Pariern Recognition, Vol 14, Nos. 1-6, pp. 197-204, 1981.

o™ Printed in Great Britain.

<

0031-3203/81/070197-08 $02.00/0
. Pergamon Press Lid.
© 1981 Pattern Recognition Society

HIERARCHICAL MODELS AND ANALYSIS OF SHAPEt |

_ Thomas C. HENDERSON? and LARRY Davis -
Computer Sciences Department, University of Texas, Austin, TX 78712, U.S.A.

(Received 9 January 1980; received for publication 22 December 1980)

Abstract — Shape models are developed as grammars which allow for the description of syntactic and
semantic constraints between symbols of the grammer. These constraints are automatically generated from

the grammar for all vocabulary symbols. The contextual constraints are exploited by a hierarchical
constraint process in analyzing unkgown shapes. Such a process constitutes a bottom-up constraint based
parsing method which attempts to overcome the combinatorial explosion in searching for a parse of the
shape implied by the segmentation strategy. Examples of the application of this system 1o airplane shape

o recognition are described.

Hierarchical shape models
Constraint propagation

1. INTRODUCTION

A major application of syntactic pattern recognition is
the analysis of shape. The syntactic paradigm has been
applied in various domains, including electrocardio-
gram interpretation,””) fingerprint classification® and
earth resources image analysis.® Another important
technique in computer vision is constraint propa-
gation which has been used for scene labeling,“"*) low-
level vision® and shape matching.””” We describe a
way of combining syntactic and constraint propa-
gation techniques; in particular, we describe a hier-
archical constraimt process which consists of a hier-
archical shape model, 2 method for automatic con-
straint derivation from the model, and a method for
using the derived constraints in analyzing shape.

Syntactic patiern recognition proceeds in three
major steps: preprocessing, pattern representation
and grammatical analysis. Preprocessing improves the
quality of an image containing the shape, e.g. filtering,
enhancement, ‘etc. Pattern representation includes
segmenting the shape and associating the segments
with the parts in the syntactic model. Finally, the
primitive shape parts are organized according to the
syntactic model. As a result of the syntax analysis, a
parse tree is produced, and the parse tree can be used
not only for recognition purposes, but also as a
description of the shape.

A structural shape model describes the spatial
decorwysition of a shape and, consequently, must
describe the primitive parts composing the shape.

+This research was supported in-part by funds derived
from the United States National Science Foundation under
grant ENG-790437. .]

+Currently at DFVLR Oberpfaffenhofen, Institut fir
Nachrichtentechnik. :

Syntactic patiern recognition

Shape analysis " Relaxation operators

There are no established guidelines for choosing shape
primitives; however, there are several desirable char-
acteristics. Primitives should provide a compact de-
scription of the shape with little or no loss of infor-
mation, and the extraction of shape primitives from a

shape should be relatively simple using existing non-

syntactic techniques. Several classes of shape primi-
tives have been proposed including chainlets ® and
boundary segments determined by piecewise func-
tional approximations.® We use the latter as shape
primitives (see Section 4). '

2. THE HIERARCHICAL MODEL

Syntactic models for shape analysis have been
developed and investigated by many workers. With
some simple modifications, constraint analysis tech-
niques can be incorporated in a natural way into this
type of model. An extension of the geometrical gram-
mars of Vamos®® and Gallo"" is used to model
shape. '

the set of non-terminal symbols; P is the set of
productions; and S is the start symbol. Let V=
(NUT) be the set of vocabulary symbols. As-
sociated with every symbol ve V is a level number,
In(v), where In(v) is in the range (0,1,...,n) and n is the
level number of the start symbol. Every element of T
has level number 0. _

T consists of a set 6f symbols each of which
corresponds to a relatively large piece of the shape
modeled by the grammar, e.g. straight-edge approxi-
mations to the boundary of the shape.

N consists of a set of symbols each of which has a
level number from 1 to n associated with it. The start

197

A stratified context-free grammar, G, is 2 quadruple
(T, N, P, S) where T is the set of terminal symbols; N is

symbol has level n, and in any rule v: = g (the rewrite
part of a,production), if In(v) = k, then every symbol in
“the string a has level number (k — 1). Furthermore,
VeeV
v'=
part],
where , ,
{name part} is a unique name by which the
symbol is known,
{attachment part} is a set of attachment
« points of the symbol, and
[semantic part] is a set of predicates which
describes certain aspects of the symbol.

{name pérf) ‘{att'achxr.xe'ni part} [scmanfic'

'

P consists of producﬂons of the form (v:=a, A4, C .

Ga, Gs), where:

(1) v:=a is the rewrite part that mdlcates the
replacement of the symbol v by the group of symbols a,
where ve N and the string a = vlv2...
~In(vi) = (In(v) - 1), i = 1, k).

