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1 Introduction

Designers of autonomous systems need to make sure that the control-
ling behaviors are coherent, robust, and adequate for the task at hand
[2, 4]. Autonomous agents need to continuously interact with their
environment, the essential element of reactive behavior[9]. The reac-
tive behavior of an autonomous agent can be described as collections
of logical behaviors, each member of the collection controlling some
aspect of the agent and working in conjunction with all the other be-
haviors. A concrete example of such is the can collecting robot built
by Jonathan Connell[5]. This example makes extensive use of Brooks’
subsumption architecture approach[3].

Such collections of reactive behaviors can be defined as combined,
synchronous finite state automata, using real time programming lan-
guages which have strong formal components. These language tools,
such as COSPANJ[8] and ESTEREL(1], require sophisticated users
who have deep knowledge of both the syntax and semantics of the
language.

The goal of this work is to make use of the simplicity of graphi-
cal FSA editing to specify concurrent, synchronous FSAs, and from
those to produce COSPAN descriptions of these behaviors for analy-
sis, and C language programs to implement the designed behaviors.
The usefulness and validity of this approach is tested through the de-
sign, verification and implementation of several examples, including
a controller daemon for a robot arm.

2 Behavior Architectures

Many researchers have the goal of building a mechanical device which
exhibits intelligent behavior. Not all of them agree on the meaning of
“intelligent behavior,” and naturally most have their own approach
to the problem. The more traditional approach is to follow the path
of artificial intelligence research, with high level planning(6]. This
planning and reasoning is based on constructing a representation of
the world and making inferences about what to doin a given situation
in the environment.

Proponents of this approach argue that representation and sym-
bolic manipulation are necessary for intelligent behavior[10]. Without
some sort of symbolic approach and the use of abstract concepts, an
autonomous agent might not be able to tell, for instance, that a red
soda can and a green soda can share attributes and do not need to
be treated as two totally distinct types of objects, as they differ only
in the concept of color.

Problems with the use of symbolic representations can occur when
the computing resources needed to do the reasoning are not quick
enough to keep up with real world situations. Improper actions might
be taken, or actions necessary to keep the autonomous agent intact
and functioning might not be done in time.

3 Graphical Editing

Since early researchers first got computers to make pictures, using
non-textual, visual means of specifying programs has been a goal[14],
such as the Graphical Programming Language work at the University
of Utah [12). Human beings do well at shape recognition and pattern
matching, skills that were developed for thousands of years before
text processing came along. Graphical displays of state machines can
convey the flow of control directly, in an easy to grasp manner, giving
a direct transfer of meaning [15].
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A major goal of this work is to provide a basis for rapid dey
opment of state machine behavior descriptions. The quicknesg W'e.
which one can grasp pictorial representations over simple text jg adl
inite aid in quickly laying out a design. In recent years similar systeef‘
have been developed, for instance the PetriFSA language Wwithiy ¢
Visual Programmer’s Workbench[16]. This program performs simj
functions as GI Joe, but not include facilities for formal verificatjg,
does the COSPAN aspect of GI Joe. The Task Control Architequ!
of Simmons[17] has a similar goal, that of taking high level behave
jor descriptions and converting then to running code. This Syste, )
though, views behavior differently and is oriented towards single Pur,
pose use, and is not a more general development tool as GI Joe CM;
be.

The combination of graphical representation of state Machipg,
followed by formal verification and code generation is the basic P“’-mis;
of the GI Joe work. It is hoped such a system will provide 2 usefy
tool to robotics and reactive behavior research.

