CBCV: A CAD-Based Computer Vision System

Thomas C. Henderson, John Evans, Lane Grayston
Allen Sanderson, Leigh Stoller and Eliot Weitz

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Abstract

The CBCYV system has been developed in order to pro-
vide the capability of automatically synthesizing exe-
cutable vision modules for various functions like ob-
ject recognition, pose determination, quality inspec-
tion, etc. A wide range of tools exist for both 2D
and 3D vision, including not only software capabili-
ties for various vision algorithms, but also a high-level
frame-based system for describing knowledge about
applications and the techniques for solving particular
problems!.

1 Introduction

Computer Aided Design, or CAD as it is better
known, has many advantages to offer in the design
and development of manufactured items. Computer
vision, on the other hand, has yet to make major in-
roads into the manufacturing domain. We believe that
a closer tie between geometric models and computer
vision will lead to greater application of computer vi-

1 This work was supported in part by the National Science
Foundation under Grant INT-8909596. This work was also sup-
ported in part by DARPA (N00014-88-K-0689). This paper is
a revised version of[11, 12].

sion techniques in industry and to a more efficient and
effective manufacturing process.

In this paper, we examine the role of Computer
Aided Geometric Design models in providing support
for computer vision techniques. In particular, we ex-
amine the requirements placed on CAD systems to
achieve useful vision functions, and we take a look
at the nature of the representation differences be-
tween CAD and vision, and we describe Al techniques
for synthesizing executable computer vision modules
based on an analysis of the task requirements, hard-
ware and software available, and on the geometric ob-
ject under consideration.

We give detailed examples of both CAD and com-
puter vision systems, as well as synthesis techniques
for automatically deriving visual inspection, object
recognition, and pose determination modules. We
use the Alpha_l CAGD system, developed by Rich
Riesenfeld and Elaine Cohen and their colleagues at
the University of Utah for all of our design and 3D
data manipulation. Their system is a boundary rep-
resentation, B-spline based modeler, and provides ex-
ceptional design and analysis capabilities.

For the computer vision system, we use the IKS
(Image Kernel System). This developed out of an
early set of vision tools acquired from Bill Havens at
the University of British Columbia. The majority of
the current IKS system, however, has been developed
over the last few years at the University of Utah. The
functions range from low-level image to image process-
ing routines to 3D intrinsic characteristic functions for
the analysis of 3D range data.

The knowledge-based component of the system
described here has been developed on top of
PCLS (Portable Common Lisp Standard) in FROBS
(FRames and OBjectS). These systems were devel-
oped by Bob Kessler and the PASS (Portable Ai Sys-

temS) group at the University of Utah.

2 Computer Aided Geometric
Design

2.1 General Considerations

Computer vision has been an active research area for
over 25 years. In the past, emphasis was on low level
processing such as intensity and signal processing to
perform edge detection. More recently, models of ob-
jects and knowledge of the working environment have
provided the basis for driving vision systems. This is
known as model-based vision. The pursuit of the fully
automated assembly environment has fueled interest
in model-based computer vision and object manipu-
lation. This involves building a 3-D model of the ob-
ject, matching the sensed environment with the known
world and determining the position and orientation of
the recognized objects. The goal is to provide a so-
lution to the problem of visual recognition in a well-
known domain.

In the automation environment, recogni-
tion schemes and representations have typically been
constructed using ad hoc techniques. Although ob-
jects used in the assembly process are designed with
a CAD system, generally there is no direct link from
the CAD system to the robotic workcell. This means
the recognition systems are constructed independently
of the CAD model database. What is desired is a
systematic approach for both the generation of rep-
resentations and recognition strategies based on the
CAD models. Such a system provides an integrated
automation environment. The system is composed of
several components: a CAD system, a milling system,
a recognition system and a manipulation system. In
this paper, the automatic generation of recognition
strategies based on the CAGD model is studied. It
has also been determined that the use of shape, in-
herent in CAGD models, can also be used to drive
the recognition process. Others have been studying
portions of this system. Recent work by Ho has fo-
cused on the generation of computer vision models
directly from a CAGD model[l, 14].

The work described here investigates the use of
geometric knowledge in constructing 2D recognition
codes. These codes provide a robust mechanism for
recognition and localization of two-dimensional ob-
jects (occluded as well as non-occluded) in typical
manufacturing scenes.