(2) A is a set of applicability conditions on the
syntactic arrangement of the vi.

(3) Cis a set of predicates describing the semantic
- consistency of the vi, that is, geometric and other
properties of the vi. -

(4) Ga consists of rules for generating the attachment
part of v.

(5) Gs consists of rules for generating the semantic

part of v.
Thus, the higher the level number of a vocabulary
symbol, the more of the boundary of the shape is
accounted for. For example, in the airplane grammar
described 1n '? the level 5 <head section) may
represent as many as 26 level 0 symbols, whereas the
- level 1 {engine) symbol is comprised of only 3 level 0
symbols. Moreover, a grammer is written to describe a
general class of shapes, say airplanes, and not some
particular airplane.

As an example of the productions of the grammar,
consider how the (cngme) symbol is formed (see Fig.

1):

{engine) {el, €2} [a, span] :=
{engine side) {el’, €2'} [a'] +
engine front) {el", 2"} [a"] +
{engine side) {el”, €2} [a"]

A: [Join (el’ or €2/, e1”) and Join (el or e2" or
€2, e2") or Join (el or e2', €2") and Join (el
ore2”, el”)]

C: [Parallel (@', @) and Length (') = Length

(a"') and Perpendicular (a', a") and Parallel
q(a”, Vector (Midpt (a'), Midpt (a")))]
Ga: [Set (el, Unjoined (el’, e2')) and
Set (€2, Unjoined (el", €2*)) or
Set (el, Unjoined (el", e2'')) and
Set (e2, Unjoined (el’, €2'))]
Gs: [a:=(a' + a')/2 and span := a"].

This rule specifies that an (engine) is composed of two
{engine side) symbols and an {engine front) symbol.

vk {(vieV and -

e : THoMAs C. HENDERSON and LARRY Dawis -~ RTT e —

. - Fig. 1. Example of a production.

A C, Gd and Gs can be viewed as a proémm for

producing {engine) from symbols on the right hand
side -of the rewrite rule. 4 specifies the physical
connections of the symbols on the right hand side, i.e.
that each end of the {engine front) has an {engine side)
attached to it, but the {engine side) symbols are not
connected to each other (see Fig. 1), where Join (x, y)

- means that x and y are the same point. C indicates that

the two (engine side) symbols should be paraliz], of
the same length, perpendicular to the {engine front)
symbol, and on the same side of the {engine front)>. Ga
and Gs describe the derivation of the attachment

points and semantic features for {engine); the un--

joined endpoints of the {engine side} symbols can be
given either attachment point name due to the sym-
metry of the symbol, where Unjoined (x, y) indicates
the endpoint which did not satisfy the Join predicate in
the applicability part of the production, and Set (x, y)
means that the point x of the hypothesis being created
is given the physical attributes of the existing endpoint
y. The main axis, a, is the average of those of the
{engine side) symbols, and the span is exactly that of
{engine front).

Stratified grammars naturally give rise to a large set
of contextual constraints on the organization of a
shape. It is these constraints which the hierarchical
constraint process will utilize to analyse shape.

3. CONSTRAINT GENERATION

We now discuss the procedures for deriving the local
constraints from the shape grammar. Two types of

constraints, syntactic and semantic, are described. The

semantic attributes of a vocabulary symbol are com-
puted from the attributes of the symbols which
produce it (see Knuth®) for a discussion of defining
semantics for context-free languages using both syn-
thesized and inherited attributes; (we use only synthe-
sized attributes). Consider a vocabulary symbol as
representing a piece of the boundary of a shape. If a
vocabulary symbol is part of a complete shape, then it
is adjacent to pieces of the shape which can combine
with it to produce a higher level vocabulary symbol.
Therefore, if the set of all possible neighbors of a
vocabulary symbol is known, and at one of its
attachment points no hypothesis for any of these
symbols exists, then that vocabulary symbol hy-

I

_ Hierarchical models and analysis of shape . 199 -

" pothesis can be eliminated. This type of constraint is

called a syntactic constraint. Without these constraints
several levels of vocabulary symbols might be built
before it could be determined that some hypothesis
lacked the appropriate context. The use of constraints,
however, makes it possible to detect much earlier the
lack of appropriate context. . - ‘

The other type of constraint involves some (usually
geometric) relation between ‘the semantic features of
two vocabulary symbols, e.g. the main axis of a
(plané); is paralle] to the main axis-of an {engine).
These kinds of constraints are called semantic con-
straints. This makes it possible for high level infor-
mation to be specified, e.g. the orientation of the
plane, and this information can be used to delete
hypotheses which are not consistent with the given
information.

