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Abstract

The construction of geometric scene models from
sensed data is a fundamental task in image under-
standing. The creation of such models is essential
in computer vision systems for applications rang-
ing from reconnaissance to robot navigation. Auto-
mated model construction using visual techniques
can also provide important support for systems in
manufacturing and simulation. Vision-based geo-
metric modeling has typically emphasized gener-
ality, with little explicit concern for the accuracy
of the models produced. When high-precision is
required, domain-specific representations and pro-
cessing can provide significant advantages. We de-
scribe such a system for reverse engineering me-
chanical parts as part of maintenance and repair ac-
tivities. Many of the key components of this system
are also applicable to the generation of models for
simulation and virtual environment applications.

1 Introduction

Methods for the construction of three-dimensional models of
viewed objects and surfaces are a critical component of many
image understanding systems. Jnverse optics — the use of
photometry and perspective to determine the scene properties
likely to have generated a particular image — has been a dom-
inate theme in computer vision since the early work of David
Marr and Berthold Horn. With the advent of sensors capable
of directly measuring distance to visible surface points, it has
been possible to build models of surface and object geometry
directly, without the confounding effects of photometry.

In this paper, we deal with the problem of constructing ge-
ometric models from sensed data about the 3-D position of
surface points. While much prior work has been done in this
area, few other researchers have specifically addressed the is-
sue of modeling accuracy. Our approach is capable of achjev-
ing highly accurate descriptions of geometry through the use
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of two related techniques. Instead of using geometric repre-
sentations based on generic modeling primitives, as is com-
mon in most computer vision methods, we use primitives nat-
ural to the task for which modeling is being done. Because
these primitives are tailored to the task at hand, they can usu-
ally describe the relevant geometry with far fewer parame-
ters than more general representations. This reduction in rep-
resentational degrees-of-freedom translates directly into re-
duced sensitivity to sensor noise. In addition, the models that
are produced are often in a form that is much easier to use by
whatever domain-specific processing that follows. The sec-
ond benefit of this approach is that domain-specific model-
ing primitives allow for the natural introduction of domain-
specific geometric constraints describing the relationships that
should hold between various aspects of the model. This pro-
vides further immunity to noise and in some circumstances
can allow the reconstruction of key properties of the geometry
in the absence of any relevant data.

The application addressed .involves the construction of
CAD models for existing, mechanical parts. This is impor-
tant when existing parts must be reverse engineered to support
the production of additional spares or to modify a design for
which a working CAD model is not available. Similar tech-
niques are likely to be relevant to the creation of geometric
models to support a wide variety of simulation applications.

2 The Need for Reverse Engineering to
Support DOD Maintenance and Repair
Activities

DOD must maintain a large quantity of legacy hardware,

much of it many decades old. The life cycle of many of these

hardware systems will be further stretched as budgetary con-
straints force reductions in future appropriations. As a result,
spare parts inventories are frequently exhausted well before
de-commissioning of the relevant pieces of equipment. Ad-
ditional spares are often difficult or impossible to obtain from
the original suppliers of the equipment. Some of these suppli-
ers are out of business. Others have migrated to non-defense
businesses. Still others are unable or unwilling to provide cus-
tom manufacturing runs of spare parts at affordable prices and
in a timely manner. A substantial portion of the contracts un-
der which DOD hardware has been acquired have failed to re-
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quire documentation sufficient for another supplier to repli-
cate needed parts.

The increasing shortage of spare parts has lead the DOD
repair and maintenance community to identify reverse/re-
engineering (RE) of existing parts as a pressing technical is-
sue. Reverse/re-engineering allows the manufacture of new
spare parts based on an analysis of existing parts, without the
need for original CAD models or other documentation. While
civilian applications of reverse/re-engineering exist, the civil-
ian sector is unlikely to either provide or drive the develop-
ment of RE systems sufficient to satisfy DOD needs. Far more
civilian manufacturing is done in house than is the case with
the military. When civilian manufacturers out-source the pro-
duction of parts, they typically specify their own designs or
require adequate documentation from their suppliers. For ex-
ample, Caterpillar reportedly maintains sufficient documenta-
tion to be able to manufacture additional parts for any vehicle
that it has ever delivered.