4 COSPAN Programming Model

COSPAN is a coordination specification and analysis tool °Yigiua,lly
developed by R. P. Kurshan to assist in the development of largs
control intensive programs. The methodology consists of formal Veri.‘
fication, complexity management and formal refinement[11]. The g
Joe design process builds on this idea, and employs COSPAN asyy, -
means of formal verification of state machine designs. :
Analysis of an FSA in the COSPAN model is a three part proceg
The FSA is described by the programmer with a textual descriptioy, -
This text is in the form of a .sr file, which is then run through the firg v
part of the process producing a program in the C language. The next
phase compiles this code into an executable file, and the final phu
runs the program, monitoring the progress of the FSA and lookisg
for inconsistencies, and checking for task acceptance defined by th
user. :
The COSPAN S/R example in Figure 1 shows a simple flipfloy -
state machine. If in the ON state and the selection variable takesthe -
value off, it moves to OFF. When in the OFF state and the S“Mi
variable has the value of on, it moves to ON. The textual descriptioa
is certainly not overly complicated, and the syntax can be understood
with a minimum amount of trouble. The exact same two states and
transitions can be described graphically, as shown in figure 2, with
few mouse clicks and the keystrokes necessary to label the states and
transition arcs, which can be done in less than a minute. 'w
The goal of the first phase of this work was to replace the tine
consuming process of creating the textual descriptions of an FSA with %
z

a simple to use graphical interface. The FSA editor allows for creatin;§

states and transitions, and grouping them into named modules. Oft
state information from one module is needed to effect a transition

another module. Such a condition is easy to describe using simple .
labeling schemes. The FSA editor will then compile the descriptitm§
into S/R language acceptable by COSPAN. Compilation of the CZ
code and the execution analysis will then proceed as in the standard%

COSPAN process.




ior. The predicate to test for this would be translated into a task
definition such as that in Figure 3. And since the task tests for an
undesired behavior, running it through the COSPAN process would

proc ALT /* Alternator */

selvar #:(off,on)

stvar  $: (OFF,ON) yi'eld a result of “Task Failed”, which means the FSA as described
init OFF will not perform this unwanted behavior.
trans 6 A Robotics Application: Control of the
OFF {off,on} Rhino
-> ON : #=on

The entire design process was applied to the following problem: the
goal was to design and implement a command interface to a Rhino
robot arm with limited sensors and actuators. As the Rhino is used

-> OFF : else;

ON 3 . . .
s oFF 'Foif 'cf"f‘} by students in various robotics classes, a good robust interface to the
: #=0 device will be of practical value.
-> ON : else;

The design and verification process is similar to the earlier ex-
amples, with a behavior module for the arm built up from simpler
modules describing the actions of the individual parts of the system.

end

Figure 1: COSPAN S/R Example

. ; @ s3
5 Verification . C code

orks by checking that the “language” accepted by the FSA tool Modules
<A described is a subset of the language which the user defined
> describes (7). In this context a language is a sequence of state
rask ;tions rather than a string of characters. The user can test the
"ans\l,-lor of the design by checking to see if some transition sequence
beh d by the FSA. If the transition is a desired one, than one
ould want the FSA to accept it, indicated by a “Task Performed”
wun from COSPAN. If the transition is unwanted, such as having a
::ding machine dispense a product before payment is collect>d, then
result of «Task Failed” from COSPAN would be the result wanted. - Daemon
: The simplest method of verification is done by having the user
gefined acceptance task be a simple two state automata. There is
one initial state and one acceptance state. The transition from the
initial to the acceptance state occurs if the predicate under test occurs, Rhino Robot Arm
otherwise the machine remains in the initial state.
In the case of a vending machine example, having goods delivered
without proper payment is undesired behavior. That is, going to a
seliver” state without a “Paid” transition is an undesired behav-

cOSPAN W

Rhino Control

Figure 4: Rhino Model

f’_,,./-"on 6.1 Design Considerations

The Rhino is an arm with six degrees of movement, each with its own
actuator and, where applicable, limit sensor. Commands are sent
to the arm and status returned over a single serial communication
line. This situation could lead to difficulties if a behavior module
O‘F‘F were composed of simple controllers for each of the six actuator and
Figure 2: Alternator Graph sensor pairs, and each of these assumed there was no contention for
the communication path. Status returned by one controller’s query

could be intercepted by another, leading to undesirable behavior.
To counter this possibility the top level Rhino behavior module
will not communicate directly with the arm, but instead with an inter-

monitor TASK
mediate controlling process (See Figure 4). This controlling daemon

stvar $§ : (OK,NOK) will run in the background. The Rhino must accept input from
init OK a top level user program and pass it on as to the appropriate motors,
trans as well as coordinate motor position queries and make sure that no

commands which could lead to damage of the robot are executed.