Let G = (T, N, P, S), let v, w and xeV, let at(v)
denote the attachment points of v,and letave at(v). We
define .

(1) (v, av) Ancestor (w, aw)ifl 3pe P s therewriterule
of pis v:= ...w... and Jaw e ar(w) 3aw is identified
with at in Ga of p. Then we say that vis an ancestor ofw
through attachment point av of vand aw of w, where av
and aw represent the same physical location. For
example, in Fig. 1 the attachment points for the symbol
(engine) are associated with the unjoined attachment
points of the {engine sided symbols, thus making
(engine) an ancestor of (engine side) through any
choice of endpoints.

(2) (w, aw) Descendent (v, av) iff (v, av) Ancestor (w,
aw).

(3) (v, av) Neighbor (w, aw) iff

(a)3pe P atherewriterule of pisx := ... Do Wees
and aw is specified as being joined to av in the
applicability condition of p, or

(b) 2xeV with axear(x), and JyeV with
ay eat(y) 3(x, ax) Ancestor (v,av) and (¥, ay) Neighbor
(x, ax) and (w. aw) Descendent (y, ay).

" That is, vocabulary symbols are either directly speci-

fied as neighbors in a production, or they are neighbors
indirectly by being at the end of higher level symbols
which are neighbors.

_ Using matrix representations for these relations, the
descendents and neighbors of a symbol ata particular
attachment point can be computed (see Gries’* for
an introduction to binary relations, their represen-
tation using matrices and their manipulation). Let s be
the number of vocabulary symbols in G, and let the
Boolez®§gnatrix 4,,, be the square matrix of order s
whosc*™® jjth entry is 1 iff symbol v; is in relation A4 to
symbol t; through endpoint m of y; and endpoint n of v;
(consider the endpoints of vocabulary symbols to be
ordered). A relation (which is dependent on endpoints)

is then fully specified by a total of k* matrices, where k-

is the number of endpoints per symbol. However, if the
grammar is written so that endpoints are interchange-
able, then one matrix will define the relation, i.e. all k?
matrices are the same. The Ancestor relation, A, 1S
then specified by putting a 1 in the (i, j)th position of

A, if the condition given in the definition is satisfied.

The Descendent relation, D,,,, is just the transpose of

A, Given Apm Dy and In(S), ie. the level number of ~ - o

the start symbol, the neighbor relation, N, is com-

puted by iterating the following computation In(S) — 1

times: s v .
‘ k(- k- .
wgzvient s 5 {0, 3 g0

p= ¢=1 -

where + is Boélea.n ‘or’ and = is Boolean ‘and’, and
N is just the explicit neighbors given in the pro-

ductions. If a hypothesis fails to have a neighbor from .

this set, then that hypothesis can be deleted; this

relation constitutes the syntactic constraints.
'Semantic constraints can be generated in much the

same way as syntactic constraints: by defining binary

relations and computing their transitive closure. For ~

example, the axes of two symbols are parallel if a
production states this explicitly or by transitivity
through some third symbol. There are two methods for
dealing with semantic constraints relating 1o angles.

_ (1) Associate with each endpoint of 2 vocabulary -

symbol an end angle. Then, in either the serpantic

consistency or the applicability condition, indicate an -

allowed range of angle for two symbols to have if
joined at particular endpoints. This approach is anal-
agous to the syntactic neighbor case;now a relation is
defined between every two symbols joined at parti-
cular éndpoints, and the closure will give results for
implicit symbol neighbors (that is, even if two symbols

do not appear together in the right hand side of some

production, but are joined at a higher level). There are
several problems with doing things this way.

In practice, the range of the angle is too large 1o give
much extra constraint, and the explicit semantic
constraints in the productions are adequate. A more
serious problem concerns making use of the semantic
constraints in a more global way. Since arange of angle
is given at every endpoint, then if the allowed range is
computed for symbols several neighbors away, the
allowed range is useless as a constraint. .

(2) Alternatively, design special purpose relations
which when computed will yield semantic constraints
between vocabulary symbols. Such constraints can be
more general in nature and can be applied with much
more certainty. For example, the parallel relation can
be used 1o delete an {engine side) hypothesis that is

not parallel to some other {engine side) hypothesis.

Such relations also allow for semantic features to be
fixed (set to some constant), e.g. the orientation of the
main axis of a {plane) symbol could be set to 45° and
this certain information can be propagated through
the network of hypotheses. This can be done, for
example, by having global information available de-
scribing known orientations of the vocabulary sym-
bols. In this way, it is possible to determine whether
certain hypotheses can be deleted.