The Navy’s Lifecycle in Service Repair Networking Center
(LINC) / Repair Technology (REPTECH) Program has taken
a lead in DOD activities relating to reverse/re-engineering.
LINC/REPTECH is developing a statement of needs for re-
verse engineering within DOD, collecting information on ef-
forts to date, and outlining technical project areas that require
additional research and development. Many other groups
within the Navy and the other services are involved in this ef-
fort or similar activities of their own.

RE needs to be based on sensed properties of existing parts.
Most of the current work on RE systems, however, approaches
the problem from a purely CAD/CAM perspective. IU tech-
niques can provide better geometric model building tools and
sensing strategies, improving the accuracy and utility of RE
systems. This is particularly true for IU methods that are
closely integrated with existing CAD/CAM technologies.

3 Reverse Engineering of Mechanical Parts

Reverse engineering techniques can be used to create CAD
models of a part based on sensed data acquired using three-
dimensional position digitization techniques. Part-to-CAD
reverse engineering allows up to date NC fabrication plus eas-
ier modification of the design than would otherwise be possi-
ble. A number of vendors provide hardware and/or software
to support this application [Broacha and Young, 1995]. Ge-
ometry is sensed using either contact Coordinate Measuring
Machines (CMMs) or non-contact laser scanners produced by
companies such as Cyberware, Digibotics, and Laser Designs.
Several CAD vendors have tools for converting this data into
their internal geometric representations. Manufacturers of po-
sition scanning devices and several third-party vendors have
software that will convert scanned position data into either
STL format or a collection of IGES splined surfaces for im-
portation into any 3—D CAD package.

Two significant impediments are keeping current genera-
tion reverse engineering tools from more wide-spread usage:

e Accuracy and tolerances. Few if any of the commer-

cially available reverse engineering tools are designed to
optimize the accuracy of the models that are produced.
Within the research community studying problems of ge-
ometric reconstruction, if accuracy is discussed at all it is
in the context of the statistical validity of estimators and
not their quantitative accuracy. No one has yet addressed
the issue of determining appropriate tolerances to asso-
ciate with a recovered model.

e Usability. Commercial reverse engineering packages
provide models in a form that can be imported into CAD
packages, but much of the theoretically available func-
tionalityis lost and substantial hand processing is usually
required before the models can be used. Representations
used for geometric reconstruction in computer vision are
seldom appropriate for any end-user application.

The computer vision community is most familiar with
sensed position information represented as a range image. As
with more conventional optical images, range images are or-
ganized into two-dimensional arrays, in which each array el-
ement (pixel) corresponds to a ray in space defined by some
projection model. The value of the pixel is the distance to the
nearest surface point along that ray. Distance can be deter-
mined by triangulation, using a structured light approach, or
by time-of-flight measurements [Jarvis, 1983, Besl, 1988].

Most often, range image sensors employ conventional
imaging technology and are governed by the same projec-
tive models as the perspective transformations which describe
that vast majority of optical imagers. Some use alternative
projections, such as the cylindrical scanners made by Cyber-
ware. In any event, the nature of projection that occurs is such
that many of the low-level techniques used to analyze opti-
cal images have direct analogs for range images. In particu-
lar, there is a topological association between surface points
corresponding to adjacent pixels. In particular, except in the
case of surface boundaries, adjacent pixels provide informa-
tion about the same surface. This property is used to help or-
ganize the information in range images, since fairly standard
segmentation operations can be used to partition range images
into regions corresponding to surfaces. Once this is accom-
plished, adjacent pixels correspond to adjacent surface points.

Occlusion effects appear in range images, just as they do in
optical images. The detection of occlusion, however, is eas-
ier, since it is usually associated with discontinuities in range
and need not be inferred from cues such as intensity discon-
tinuities. Occlusion is still a critical problem when creating
a geometric model based on a range image, since there is no
way to know the geometric properties of occluded surfaces.

There are two approaches to dealing with occlusion when
sensing position. The first involves combining multiple range
images into a composite structure [Chen and Medioni, 1992,
Chen and Medioni, 1993, Turk and Levoy, 1994], though
registering multiple views can be a significant problem.
In addition, the viewer-centered nature of range images
can result in biased estimates of object shape unless care
is taken [Bolle and Vemuri, 1991]. The second approach
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uses some sort of active sensing methodology to position
sensors so as to avoid as much as possible one surface hiding
another. For example, the DIGIBOT-II scanner moves a
triangulation ranging device using an x-y transport, while
the object being scanned is moved using a rotating table.
The extra degree-of-freedom in positioning the sensor with
respect to the object can be used to “look behind” some
occlusions while also optimizing the position of the sensor
with respect to the orientation of the surface point being
measured. The position data points returned by such active
sensing systems no longer have the same topological rela-
tionships to one another as is the case with range images,
and are often described as point cloud data. Furthermore,
occlusion still occurs, only now is harder to detect since
there is no simple form of edge detection that can be ap-
plied. Fortunately, methods exist for organizing point cloud
data in a manner that highlights adjacency relationships
[Hoppe et al., 1992, Hoppe.et al., 1993, Hoppe et al., 1994].