true -> NOK : ( Vend.$ = Deliver) * (Vend.# !'= Paid)
-> 0K : else; 6.2 Main Controller

end
The basic premise of the Rhino controller is straightforward. It needs

to accept user input, and send valid commands to the Rhino. If
the command is a motor move, it passes the command to the motor

Figure 3: COSPAN Task Example controller. If the command is a query, then the query subsystem will
take care of it. This top level view is shown in Figure 5.
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The Rhino controller daemon, after setting up communication
ports with the Rhino device and user interface sockets, sits in the
Idle state. When a command comes in from the user program, the
controller moves to the Act state. The command is parsed and acted
upon according to the type. If a query, the controller goes to the
Query state, if a motor control command, the Motor state, or if the
command is not recognized, it returns to the Idle state. The three
states Act, Query and Motor represent state machines implemented
from designs done with GI Joe.

Figure 5: Rhino Top Level

6.2.1 Act

Once a command has been received by the Rhino controller, it must
be acted upon. If it is a recognized command the appropriate action
must be taken, if it is not then the controller simply returns to the
Idle state.

Ask
Hove

Input
Query

IsMove

_—

IsQuery

Figure 6: Act State Transitions

Commands acceptable to the Rhino are of four types. The first is
the Start command, which consists of a two to five character string.
The first character is the motor identifier, “A” through “H”. The rest
of the command is a string of 1, 2 or 3 digits, with the digits preceded
by an optional “-” for reverse motion or a “+” for forward motion. If
there is no sign character, “+” is assumed.

The second command is the Question command, which queries
the motor’s position. This command is a two character string with
the first character being the motor identifier and the second character
is a 7. When this command is received the Rhino responds with a
single character encoding the motor’s distance from the zero position.

The third conmand is the Information command, consisting of the
single character “I”. The Rhino returns a single byte which consists
of 01xx xxxx where the “x” corresponds to a specific motor. If the
limit switch for that motor is open, the value will be a 1, if the switch
is closed the value will be 0.

The last command is Stop. This is a two character command

with the motor identifier followed by “X”. This command shuts off
power to a motor and sets it error code to zero. This is usefu] to
stop a stalled motor from burning itself up. All the commands g,
terminated with a carriage return.

With only these few simple commands available, it is trivial ¢,
determine whether or not a command is legal, according to the fo
lowing:

command — start | stop | query | info
start - [A.H]+—[0...127]

stop — [A.HKX

query — [A.H]?

info - 1

The start and stop commands elicit no return response from the
Rhino over the serial line, and can be forwarded to the motor con.
troller. The query and info commands both return values, which
require different handling, which will be done in the Query state.

6.2.2 Motor

Each of the up to 8 motors on the Rhino can be controlled separately.
Motor movement is done by sending a start or stop command tg
the Rhino as described above. The design of the Rhino card limits
the size of each individual move to 127 steps or less, even though
a particular motor may have a limit from 300 to 4,700 steps. So to
move a motor for 500 steps, say, it is necessary to move it in 5 steps of
100 each. Rather than having the user program do incremental motor
movements in this fashion, the controller will provide this movement
partitioning.

Any large movement broken down into several steps may appear
as a single smooth action, since the Rhino will accept another com-
mand for a motor before it has stopped moving. Getting a smooth,

" continuous movement is done by checking the position of the motor,

and sending another incremental move command while running. This
send and check process is repeated until the entire motion requested
has been completed.

The position checking portion of this is where the possibility of
conflict may arise. If a user sends a query command for one motor,
and the motor controller sends a query command to a second motor
at about the same time, it would be possible for the results to be
mixed up without careful control. So if there is a user query pending,
the motor controller must wait for it to complete, possibly stopping
the motor while waiting, if necessary.