Nothing precludes the use of both methods; how-
ever, due to the reasons given above, only the special
purpose relations were used. In particular, the parallel

e

200 ‘ : THOMAS C. HENDERSON dnd LARRY Davis

relation was computed between all vocabulary sym-
bols. Note that not every symbol is necessarily parallel
to another symbol, and as pointed out above, some
hypothesized symbols may require other hypotheses of
the same symbols to exist, e.g. (engine side). The
parallel relation was computed using a binary-valued
matrix, whose rows and columns correspond to the
axes of the vocabulary symbols.
In general a transitive relation is computed as:

Pi= (PO 4+ T)uPO

where I is the Boolean identity matrix and P*®! is the
transitive closure of P%, the explicit parallel relation.
Computed this way a symbol is only parallel to itself if
there must exist another distinct hypothesis for the
same symbol. Relations which are not transitive, e.g.
perpendicular, require specxal procedures for their
computatxon :

4. GRAMMATICAL ANALYSIS OF SHAPE

As discussed in the introduction, a major problem
associated with syntactic pattern recognition is the
segmentation of the object into pieces which cor-
respond to the terminal symbols of the grammar. A
high false alarm rate implies that many primitives will
be generated, and correspondingly many terminal
symbols hypothesized from them, thus implying a
large search space. In order to overcome these difficul-
ties, a hierarchical constraint process (HCP) uses
hierarchical models of objects and uses model derived
constraints to eliminate inconsistent hypotheses at
each level of the model. In particular, using the
stratified context-free grammars already described,
syntactic (e.g. spatial concatenation) and semantic (e.g.
parallel, relative length, etc.) constraints can be auto-
matically generated to guide the analysis of a shape.

Primitives for the grammatical analysis are gene-
rated by computing several piecewise linear approxi-
mations to the boundary of the shape. A modified split-
and-merge algorithm® fits straight edges to the

~ boundary using the ‘cornerity’ measure proposed by
Freeman and Davis *® to choose break points. For
each point on the original boundary, an error measure
defined as the minimum distance from that boundary
point to the line segment which approximates a
boundary segment containing that boundary point is
computed. Then, an error measure for the line segment
is defined to be the sum of the errors of each underlying
boundary point. Primitives are generated at various
error thresholds by applying stricter thresholds to
segmentations already generated. By computing sev-
eral seqgaentations, it is hoped that all the necessary
primiwgg:s will be found. The search will be made
feasible by the constraints implied in the grammer and
imposed by the constraint techniques.

Once the segments are obtained, the relations
between the segments can be computed. The specific
relations computed depend both on the dimension-
ality of the grammar (e.g. string, tree, graph) and on

the’ semantics associated with the symbols of the
grammar. If the grammar is'a string grammar, then the

relationship of concatenation between segments must

be computed. Notice that for a set .of primitives -

corresponding to linear segments obtained by comput-
ing piecewise linear approximations to the border of

the shape, itis not straightforward to compute even the -

simple concatenation relationship, since we would not
expect that segments obtained from different approxi-
mations would exactly coincide at their endpoints,
rather than slightly overlap. Matters are made more
complicated by the fact that for short segments, a small
amount of overlap with a larger segment might lead
not only to the assertion that the two segments are
adjacent, but also that the larger one contains the
smaller. For relations more complicated than ad-
jacent, such as ‘Jeft of’, ‘right of’, and ‘inside’, the
correct definitions become more elusive (see Free-

man®? for a survey of models for computing spatial - -

relations and a discussion of the difficulties associated
with making such computations).

The association of terminal symbols with primjtives
will (in the limit) be to hypothesize every terminal for
each primitive. However, methods for reducing the
number of hypotheses include using 2 more global
analysis to derive indications of appropriate scale,
orientation, etc. from the simple global properties, e.g.

histogram selected features of the primitives them-
selves and use the model to infer properues of partxc-'

ular terminal symbols.
Each match of a terminal symbol to a segment
results in a node being entered into level 0 of the

network. That node (or hypothesis) corresponds to the -

hypothesis that the segment of the boundary should be
labeled with that specific terminal symbol. Nodes are
connected by an edge if the corresponding boundary
segments are physically adjacent. Note that a hy-
pothesis may be incorrect in one of two ways: (1) it
may associate the wrong terminal symbol with an
actual piece of the correct low level segmentation of the
shape, or (2) the segment itself may not be part of a
correct segmentation of the shape. In this case it does
not matter which terminal symbol is associated thh
that segment. :

The first problem can be overcome by assigning
every possible terminal symbol to every primitive.
Another idea is to histogram some feature of the
primitives, e.g. the length, and use this to restrict the
number of hypotheses. For example, the wing tipis one
of the shortest pieces in the decomposition of an
airplane shape, and therefore the very longest primi-
tives need not have the wing tip hypothesis. The second
problem can be circumvented by designing flexible
grammars, or by softening the hierarchical constraint
process to allow a certain number of missing pieces.