A wide variety of geometric primitives have been pro-
posed for use in creating geometric models from sensed data.
Surface primitives in existing modeling systems range from
simple planes and cylinders [Chivate and Jablokow, 1993]
to  piecewise smooth  surface  parametric  sur-
face  patches  [Sarkar and Meng, 1991,  Piegl, 1991,
Lounsbery ef al., 1992]. Volumetric primitives include gener-
alized cylinders [Binford, 1971, Nevatia and Binford, 1977,
Brooks, 1977, Marr, 1982] and parametric shapes such
as superquadrics [Pentland, 1986]. CAD models ob-
tained from design systems have been used as a geometric
representation for various computer vision algorithms
[Ikeuchi and Kanade, 1988, Hansen and Henderson, 1989],
but little work has been done within the computer vision
community on the use of CAD models to represent the
geometry implicit in sensed data.

Since geometric models for complex shapes are almost al-
ways described in terms of multiple primitives, a decision is
required as to what data points should be considered to be part
of each primitive. Most other approaches to dealing with po-
sition data use some form of bottom up segmentation proce-
dure [Besl and Jain, 1988, Suk and Bhandarkar, 1992]. Faces
on polyhedral objects are found with plane fitting techniques.
Curved faces are found using grouping operations which com-
bine collections of points into surfaces, followed by detection
of lines of orientational discontinuities. However, few me-
chanical parts are polyhedra. For curved surfaces, segmenta-
tion based on orientational discontinuities is problematic due
to noise effects in most range sensors, which produce substan-
tial local variations in surface normals. This problem is partic-
ularly acute at surface boundaries, where reliable information
is essential for bottom-up processing.

4 Feature-Based Modeling

The modeling primitives used to describe a geometric shape
should be appropriate to the task for which the modeling is
being performed. In our work, we are primarily concerned
with man-made artifacts which are designed and constructed

by people to serve some purpose. Modern design systems are
starting to exploit the concept of design features, which are hi-
erarchical structures closely related to design intent. Design
features are desirable because they form the basis of a natural
and compact representational language. In addition, because
design features capture aspects of intent, they often facilitate
the process planning that is needed to translate the design into
a sequence of actions for constructing the object.

While originally developed to support creation of new enti-
ties, design features can also be used as geometric primitives
for the construction of models of existing entities. Three ad-
vantages derive from this approach:

e Appropriateness.

Models described using the same primitives as used in
designing the object being modeled will clearly be ade-
quate to describe its shape.

e FEase of use.

The same tools originally intended to support design ac-
tivities can operate on the constructed model.

o Reduced need for complete, robust geometric computa-
tions.

Substantial effort is involved in converting a collection
of surface patches obtained by fitting to scanned data into
a form usable by a solid modeler. If a feature-based de-
sign system exists, it is far easier to generate a feature-
based description and then let the design system generate
a topologically correct B-rep solid model.

.

e Accuracy.

Non-contact position digitizers are subject to errors
which can exceed the tolerances needed in modeling
many objects. The local smoothing that is implicit in
methods based on fitting surface patches to position data
may not be optimal for reducing this sensing noise. The
use of design features as primitives can substantially in-
crease the accuracy of the generated models.

We have described elsewhere a program called REFAB,
which uses design features as modeling primitives in a reverse
engineering system for mechanical parts. [Owen et al., 1994,
Thompson et al., under review]. REFAB operates in an inter-
active manner. The user specifies the types of design features
present and the approximate location of each feature in the ob-
ject. REFAB deals with the determination of precise, quanti-
tative parameterization of each feature. In REFAB, the use
of design features tailored to NC machining provides a natu-
ral interface to the end user, significantly simplifies aspects of
the model building, and leads to methods for obtaining models
that are more accurate than would otherwise be possible.