Small Sent,

Figure 7: Motor Control States
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To keep track of the position of all the Rhino movements, in order
1 to a known state or keep from damaging the device, all
ts will be recorded. If a command is given which would
ove @ particular motor past its limit, the controller will only move
)

motor up to the limit, and will only act upon commands for that
thetor which move it away from the limit.
mo

o retur
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6-2'3 Query

cading back status from a motor provides more difficulty than send-
; otor movement information. The same facility that allows one
ing rr,:d commands to a moving motor also allows reading the status
to lsscatjon of the motor while it is running. And unless this is taken
.Or account, position readings may be inaccurate. It will be assumed
ulwt if the programmer requests status information they are aware of
thi: If the motor status is needed for the daemon this is taken into

R

thi
account: .
The sequential nature of the query subsystem can be modeled by

simple two state machine, as shown in Figure 8. It sits idle in the
a . . . . .

uQIdle“ state, until a query request is received. At that time, it moves
1o the “Sending” state, where it waits for the reply before returning

10 the idle state.

T Send(

QDone

Figure 8: Query Control States

6.3 Task Acceptance

The goal of the Rhino program is to move the Rhino the amount
and in the direction desired by the user, without moving too far and
causing damage. Also, status returned from a motor must be matched
to the proper query to avoid confusion. The first property can be
checked by writing a task which will ask if it is possible to move a
motor too far. Given the top level motor subsystem of Figure 7 it is
easy to see that if the Boolean “NoCrash” is false, the motor will not
respond to a move command from the top level controller.

Rephrasing this point in a COSPAN task definition is not that
difficult. Basically, we ask if the motor FSA will move to the “Check-
Move” state with “NoCrash” being false. In COSPAN syntax, we can
write the expression:

( Motor.# = NoCrash) * ( Motor.$ = CheckMove )

A complete task definition uses this phrase as the test for failure.
That is, the task will proceed, and remain in an acceptable state as
long as the motor process state doesn't become “CheckMove” with-
out the corresponding selection variable “NoCrash” being true. To
check for compliance, the following COSPAN code is added to the
description of the motor FSA:
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monitor TASK

import Query, Motor

stvar $ : (OK,CRASH)
cyset { OK }

init 0K

trans

true -> CRASH : ~( Motor.# = NoCrash)
* ( Motor.$ = CheckMove )
-> 0K : else;

end

Running the FSA description through the COSPAN process yields
“Task Performed!”, meaning that our task has stayed within the de-
fined acceptable states. In this case, all states except going from
“Start” to “Checkmove” without the “NoCrash” predicate being true.

The second property is similar to the serialization of the Votrax
controller discussed earlier. The COSPAN task asks if a second query
will be processed before the first query has been acknowledged. If
this is not possible, then queries and their responses will be correctly
matched.

Examination of Figure 7 shows that the motor control subsystem
communicates with the query subsystem when the motor is moving
a large amount, and has to repeatedly check progress before sending
another incremental move command. Checking the progress consists
of sending a query command to the Rhino, which is a string of the
form “D?”, where the first character is the motor ID to be questioned.

If another subsystem has sent a query to the Rhino and is awaiting
a reply, we must be sure that before the second query is sent the first
one is answered. The motor FSA checks the state of the query FSA,
and if it’s busy, waits until it is free. A COSPAN task definition to
check for this behavior can be constructed by saying that all motor
FSA transitions are OK, except for moving to the “DoMove” state
when the query FSA is in the “Sending” state. Casting this question
in the COSPAN syntax yields the following:

monitor TASK

import Query, Motor

stvar $§ : (OK,Conflict)
cyset { OK }

init OK

trans

true -> Conflict : ( Query.$
* ( Motor.$ = DoMove )

-> 0K : else;

end

= Sending )

The task has two states, “OK” and “Conflict”. We want it to stay
in the “OK” state, signified by the state “OK” being the only member
of the cycle set. As long as the task stays within the elements of the
cycle set during COSPAN analysis, the task will be performed. The
following output of the analysis shows that the task as defined did
indeed perform as specified.