The hierarchical constraint system computes a
bottom- -up parse of the shape by applying the con-
straints to a network of low level hypotheses about
pieces of the shape. The processing of this network can
be easily described by specifying three simple pro-

{

.

W

I

o

Hierarchical models and analysis of shape ‘ o201

cedures and two sets which these procedures
manipulate.
" ‘Build’. Given level k of the network, ‘build’ uses the
productions of the grammar to construct nodes cor-

responding to level k + 1 hypotheses. Any level k
symbols which are used to generate a node at level
k + 1 are associated with that level k + 1 node as
supporting it, and it, in turn, is recorded as supported

by them. After all nodes are generated, nodes cor- -

responding to boundary segments sharing an endpoint
are linked, but only if the constraints allow the symbols
hypothesized for each node to be adjacent at that
endpoint. Building level 0 involves applying the seg-

ment#tion strategy to the shape to generate the level 0 -

nodes.

‘Constrain’. Since each node corresponds to a single
hypothesis, and since nodes are only linked to com-
patible nodes, the within level application of con-

straints simply involves removing a node if it has no
aeighbor at some endpoint.

‘Compact’. Given a node n at level k, if level k + 1
has been built, and n does not support a level k + 1

node; then n is deleted from the network. If any of the -

nodes which produced n have been deleted, then n is
deleted,-too.

These procedures operate on two sets of nodes, Rx
and ‘Rc, both of which are initially empty. When at
level k with Rx and Rc empty, ‘build’ produces the level
k + 1 hypotheses (or stopsif k = n) and puts them into
Rx while putting all level k nodes into Rc. ‘Constrain’
then removes nodes from Rx, taking no action if the
node has a neighbor at all endpoints, but otherwise
deleting the node from the network and putting its
same level neighbors in Rx and its across level

neighbors in Re. ‘Compact’ removes nodes from Re,

taking no action if all the node’s original supporting
nodes still exist at level k — 1, and the node still
supports at least one level k + 1 node (iflevel k + 1 has
been built); otherwise, ‘compact’ deletes the node from
the network and puts its same level neighbors in Rx
and its across level neighbors in Re.

HCP does not eliminate any hypothesis whxch
contributes to a complete parse. This can be seen as
follows. ‘Build’ simply generates the next level sym-
bols, and if used without ‘constrain’ and ‘compact’, will
produce all possible hypotheses at every level. ‘Con-
strain’ is applied to a set of nodes taken one at a time,
and if a hypothesis h is deleted, it is precisely for the
reason that at one endpoint of h, no neighboring
hypotheses can be joined to h to produce a higher level
symbol. As for ‘compact’, there are two cases to
consid®™ First, if a level k hypothesis is not used to
produce any level k + 1 hypothesis, then since level
k + 1 is only built once, that level k hypothesis will
never produce any higher level hypothesis. Thus,
eliminating it does not affect any complete parse.
. Finally, if a level k hypothesis h loses the support of one
or more of the hypotheses which produced it, then
clearly if h were part of some complete parse, then the
supporting nodes would be, too. .

Of course, constraints can be generated from gram-
mars that are not stratified, but the application of the
constraints will not prevent the repeated production of
symbols which fail to satisfy the constraints. Thisis due
to the fact that a hypothesis cannot be discarded since
it could be used at any time. However, stratification

-insures that level k symbols will be generated by ‘build’

only once.

The input to HCP consists of the compxlcd gram-

mar, that is, the productions of the grammar and the
derived constraints, and a set of primitives. Semi-
PASCAL versions of HCP, ‘constrain’ and ‘compact’
are: ' :

" Procedure HCP; S

- “begin ‘ ,
" constrain-set := compact -set := empty set;
©level :1= —1; .
while level < n do
" begin

level ;= level + 1;

Build (level);

while (constrain-set not empty) or

(compact-set not empty) do

begin
Constrain (constrain-set};
Compact (compact-set)
end;

end;

7 end;

Procedure Constrain (constrain-set);
while constrain-set not empty do
begin ,
node : = Next-in-set (constrain-set);
if not Satisfies (node) then
begin
Put-on-constrain (Neighbors (node)),
Put-on-compact = (Across-level-neighbors
(node));
Delete-from-network (node);
end;
end;

Procedure Compact (compact-set);
while compact-set not empty do
begin ’
node : = Next-in-set (compact-set);
if not Supportable (node) then
begin
Put-on-constrain (Neighbors (node));
Put-on-compact (Across-level-neighbors
(node));
Delete-from-network (node);
end;
end;

5. EXPERIMENTS

A grammar describing the top view of airplane
shapes (down 1o the level of detail of engines) has been

i

202 ' ' “THOMAS-C. HENDERSON and L_ARRY"D;Ms

“developed (see'? for the complete grammar). The

grammar consists -of 37 productions and has- seven
" levels of vocabulary symbols. We do not view parsing
as a recognition procedure, but rather as a process
which imposes organization on the shape (by forming

wings, engines, etc.). Recognition is subsequently

- performed by analyzing the organization.