One of the first researchers to study the auto-
matic synthesis of general recognition strategies was
Goad[7]. He was concerned with automatic program-
ming for 3-D model based vision. His work gener-
ated a recognition scheme for matching edges based
on a general sequential matching algorithm. His sys-
tem didn’t consider partial occlusion. However, this
was a major contribution since it was one of the first
attempts to automate the generation of recognition
schemes.

Another influential project was the 3DPO system
by Bolles and Horaud|3]. This work is the 3-D gener-
alization of the Local Feature Focus method[2]. Their
system annotates a CAD model producing what is
called the extended CAD model. From this model,
feature analysis is performed to determine unique fea-
tures from which to base hypotheses. The focus fea-
ture in their system is the dihedral arc. When the
recognition system finds a dihedral arc, it looks for
nearby features which are used to discriminate be-
tween model arcs with similar attributes. From these,
an object’s pose is hypothesized and subsequently ver-
ified.

Recently, Ikeuchi has explored the use of in-
terpretation trees for representation of recognition
strategies[15]. His system uses the concept of visible
faces to generate generic representative views, called
aspects. From this set of aspects, an interpretation
tree is formed which discriminates among the different
aspects. His system uses a variety of object features
such as: EGI, face inertia, adjacency information, face
shape, and surface characteristics. Most of these fea-
tures are based on planar faces. Others to work on
model-based vision include[4, 6, 8].

Hansen and Henderson[10] have also proposed a
CAD-based 3D recognition and localization scheme
based on strategy trees. That system isn’t depen-
dent on a certain class of features but rather can be
extended to include many classes of features. The
system also performs automatic selection of features
based on a set of constraints: feature filters. These
features are used to form a strategy tree which pro-
vides a scheme for hypothesis formation, corroborat-
ing evidence gathering and object verification. The
flexibility of this approach makes it significantly dif-
ferent from related work.

Our main goal of is the automatic synthesis of recog-
nition system specifications for CAD-based 2D and 3D
computer vision[9, 10, 17]. Given a CAD model of an
object, a specific, tailor-made system to recognize and
locate the object is synthesized.

To attain this goal, the following problems have
been studied:

1. Geometric Knowledge Representation: The
use of geometric data is central to a strong
recognition paradigm. Weak methods can only
be avoided when better information is available.
The Alpha_1 B-spline model allows the modeling
of freeform sculptured surfaces. To obtain the ge-
ometric features of interest for 3-D recognition,
techniques for the transformation to a computer
vision representation have been developed.

2. Automatic Feature Selection: The part to
be recognized or manipulated must be examined
for significant features which can be reliably de-
tected and which constrain the object’s pose as
much as possible. Moreover, such a set of features
must cover the object from any possible viewing
angle. In solving the feature selection problem,
a technique is available for synthesizing recogni-
tion systems. This produces much more efficient,
robust, reliable and comprehensible systems.

3. Recognition System Synthesis: Once a ro-
bust, complete and consistent set of features has
been selected, a recognition strategy is automat-
ically generated. Such a strategy takes into ac-
count the strongest features and how their pres-
ence in a scene constrains the remaining search.
The features and the corresponding detection al-
gorithms are welded, as optimally as possible,
into a search process for object identification and
pose determination. The automatic synthesis of
search strategies is a great step forward toward
the goal of automated manufacturing. Genera-
tion of strategies is constrained, not only by the
feature selection process but, by the actual task
to be accomplished. Thus, strategies for a spe-
cific task might not be as strong when applied to
a different task; strategies are task specific.

Alpha_1is an experimental CAGD based solid mod-
eler system incorporating sculptured surfaces[5]. It
allows in a single system both high quality computer
graphics and freeform surface representation and de-
sign. It uses a rational polynomial spline representa-
tion of arbitrary degree to represent the basic shapes
of the models. The Alpha_1 modeler allows the user to
design an object by giving a sequence of commands.
These commands define the geometry of the object.
At the same time, the result of each command can
be viewed in a separate window. Although specific

Alpha_1 commands are given here, we use them to
describe a more general philosophy of design. The
underlying motivation is to exploit wherever possible
the geometric modeling system functions to provide
the information required to support computer vision
applications.

2.2 Front Suspension Shock Linkage

To illustrate our modeling philosophy, we will use the
design of a front suspension shock linkage. This part
was designed by Samuel H. Drake at the University
of Utah, and was actually milled and used in a small
off-road vehicle built for the SAE Mini-Baja student
competition.