cospan: Version 6.5.14 (AT&T-BL) 8/4/91

+ sr -DQTEST mq.fsa.sr -o mq.fsa.c

mq.fsa.sr: Sun Dec 8 20:52:36 1991

1.h: Sun Nov 17 16:49:16 1991

*+ cc -omqg.fsa.an mq.fsa.c ../cospan/lib/libsr.a -1m
+ ./mq.fsa.an




./mq.fsa.an: Synchronous model
./mq.fsa.an: Initialization complete.
1 initial state.
./mq.fsa.an: Search complete.
10 states reached.
10 states searched.
3 DFS trees generated.
4 SCC checks dcne.
12 edges transversed:
4 plus, 7 tree, 0 self, 0 forward,
1 back, O cross-intra, O cross-inter.
14 resolutions made.
1+1 boundary frames allocated.
./mq.fsa.an: Task performed!

6.4 Implementation Details

The Rhino daemon is written using the interprocess communication
(IPC) facility of UNIX. This daemon has access to the communica-
tion path with the arm itself, and services requests from the behavior
components. Adding this arbitration stage allows the behavior mod-
ule to assume that the communication among components and the
Rhino is going to work, with messages getting delivered reliably and
in proper sequence.

8.4.1 C Code Production

GI Joe at this stage provides only stubs and basic flow of control code.
Implementation of the FSA as working C code requires these stubs
to be defined fully. This step must be done by the designer outside of
GI Joe. The Compile command in GI Joe takes an FSA that had an
initial state Init and a transition to the next state Idle when Ready
(See Figure 7) becomes true and produces this code:

switch (CURRENT) {
case _Init:

if (Ready())
CURRENT = _Idle;
return;

}

case _Idle:

if (Command())
CURRENT = _Run;
return;

}

It is readily apparent that the above code won’t really do anything
useful unless the designer writes definitions for the Boolean functions
Ready() and Command(). The corresponding SR description for this
fragment looks similar:

init Init
trans
Init { Ready }
-> Idle : # = Ready
->$ . else;
Idle { Command }
-> Run # = Command
->$ : else;

7 Summary and Future Work

Rapid design, verification and implementation of behaviors whicy,

be described by finite state machines is a worthwhile goal. (] Joﬁ
and related tools can help in laying out and understanding the ﬂw:
of control in state machines. With the proliferation of workstatmn
supporting standardized graphical user interfaces such as X, progran:
mers are expecting environments which make use of this pixel Dowe,

Verification of the resulting FSA using COSPAN is a trickier proj,.
lem. While it is easy to put circles and arrows on the screen to Tepre.
sent the FSA, the concept of “correctness” is difficult to descrip, i
pictures. This area certainly warrants further investigation.

While the initial stages of FSA design are made simpler by the
graphical editing, code generation is still time consuming. GJ Joe
currently does produce enough code to guide the actual implemema_
tion, but there is the possibility of having the programmer stray frop,
specification as the lower levels of routines are filled in. If the Stateg
and transitions are detailed enough, though, the extra code Tequireg
as fill in should not be that extensive. Still, following the speciﬁmtio”
requires discipline on the part of the programmer.

At this point only initial development and testing has been done
on GI Joe, with no use by others for design work. The concepyg
appear reasonable, and the graphics libraries allow good support f,,
putting ideas into the programs, but the general applicability of ¢
Joe to reactive behavior design remains to be seen. As it seems wj
any programming system, there is always much more to do. GI Jg,
could benefit from further work on the user interface, and some usefy]
command additions. One useful addition would be the ability
“stack” the display, like a deck of cards. Suppose one had a sta,
shown in the GI Joe drawing window as a single state, when it real)y
represents an entirely separate FSA in itself. Clicking on that stat,
could bring the FSA it represents to the foreground for editing. Thjs
would aid in creating and easily navigating hierarchical designs.

In the current model, the user designs behaviors in GI Joe, the,
must run COSPAN from a separate shell. Having the FSA editor ryy
COSPAN automatically would be an improvement. Also, COSPAN
produces textual output that can be rather daunting for the user. The
states and transitions of the FSA are printed during the analysis. I
addition to having GI Joe call COSPAN on the design under test,
having it also parse this output and relate it to the on screen display
could be most useful in tracking down errors. This verbose output
trace could form the basis of an on-screen automation of the behavior.,
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