We will describe the application of HCP to the top
view of airplanes. The 12 shapes used in this study were
obtained from the literature!® and from model air-
planes and boats. Figure 2 gives a typical shape.

The split-and-merge algorithm was used to obtain
piecewise linear approximations to the shape. The
algorithm was applied at several thresholds of good-
ness of fit. For these shapes two thresholds were used,
i.e. both a close fit and a loose fit were obtained. Figure
3 gives the primitives obtained from the shapein Fig. 2.

Once the primitives have been found, the initial
hypotheses for each primitive must be made. Results
reported here are with all possible hypotheses. HCP
was run with full constraints and with no constraints.

" Running HCP with no constraints builds every vocab-
ulary symbol which can possibly be built, regardless
of whether or not it can be part of a complete parse of
the boundary. A measure of efficiency can be defined in
terms of the number of nodes produced at each level

" versus the number of nodes absolutely necessary to -

produce the shape. Given a shape and a level, i, there s

-some fixed number of hypotheses, Na(i), which is
required to produce the shape. Let N (i) be the number
of nodes produced when no constraints were used, and
let N,(i) be the number of nodes produced when the
constraints were used. Then the efficiency of each
process can be given as:

eoi) = Na(i)/No(i) and e, (i) = Na(i)/N,().

" In the case of the boat shapes, Na(i) =0, and we
propose the following relative measure (where xt
exists):

0) = NyGNai).

Fig. 2. A typical airplane shape.

Fig. 3. Segmcination of shape in Fig. 2.

These measures reflect the efficiency of the processesin

terms of storage space used, where a value of e(i) = 1

" means that only as many nodes were produced at Jeveli

as were needed.

Table 1 gives a comparison of node efficiency ofJ
HCP for each shape at each level. The first row gives

the node efficiency when the complete network is built,

i.e. no constraints are applied to eliminate hypotheses..
The second row gives the node efficiency of HCP with

all constraints applied. For several shapes the node
efficiency remains fairly constant over. the first three
levels. This is due to the fact that the first two levels are
involved in the description of airplane engines, and if
the shape has no engines, then each symbol usually
gives rise to a single higher level counterpart. It should
be observed that HCP is consistently more node
efficient at all levels and converges much more rapidly
to the correct solution. As a matter of fact, HCP always

found the correct solution by level 5.

The plot given in Fig. 4 shows the average node

efficiency at each level of HCP with and without

constrants. This plot reveals that HCP is much more
efficient computationally as far as storage require-
ments are concerned.

- Table 1. Node efficiency

Node Level
Shape 0 1 2 3 4 5 6
4 11 .96 .26 .26 .74 1 1 {Ne Constraints)

.16 .16 .26 .34 9 1 1 (A1l Constraints)

8 210 .12 .17 .15 .24 .57 1
.14 .14 .17 .24 .BB 1 1

10 .11 .11 .15 .13 .16 1
<13 .13 .18 .19 1 1 1

11 .71 .83 .91 .81 = - - {Relative Eff.)

Avg. 211 .33 .18 .18 .38 .86 1
.14 .14 .20 .26 .96 1 1

| Rode
. Efficiency .5

Level

Fig. 4. Average node efficiency. Key: —— no constraints;
: —— - constraints.

6, CONCLUSIONS AND FUTURE RESEARCH

The hierarchical constraint process has been suc-
cessfully used to recognize silhouettes of airplanes. A
system of programs has been developed which auto-
matically generates syntactic and semantic constraints
for a given stratified shape grammar and applies them
and the grammar to analyze a set of low level
hypotheses about a shape. For an account of an earlier
set of experiments applying HCP to shape recog-
nition, see.’® The goals accomplished and reported in
- this study include:

(1) Programs written in FORTRAN for obtaining a
segmentation of a shape. These programs take as input
a chain code and produce as output a set of piecewise
linear approximations which includes segments from
various thresholds of goodness of fit.