Modeling accuracy depends on effective use of proper-
ties that distinguish the geometry of interest from effects due
to sensor noise. The current version of REFAB uses three
such types of information: geometric primitives that are ca-
pable of describing object geometry with a minimal number
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of degrees-of-freedom, information about the most common
ways in which designers use these primitives, and constraints
about how different primitives interact in a properly designed
object.

4.1 Task-Specific Geometric Primitives

When fitting models to noisy sensor sensor data, the best noise
immunity is usually obtained by using the modeling primi-
tives with the fewest degrees-of-freedom required to describe
the shapes of interest. To take a simple example, consider the
problem of fitting a closed contour to a set of 2-D points. If
it is known that the original shape is a conic section, then it is
far better to fit an ellipse (DOF = 5) than to use a spline func-
tion (DOF > 5). Noise is averaged out much more effectively
when fitting the ellipse than with a spline, which will wiggle
around to fit the observed data in ways that can’t correspond
to the actual shape.

REFAB uses the same feature set as employed in the
Alpha_1 CAD/CAM system [Drake and Sela, 1989]. This al-
lows DOF reduction in two ways. The most obvious advan-
tage is that most of the Alpha_1 features are highly structured,
consisting of various types of holes, pockets, and the like. The
second advantage is that the most common features are 2%—D
in nature. Effectively, they are extrusions of planar curves.
Such features can be modeled in two steps. The first deter-
mines the orientation of the feature and then projects all data
points relevant to modeling the feature into a plane defined by
that orientation. The second step determines the parameters
describing the profile of the feature using 2-D analysis tech-
niques.

While we have demonstrated the advantages of domain-
specific geometric primitives in reverse engineering applica-
tions, they are relevant to many other sensor-based modeling
tasks as well. In particular, man-made structures are almost
always explicitly or implicitly designed using a limited set of
primitives. Using the same geometric representations as the
basis of recovering models from sensed data simultaneously
provides a natural user interface and improved modeling ac-
curacy.

4.2 Task-Specific Modeling “Hints”

Human designers, for reasons of both habit and conveniency,
seldom use the full descriptive power of the representational
languages available to them. For example, while most CAD
systems allow the specification of profiles in terms of arbitrary
closed contours, the profiles associated with the inside pocket
in Figure 2 and the outer profile side in Figure 5 are made up
only of line and arc segments. This simplification is pervasive
in machined parts.

Effects such as this can provide “hints” that further re-
duce the degrees-of-freedom needed to adequately model
the underlying geometry. When REFAB creates geometric
models from points lying along a 2-D profile, sequences of
points which can accurately be approximated by line segments
[Nevatia and Babu, 1980] are identified first. The remaining
points correspond to curved portions of the profile. An at-
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Figure 1: Tangent matching triple arc.

tempt is made to fit each of these segments using one, two, or
three constant radius arcs of alternating curvature. Multiple
arcs are constrained to maintain tangent continuity from one
to the next. The triple arc case is further constrained such that
the outer two arcs have the same curvature and arc length (Fig-
ure 1, corresponding to a boss-like sub-feature often found in
parts such as shown in Figure 2. If a curved segment cannot be
accurately fit with one of the arc constructs, a general Bezier
curve is used instead.

Design practices which underlie constraints of this sort are
highly domain-specific. Their discovery often requires a de-
tailed understanding of what skilled designers actually do on
real problems. The potential benefits are significant, however.
Constraints arising out of design practice provide additional
immunity to sensing noise. Often equally important, they pro-
vide domain-specific improvements in modeling accuracy. In
applications such as manufacturing and the simulation of in-
door environments, it is important that models be accurate not
only in terms of geometric position but also in terms of local
surface shape [Thompson et al., 1996]: Flat surfaces should
be modeled as flat. Smoothly curving surfaces should be mod-
eled as smoothly curving. Right angles should be preserved as
exactly as possible.

4.3 Task-Specific Modeling Constraints

For many man-made objects, common relationships exist be-
tween design features. In the object shown in Figure 2, for
example, it is likely that linear portions of the profile defin-
ing the pocket are parallel with the outer profile. Less cer-
tain, but still plausible, is that the three triple arcs near each
hole have a common radius for their central and surrounding
arcs. In the object shown in Figure 5, it is reasonable to pre-
sume that the large hole and the circular arc at the upper left
are coaxial. These relationships provide further constraints on
the possible geometry of the object. The result is a further re-
duction in modeling degrees-of-freedom and thus additional
improvements in modeling accuracy in the presence of sens-
ing noise.

