve that it is optimal. We have demonstrated its effective-
ness on synthetic data, and on actual Polaroid sonar data. In
other experiments [5] we have shown that the line estimates
for two range sensor readings produced by this method are
better than using line estimates from the two points obtained
simply from using the sensor orientation and range in that di-
rection (as suggested by e.g., see[8]: “A sonar map is gener-
ated by placing a dot at the computer range along the trans-
ducer orientation”). \

The error in the actual data is due to both the error in the
range readings and the numerical error involved in the com-
putation. The minimum incident angle does not need to be
accounted for since the method only produces a flat surface
hypothesis for two neighboring sonar sensors that both pro-
duce a range value. For more details see[6].

Given that the smallest angle that gives a sonar return is
about 60 degrees, it is necessary to have at least 20 sonar sen-
sors equally spaced and no more than 18 degrees apart in or-
der to be able to detect a wall within sonar range of a mobile
platform. Our particular Labmate has a 24 sonar ring with
sensors spaced 15 degrees apart and was used for the experi-
ments described here. The idea is that this method permits the
hypothesis on any possible walls, and then those hypotheses
can be checked out by moving and taking more readings.

We are also studying the ¥WmS problem in more general-
ity. We believe that the equations and specific constraints can
be solved in the multiple wall, multiple sonar case as well.
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Figure 14: Error in 6 Parameter of Actual Line at 500mm
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