(2) Hierarchical shape models with a semantic
component for specifying geometric relations between

. the pieces. The design and debugging of shape gram-
* mars is one major difficulty with using HCP. There are
no strict criteria for a best or even a good grammar, e.g.
no indication of the trade-off between the number of
symbols in the right hand side of the rewrite rules vs the
number of levels in the grammar. Automated gram-
matical inference may be helpful in these respects, but
the desirability of decomposing a shape into natural
pieces may require an interactive approach.

(3) Procedures for deriving syntactic and semantic
constrzi=ic that are implicit in the grammar. The
constr.ugs are generated prior to the analysis of the
data anc are compiled only once for a given grammar.
The semantic constraints can be added to HCP in a
modular fashion. The experiments run indicate that
the use of these constraints provides a great increase in
the efficiency of the analysis.

Several extensions can be made to improve HCP.
The syntactic constraints as currently implemented

Hierarchical models and analysis of shape .= G 203

require. every hypothesis to have-some supporting

hypothesis adjacent at each endpoint. This might be -

‘softened’ in ‘build’ by requiring that only some part of
the right hand side to be present, e.g. all but one symbol
there. This would provide a means of completing a
parse even if a correct hypothesis had been omitted.

Another possibility is to integrate hypothesis for-
mation into the constraint system. This will have a
major impact on the efficiency and performance of the
system. Instead of assuming that only level 0 symbols -
have semantic descriptions which can be directly
compared with the descriptions of the primitives, we
will assume that there are several levels of the grammar
at which this is possible. HCP would now begin by
detecting primitives at some suitably high level in the
grammar, and applying ‘constrain’, ‘compact’ and
‘build’ to the resulting layered network. Once HCP has
stabilized on this network (all higher levels constructed
and constraints satisfied), the surviving lowest level
hypotheses can serve to guide the search for still lower
Jevel, and probably even less reliably detected, pieces of
the shape. »

Many claims have been made'?®*!:® about the

relative efficiency of constraint processes when com-

pared with conventional search strategies, but very
little effort has been devoted to substantiating or
invalidating these claims (one study has been done by
Gaschnig).**) As another research goal, the com-
putational complexity of HCP needs to be investigated

by both analytical and empirical (e.g. simulation)

studies on abstractions of the pattern analysis pro-
blem. Only through such studies can we hope 10 assess
the real significance and practical importance of such
systems. P e . =

Hierarchical organization of shape and constraint
analysis have been shown to be useful concepts m
shape analysis. A method has been provided for
dealing with noise and ambiguity in the data. The
analysis of a shape is based on the local constraints
which can be generated from a high level model. These
constraints are applied at all levels of the model and
lead to a more efficient analysis.

SUMMARY

A major application of syntactic pattern recognition
is the analysis of shape. In order for the syntactic
approach to work, shapes to be analyzed must be
segmented appropriately into pieces which correspond
to the terminal symbols of some grammar, and these
pieces must subsequently be analyzed by a parsing
mechanism. Most syntactic methods assume that the
pieces can be easily found. However, in many real
problems, the design of a segmentation procedure that
can find (almost) all of the pieces will require the
acceptance of a high false alarm rate i.e. many of the
hypothesized pieces may not, in fact, be part of a
‘grammatical’ description of the shape.

Our proposed solution to this problem is to apply

——

contextual constraints at all levels of structural de-
scription of the shape in order to eliminate quickly a
 false alarm hypothesis. This requires two capabilities:
a method for deriving the constraints from our gram-
" matical ‘model, and a method for applying these
constraints to the hypothesized pieces. = .-

Shape grammars are developed which allow for the
description of syntactic ‘and semantic constraints
between symbols of the grammar. These grammars are
called stratified context-free shape grammars, and they
provide a strict hierarchical structure for vocabulary
symbols. From these grammars, syntactic and seman-
tic ‘constraints for all the vocabulary symbols can be
generated automatically.

The contextual constraints generated from a shape
grammar can be used by a hierarchical constraint
process in analyzing shapes. Such a process constitutes
a bottom-up, constraint-based parsing method which
attempts to overcome the combinatorial explosion in
searching {or a parse of the shape implied by the
segmentatlon strategy.

Examples of the application of this hierarchical
system to-airplane recognition are described.

REFERENCES

1. S. Horowitz, Peak recognition in waveforms, Syntactic
Patiern Recognition, Applications, K. S. Fu, ed., pp. 1- 3L
Springer, Berlin (1977).

2.. B. Moayerand K. S. Fu, Syntactic Pattern Recognition of
Fingerprints, Purdue University, TR-EE 74-36, Dec.
(1974).

3. J.M.Brayer,P.H. Swain and K. S. Fu, Modelmg of earth
resources satellite data, Syntactic Pattern Recognition,

" Applications, F. S. Fu, ed., pp. 215-—242 Springer, Berlin
(1977).