While some relationships such as these can be inferred from
observation of the geometry alone, most involve a sophisti-
cated understanding of the task for which the object was de-
signed and the intended function of the various shapes in-
volved. Aswith the choice of which design features touse ina
given modeling operation, we adopt an interactive approach.
An initial model is first generated. The end user of the system
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is then able to suggest possible constraints between parame-
ters of different design features making up the description of
a complete part or assembly. A new model, consistent with
these constraints, is then generated. The error in fitting the
data will increase due to the added constraints in the optimiza-
tion process. However, if that increase is small there is good
reason to believe that the constraints are valid. The result is
that while there will be a small decrease in the accuracy with
which the generated model fits the data, there is likely to be an
increase in the accuracy with which the generated model fits
the model used initially to create the part.

5 Segmentation and Refinement

Model generation from sensed data requires that the data be
partitioned into subsets corresponding to individual geomet-
ric primitives before parameters of each primitive are deter-
mined. An interactive approach, together with the use of de-
sign features as primitives, can avoid most of the difficulties
associated with traditional data partitioning methods by using
a robust, top-down segmentation technique.

In REFAB, the user starts out by specifying a type and ap-
proximate location for each feature. Given this rough feature
parameterization, the system selects those position points that
are close to the surface of the approximated feature in both
distance and orientation. The combination gives a much bet-
ter indication of points that are really part of the feature than
would either property alone. For example, consider the prob-
lem of finding those sensed points on the wall of a drilled
hole. Clearly, we want to consider only those points near the
expected location of the hole. Using only a distance check,
however, will inevitably include some points on the surface
through which the hole was drilled, near the rim of the hole.
An orientation check quickly discards these points. Addi-
tional improvements are obtained by further restricting the
distance check, based on per-feature information about where
position data is most likely to be accurate. In the case of the
hole, data near the rim and deep within the hole is most sus-
pect.

The initial segmentation is done using a large tolerance for
distance and orientation, but only using those parts of the user-
specified model which are expected to yield the best sensed
data. The feature is then re-fit to the segmented data, result-
ing in a refinement to that part of the model. As the esti-
mates of feature parameters are improved, the position data
can be re-segmented using tighter tolerances on distance and
orientation, while reducing or eliminating the restrictions on
which parts of the feature surface to consider. Additional im-
provements come from the use of robust fitting techniques
[Rousseeuw and Leroy, 1987] which are able to ignore extra-
neous data points arising frém whatever segmentation errors
do occur.

6 Experimental Results

In order to quantitatively evaluate the accuracy of the
models obtainable using the feature-based modeling ap-

proach, we started with parts from the “Hard-Copy Bench-
mark”  [Thompson and Owen, 1994,  Owen er al., 1994,
Owen et al., 1996] for which we had access to the original
CAD models. Instances of these parts were carefully ma-
chined out of aluminum using a 3-axis NC mill. Surface
points on the parts were measured using a non-contact laser
digitizer. New CAD models for each part were generated
using the REFAB system. Finally, the geometric differences
between the original and recovered models were computed
[Thompson et al., 1996]. )

Position data was acquired with a DIGIBOT II laser posi-
tion digitizer. The DIGIBOT II has a nominal measurement
accuracy of £50 microns (1 o) under optimal conditions. In
practice we have observed accuracies on the order of +-50-300
microns, depending on the nature and shape of the surface at
that point. The manufacturing processes used to produce the
test objects can achieve precisions on the order of +2-10 mi-
crons for hole and bore spacings. Cutting accuracy, which is
more relevant here, is typically on the order of +50-250 mi-
crons depending on the feature being cut and the tool being
used. Thus, the overall variability of the sensed data relative
to the original model of the parts is on the order of +100-550
microns.

To remove specularities that cause problems for most cur-
rent range finding systems, parts were sprayed with a white
powder, which left a thin, talcum-like coating. Multiple
scans were taken of each part and transformed into common
point-cloud data sets, using a registration procedure similar
to [Shum et al., 1994]. The reverse engineering of the shock
plate involved the use of 143,140 3-D points. 44,578 points
were used for the steering arm.

Figures 2 and 5 show two of the actual parts used for testing.
Figures 3 and 6 are wire frame drawings generated from the
reverse engineered CAD models produced by REFAB for the
two parts, shown as exploded views to emphasize the feature-
based nature of the representation. Figures 4 and 7 are new
parts made from these models, demonstrating an end-to-end
reverse engineering process.