The design is specified in such a way so as to facil-
itate the machining and automatic inspection of the
part. The following commands bring in the (Lisp) def-
initions of design features (e.g., pockets, holes, etc.)
and set up reference axes.

{

load features; — Load feature definitions

setSrfNorms(T);
Xref := XAxis; — Define coordinate axes
Yref := YAxis;

Zref := ZAxis;
};

Now, a set of bounding lines can be defined; the re-
verseObj command is used to keep the normal point-
ing into the shape (i.e., each bounding line has an
orientation).

{

UpLinkConstLinel := lineVertical(-0.5);
UpLinkConstLine2 := lineVertical(2.5);
UpLinkConstLine3 := lineHorizontal(0.75);
UpLinkConstLine4 := lineHorizontal(-0.75);
UpLinkConstLineb := reverseObj(
lineHorizontal(0.5));
UpLinkConstLine6 := lineHorizontal(-0.5);
UpLinkConstLine7 := lineHorizontal(0.44);
UpLinkConstLine8 := reverseObj(
lineHorizontal(-0.44));
UpLinkConstLine9 := reverseObj(
lineVertical(0.875));
UpLinkConstLinel0 := lineVertical(1.5);

Similar commands (not shown) define the remain-
ing points, arcs, and segments needed to specify the
shape. Note that the shape is defined in the x-y plane.
The object’s profile can now be defined:

UpLinkProfilel := profile(UpLinkConstPt3,
UpLinkConstArc3, UpLinkConstArc4,
UpLinkConstPt5, UpLinkConstPt8,
UpLinkConstArcl, UpLinkConstArc2,
UpLinkConstPt9, UpLinkConstPt10,
UpLinkConstArch, UpLinkConstArc6,
UpLinkConstPt14, UpLinkConstPt3);

Now we define the bounding z positions and extrude
the shape in 3D:

UpLinkExPt1 := pt(0.0, 0.0, 0.55);
UpLinkExPt2 := pt(0.0, 0.0, -0.55);
UpLinkShape := extrude(UpLinkProfilel,

UpLinkExPt1, UpLinkExPt2, T, T);
b

Thus, the basic shape is defined. Next, we add a hole:

UplinkFixHole2 := objTransform(hole(origin,
0.3125, 0.15, 0.0, T), tx(1.325), tz(0.075));

We can view the hole shape with the profile shape.
However, to actually put the hole through the pro-
file surface, we need to perform a Boolean subtrac-
tion. First, we store the two shapes (as defined by the
variables UpLinkShape and UplinkFixHole2) to a file
named UpLinkTestOp.al.

dumpalFile(list(UpLinkShape, UpLinkFixHole2

), " UpLinkTestOp.al”);

At the shell command level, we then perform the
Boolean set operation which subtracts the hole from
the main shape:

cs > set_op < UpLinkTestOp.al > UpOut.al

The final object is shown in Figure 1.

The geometric specification facilitates the direct ex-
traction of object features. However, many modeling
systems do not allow this. Therefore, the easiest way
to provide models for a 2D vision system is to ren-
der an image from the CAD model and provide that
image as the training set to the 2D vision system.

Figure 1: Rendering of Linkage

3 The FROBS Knowledge and
Rule Base

The knowledge-base component of CBCV is written
in FROBS (FRames + OBjectS) which is an object-
oriented frames package that runs on top of Common-
Lisp and provides:

e object oriented programming

frame based programming
e daemons
e rule based programming.

An overview of the system is given here; for more
details, see the FROBS Manual[16].

3.1 Overview of FROBS

The basic building block of the FROBS package is
called a module. Modules consist of a class FROB and
all of its associated methods. This provides for total
method and data access hiding with no distinction
between methods and slots. The organization of class
FROBs can be viewed as a tree structure, although
more complicated schema-type structures are possible
through multiple inheritance. FROB class instances
are leaves of the tree.

The class frob is used to define the structure of in-
stance frobs of that class. It is also the frob that dae-
mons and methods are defined over. Inheritance of
methods is done through the class frobs. A special
feature of the class frob is that it is an instance of
itself. It can be used like any other instance of the
class. Figure 2 shows how an algorithm class FROB
and a subclass FROB are defined.