4. D. Waltz, Understanding line. drawmgs of scenes with
shadows, The Psychology of Computer Vision, P. H.
Winslon, ed., pp. 19-91. McGraw-Hill, New York (1975).

5. H. G. Barrow, A. P. Ambler and R. M. Burstall, Some
techniques for recognizing structures in pictures, Fron-
tiers of Partern Recognition, S. Watanabe, ed., pp. 1-29.
Academic Press, New York (1972).

6. A. Rosenfeld, R. A. Hummel and S. Zucker, Scene
labeling by relaxation operations, JEEE Trans. Systems
Man Cyberner. SMC6, 420-433 (1976).

" “THOMAS Ci HENDERSON‘and LARRY Davis’

7. L Davis, Shapc Matching Using Relaxation Operations,
University of Maryland, TR-480, Sept. (1976).

8. H. Freeman, On the encoding of arbitrary configu-

rations, IRE Trans. electron. Comput. EC10, 260-268
(1961).

9. T. Pavlidis, Linguistic analysis of waveforms, Software
Engineering, 3. Tou, ed., pp. 203-2
New York (1971).

10. T. Vamos and Z. Vassy, Industrial Pattern Recognition
Experiment — A syntax Aided Approach, Proc. Inst
Joint Con!. Pattern Recognition, pp. 445-452. Washing-
ton (1973}

11. V. Gallo, A Program for Grammatical Pattern Re-
cognition Based on the Linguistic Method of the De-
scription and Analysis of Geometrical Structures, Proc.
Int. Joint Conf. Artificial Intelligence, pp. 628-634,
Thilisi (1975).

12. T. Henderson, Hierarchical Constraint Processes for
Shape Analysis, Ph.D. Thesis, University of Texas, Dec.
(1979). -

13. D. Knuth, Semanncs of context-free languages, Maths. =

Systems Theory 2, 127-145 (1968).

14, D. Gries, Compiler Construction for Digital Compuzers, '

John Wiley, New York (1971).

15. T. Pavlidis and S. Horowitz, Segmentation of plane -

curves, JEEE Trans. Compur. C33, 860-870 (1974).
16. H.Freeman and L. Davis, A corper-finding algorithm for

chain coded curves, IEEE Trans. Comput. C26,297-303 - .

(1977).

17. . Freeman, The modeling of spatial relations, Comput.
Graphics Image Processing 4, 156-171 (1975).

18. K. You and K. S. Fu, Syntactic shape recognition, Image
Understanding and Information Extraction, Summary
Report of Research for the Period Nov. 1, 1976 10 Jan. 31,
1977, pp. 72-83 (1977).

19. T. Henderson and L. Davis, Shape recognmon using
hierarchical constraint analysis, Proc. Conf. on Pattern
Recognition and Image Processing, Chicago, Illinots,
Ausust (1979).

20. J. Gaschnig, A constraint satisfaction method for in-
ference making, Proc. of the 12th Annual Allerton Conf. on
Circuit and System Theory, University of Illmoxs, Oc-
tober (1974).

21. A. K. Mackworth, Consistency in networks of relations,
Artificial Intell. 8, 99-118 (1977).

22. J. Gaschnig, Experimental case studies of backtrack vs.
Waltz-type vs. new algorithms for satisfying assignment
problems, Proc. of the 2nd National Conference of the
Canadian Soc. for Computational Studies of Inielligence,
Toronto, Can., july 19-21, pp. 268-277 (1978).

About the Author - THoMAs C. HENDERSON received the B.S. degree from Louisiana State University in 1973
and the Ph.D. degree in Computer Science from the University of Texas, Austin, Texas, in 1979.

Dr. Henderson served as a Research Assistant in the Applied Research Laboratories at the University of
Texas from 1975 until 1979. In 1979 he joined the Institute of Communication Theory at the German
Aerospace Research Establishment in Oberpfaffenhofen, Germany where he is currently a Research
Associate. He has conducted research and published in the areas of shape analysis, artificial intelligence and

physiological psychology.

About the Author — LARRY S. DaVis received the B.A. degree from Colgate University in 1970 and M.S. and
Ph.D. degrees in Computer Science from the University of Maryland, College Park, Maryland, in 1972 and

q°76 respectively.

Dr. Davis served as a Research Associate in the Computer Vision Laboratory at the University of
Maryland in 1977.1n 1977 he joined the Computer Science Department at the University of Texas where he is
currently an Assistant Professor. He has conducted research and published in the areas of artificial
intelligence, picture processing, shape analysis and texture analysis.

Dr. Davis is a member of the Institute of Electrical and Electronic Engineers and the Association of

Computing Machinery.

25. Academic Press,

R