Table 1 shows the quantitative deviation between recon-
structed models and the original CAD models for the outer
and inner profiles of the object shown in Figure 2 and the
outer profile and large hole for the object shown in Figure
3. Due to their shape and the sensor noise associated with
inter-reflections in the pocket and hole, these contours are the
hardest parts of the objects to model accurately. As a result,
they provide the best test of the advantages of domain-specific
modeling primitives and geometric constraints. Pairs of aver-
age (RMS) and maximum deviation are shown. The first pair
of numbers shows the accuracy of a simple spline fit to the
data, using standard smoothing and resampling techniques be-
fore fitting a Bezier curve. The second set of RMS/max devi-
ations are for a reconstructed model produced by using design
features as geometric primitives and employing when possible
modeling hints taken from common design practice. For the
third set of values, global modeling constraints were added to
the reconstruction process.
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Figure 2: Shock plate: original part.
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Figure 3: Exploded view of the features making up thereverse  Figure 6: Exploded view of the features making up the reverse
engineered shock plate. engineered steering arm.

Figure 4: Shock plate: reverse engineered part. Figure 7: Steering arm: reverse engineered part.
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T

Error wrt. spline fit local global

model constraints || constraints
RMS | max || RMS | max RMS [ max

Shock plate

outer profile 971 243 46 | 121 27| 81

inner profile 1851 784 97| 283 591 199
Steering arm
outer profile 95| 828 70| 125 55 117
large hole 115] 164 61| 98

Table 1: Difference between recovered model and original
model (in microns).

Error wrt. spline fit local global
data constraints || constraints

RMS | max | RMS| max |[RMS| max
Shock plate

outer profile 74| 511 82| 513 76| 466
inner profile 101} 613 || 110| 573| 105| 600
Steering arm
outer profile 93| 743 93| 741 89| 783
large hole 160 | 1,263 || 171]1,345

Table 2: Difference between recovered model and data (in mi-
crons).

Shock plate local global
parametric errors constraints constraints
radius | center [ radius | center
triple 1 arc | 316 533 162 305
arc 2 101 56 81 23
arc 3 316 515 162 299
triple 2 arc 1 50 96 98 50
arc 2 697 692 81 10
arc 3 50 74 98 61
triple 3 arc 1 548 530 0 199
arc 2 32,626 | 32,500 81 116
arc 3 548 404 0 199

Table 3: Parametric difference between recovered model and
original model (in microns).

The accuracy results in Table 1 for the spline fit are typical
of what can be achieved with standard modeling techniques
which do not take advantage of any special information about
the possible shapes. Substantial increases in both average and
worst-case precision are achieved through the use of appro-
priate geometric primitives and local, domain-specific con-
straints on those primitives (second pair of numbers in the ta-
ble). Adding global constraints specifying how different geo-
metric primitives relate to one another further improves accu-
racy.

The results shown in Table 1 were obtainable because we

tested the modeling system with objects of known geometry.
Table 2 shows the effect of the different modeling technigues
on how well the data itself is approximated. In general, the
stronger the constraints, the worse the precision with which
the reconstructed model represents the data. This points out
the important difference between evaluating modeling tech-
niques based only on how well they approximate data ver-
sus evaluating them with respect to the underlying geometry
which it is desirable to reconstruct [Thompson et al., 1996].

Table 3 shows the parametric accuracy of the two con-
strained fitting methods applied to each of the arcs making up
the triple arcs in the corners of the pocket of the object shown
in Figure 2. These are the hardest sub-features in the test ob-
Jects to model accurately, due both to inter-reflection effects
and the fact that the arc lengths are quite small. The use of
global constraints effectively reduces the degrees-of-freedom
by a factor of three, resulting in substantial improvements in
parametric accuracy.

7 Conclusions

Automated vision systems can aid in the construction of geo-
metric models for a wide variety of important tasks. Many of
these tasks, however, require modeling precision well beyond
that obtainable with conventional computer vision methods.
Our approach uses a combination of domain-specific model-
ing primitives and domain-specific constraints to achieve ac-
curacies well within the intrinsic noise of the sensor used to
acquire the position data on which the models are based. The
approach has been demonstrated using a quantitative compar-
ison between the recovered models and the true geometry.
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