FROBS are used to build both the knowledge-based
vision system and the application system it synthe-
sizes. This allows templates in the knowledge-based
system to be directly used in the application system.
The concept of logical sensors is implemented eas-
ily using objects to form logical sensors[13]. Class
FROBS represent logical sensor templates to be in-
stantiated for application system synthesis.

Most importantly, the FROBS package provides
forward chaining rules as well as slot daemons. Slot
daemons are useful for automatic data consistency
checking and hidden slot calculations. The forward
chaining rules provide the mechanism needed to cre-
ate the knowledge base.

3.1.1 System Support

The knowledge-based system must have utilities for
supporting the networking of logical sensors and ob-
jects. These utilities provide the foundation from
which the system is built. Higher level utilities are
built on top of lower level ones for sophisticated sys-
tem operations. The lowest level utility functions
should have a maximal amount of flexibility since it
is not known what or how more powerful constructs
built upon them will be used. In the prototype system
they are implemented as methods attached to FROB
classes which define major components of the system.
These classes and their methods form the templates
from which application systems are synthesized. The
application specific rules use knowledge of these tem-
plates to apply the line interpretation rules by rely-
ing on the transparent nature of the methods to han-
dle lower level hardware or operating system specific
tasks.

An example is the FROB representing the class of
cameras. Knowledge about operating this class of

(def-class algorithm nil
:slots (name
size
language
machine))

(def-class feature-calculator ({class algorithm})

slots (feature-type
focus-type))

Figure 2: Example of FROB Class Definition

(def-rule select-Iff

‘type ((7req requirements))

:;prem((not (member 'Iff (applications
req))

(equal 'recognition (task
req))

:conc ((assert-val Treq ’applications
(cons 'if (applications
req))

(make class system-specs
:task 'recognizer
:method "Iff
‘time (time ?req)

:space (space Treq)
:accuracy (accuracy

7req))))

Figure 3: A FROB Forward Chaining Rule

camera is represented in a “run” method which is lo-
cal to the class. It executes operating system com-
mands which are not of concern to the object using
the method. A “run” method is also provided to other
sensors which have other operating system commands
which are transparent to the caller of the method.

3.1.2 Language Issues

Since the application system is created from FROBS
in the same environment as the knowledge-based sys-
tem, the application system runs in the Common Lisp
environment. To require that all of the algorithms in
the system be written in Common Lisp would be a
severe restriction to its flexibility. The object-based
approach allows algorithms written in any language
to be incorporated into the system as an algorithm
object.

Methods are used to run the algorithm and provide
it with the necessary I/O. Since the internal repre-
sentation of the object is transparent to I/O from the
outside, algorithms written in any language can be
incorporated into the system as long as there are low
level utilities in the system to support the methods
which run them.

4 2D Capabilities Applications

Although the general goal of CAD-Based Computer
Vision is to recover the 3D nature of the objects in

a scene, many tasks can be handled using 2D tech-
niques. This amounts to extracting regions of interest
from the 2D image and analyzing the features of those
regions. There are many approaches to this problem,
and we present two simple techniques which are avail-
able in CBCV: global feature matching and Local Fea-
ture Focus.

Both techniques require that objects in the image
be separated from the background and that distinct
connected regions have unique labels. Then, features
are computed for each region. Global features are
derived from some measure of the entire set of pixels
of the region; for example, area is a global feature.
Local features are those which are restricted in spatial
extent and only require a small percentage of pixels
from the region; corners and holes are examples of
local features.

Figure 4 shows the steps involved in applying these
matching techniques. The training data is used to
construct a model of the object under consideration.
As indicated earlier, such a model is usually based on
visual features of the object; other kinds of features
could be used, such as weight or surface roughness,
but those will not be considered here. The standard
approach to get the visual features of the object is to
examine several views (digital images) of the object.
These then constitute the training data, and after the
features of the object are extracted, then some sta-
tistical analysis of the features is performed. Robust
features are then selected to represent the object; that
is, the mean values of the features are determined as
well as their variances. Finally, some sort of compar-
ison measure is selected; this includes both distance
functions (e.g., Euclidean, Mahalanobis, Manhattan),
as well as similarity measures (e.g., the correlation co-

Figure 4: Vision Paradigm

efficient).

The images used as training data can be obtained
several ways. Sometimes an actual part is available
and images are taken from the camera and image ac-
quisition system. When a CAD model is available,
the test images can be produced by rendering several
views of the object. Alternatively, one view is suffi-
cient if the statistical properties of the feature calcu-
lation processes are known.

It may be possible to determine the vision model
directly from the CAD model without resorting to the
use of images. For example, the surface area of a face
can be calculated from the definition of the profile
curve. When using manufacturing features such as
pockets or holes, their dimensions are usually part of
the definition of the part. In this case, ideal values are
obtained, and it is necessary to take into account the
error introduced by the manufacturing process and
the image acquisition system.

4.1 Global Feature Matching

The feature class is defined as a very simple class con-
sisting of these slots:

e name: the name of the feature,
e command: the executable command line, and

e features: a list comprised of:

— a select switch (T or NIL)
— the mean value of the feature, and

— the variance of the feature.
The FROB definition for this is:

(def-class feature nil

:slots (name
command
features

Once the feature class has been defined, individual
features can be defined. For example, the area feature
is defined as:

(def-class area class feature
:init ((nil (name ’area)

(command " path/area”)))
)

Thus, area is a feature and has the name ’area’ and is
invoked by running 'path/area’ at the shell level. Of
course, 'path’ must be expanded into the correct path
to the area binary file.

Other features are defined similarly: aspect, diam-
eter, nl, n2, n3, n4, nd, nb, n7, perimeter and thin-
ness. These frames comprise the knowledge (at this
level of the ISA hierarchy) about features. However,
to create executable instances requires the definition
of the 'make’ method. for example:

(def-method (class area make) ()
(let ((instance (new-instance $self)))
instance))

defines a method for making instances of the area fea-
ture.

Now we can define useful methods which operate
on features. The most basic operation is to run the
feature operator on an image to produce a feature
. value for each connected region in the image:

(def-method (class feature run) (inputdata)
(let ((stream (start-feature-process inputdata
(command $self))))
(unwind-protect
(read-feature-output stream)
(close stream))))

The start-feature-process function takes inputdata as
the segmented image and passes it to the feature com-
mand line. The output is then piped into the variable
stream and is read from there by the read-feature-
output function which is returned as the value of the
method.

For example, to run the area feature on the image
scene.img, the following command is issued:

(run {class area} “scene.img”)

4.1.1 An Example

We now give an example of CBCV using the global
feature matching technique to inspect the linkage.
The training command is given first:

(setq *r* (make-recognizer :hint ’global
‘training-data *crocfiles™))

where *crocfiles* is a FROB variable that has the
name of the training files. The result is an algorithm:

Figure 5: Scene Image for Global Matching

ALGORITHM 0 has the following values:
(ALGORITHM ALGORITHM) = GLOBAL 0
(ALGORITHM HINT) = GLOBAL
(ALGORITHM OCCLUSION) = NIL
(ALGORITHM SPACE) = NIL
(ALGORITHM TIME) = NIL

(ALGORITHM NAME) = NIL

All features are tested for robustness, and in this case,
only perimeter, n7, diameter, and area survive. Next,
the global matcher can be run on a scene image (see
Figure 5):

(match *r* :image-data “scene-image.img”))
Then the results of the global analysis are reported:
Feature match success: ”scenel-seg.img”

T

4.2 Local Feature Matching

The Local Feature Focus method proposed by
Bolles[2] is a robust 2D shape recognition and local-
ization scheme. The method is organized as follows:

e Model Building

Enumeration of potentially useful features
Location of structurally equivalent features
Enumeration of secondary feature groups

Selection of secondary feature groups

AR

Ranking of focus features
e Recognition and Localization

1. Get scene features

Figure 6: Model Superimposed on Scene

2. Match focus graph

3. Generate hypothesis (including pose trans-
formation)

4. Verify match

4.2.1 An Example

We will now use this technique to locate the linkage
part. The CBCV system invokes a sequence of fil-
ters to obtain the features from the CAD image of
the object. First, a boundary file is produced. Next,
the center of mass of the object is found: (104.326981
104.861526); this is used to produce feature descrip-
tions located with respect to the object’s center of
mass. The corners are found next. From this infor-
mation, the feature types are determined. From this
information, the focus features are determined. This
then constitutes the model.

Given a scene, as shown in Figure 5, the system
must discover the transformation. The features in the
scene are determined in much the same way as for the
model image. After matching model features to scene
features, the system identifies the transformation, and
produces the match shown in Figure 6.

5 Current Work

We are currently working on integrating the 3D strat-
egy tree approach into the knowledge-based system
(CBCV) described above. We hope to be able to
model freeform surfaces of objects in the Alpha_l
CAGD system, and to automatically synthesize recog-
nition or pose recovery executable codes by analysis of
the features. Note that manufacturing features such
as holes, pockets, etc. are a direct part of the Alpha_1

design language. Once the discovery of complete, con-
sistent and robust feature sets from the CAGD model
can be done reliably, then range data analysis rou-
tines can be invoked to solve the particular application
problem.

These methods can also be used for reverse engi-
neering, as well as for object validation. We have
recently acquired a very precise coordinate measure-
ment machine; a coarse to fine approach is under de-
velopment for producing a CAGD model directly from
the measurements of the object.

The ultimate goals include the ability to:

e validate any object for which a CAGD model
exists, and

e reverse engineer a CAGD model from a phys-
ical instance of an object.

Acknowledgements

We would like to thank the members of the Alpha_1
group for putting the CAD into our CAD-Based vision
work.

References

[1] B. Bhanu and C.C. Ho. CAGD-Based 3-D Ob-
ject Representations for Computer Vision. [EEE
Computer, 20(8):19-36, August 1987.

[2] R.C. Bolles and R.A. Cain. Recognizing
and Locating Partially Visible Objects: The
Local-Feature-Focus Method. Robotics Research,
1(3):57-82, 1982.

[3] R.C. Bolles and P. Horaud. 3DPO: A Three-
Dimensional Part Orientation System. Robotics
Research, 5(3):3-26, 1986.

[4] C.H. Chen and A.C. Kak. A Robot Vision Sys-
tem for Recognizing 3-D Objects in Low-Order
Polynomial Time. [EEE Transactions on Sys-
tems, Man and Cybernetics, 19(6):1535-1563,
1989.

[5] E. Cohen. Some Mathematical Tools for a Mod-
eler’'s Workbench. IEEE Computer Graphics and
Applications, 6366, October 1983.

[6] P.J. Flynn and A.K. Jain. CAD-Based Computer
Vision: From CAD Models to Relational Graphs.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 13(2):114-132, 1991.

7l

[10]

[13]

C. Goad. Special Purpose, Automatic Program-
ming for 3D Model-Based Vision. In Proceedings
of the DARPA Image Understanding Workshop,
pages 94-104, DARPA, 1983.

E. Grimson and T. Lozano-Perez. Model-Based
Recognition and Localization from Sparse Range
or Tactile Data. Robotics Research, 3(3):3-35,
Fall 1984.

C.D. Hansen. CAGD-Based Computer Vision:
The Automatic Generation of Recognition Strate-
gies. PhD thesis, The University of Utah, Salt
Lake City, Utah, July 1988.

Charles D. Hansen and Thomas C. Henderson.
CAGD-Based Computer Vision. IEEFE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, PAMI-11(10):1181-1193, 1989.

Thomas C. Henderson, J. Evans, L. Grayston,
A. Sanderson, L. Stoller, and E. Weitz. CBCYV:
A CAD-Based Vision System. Technical Re-
port UU-CS-90-013, University of Utah, Depart-
ment of Computer Science, June 1990.

Thomas C. Henderson, J. Evans, L. Grayston,
A. Sanderson, L. Stoller, and E. Weitz. CBCV:
A CAD-Based Vision System. Bild und Ton,
43(12):364-367, 1990.

Thomas C. Henderson, FEliot Weitz, Chuck
Hansen, and Amar Mitiche. Multisensor Knowl-
edge Systems: Interpreting 3D Structure. Inter-
national Journal of Robotics Research, 7(6):114~
137, 1988.

C.C. Ho. CAGD-Based 3-D Object Representa-
tions for Computer Vision. Master’s thesis, Uni-
versity of Utah, Salt Lake City, Utah, June 1987.

K. Ikeuchi. Model-Based Interpretation of Range
Imagery. In Proceedings of the DARPA Im-
age Understanding Workshop, pages 321-339,
DARPA, 1987.

Eric Muehle. FROBS Manual. Technical Re-
port PASS-note-86-11, University of Utah, Octo-
ber 1986.

Eliot Weitz. Knowledge-Based 2D Vision System
Synthesis. Master’s thesis, University of Utah,
Salt Lake City, Utah, June 1987.

