CBCV: A CAD-Based Vision System (1)

Thomas C.Henderson, John Evans, Lane Grayston, Allen Sanderson, Leihg Stoller, Eliot Weitz;

University of Utah, Department of Computer Science, Salt Lake City

1.Introduction
Computer'Aided Design, or CAD as ist is bet-
ter known, has many advantages to offer in
the design and development of manufac-
tured items. Computer vision, on the other
hand, has yet to make major inroads into the
manufacturing domain. We believe that a
closer tie between..geometric models and
computer vision will lead to greater applica-
tion of computer vision techniques in indus-
try and to a more efficient and effective man-
ufacturing process.
In this report, we examine the role of Com-
puter Aided Geometric Design models in
providing support for computer vision
techniques. In particular, we examine the re-
quirements placed on CAD systems to
achieve useful vision functions, andplanar
faces. A very specific interpretation tree is
generated for an object using a set of object
specific rules. The rules were selected by
hand rather than generated automatically.
There doesn’t appear to be any algorithmic
approach for the ap, and on the geometric
object under consideration.
We give detailed examples of both CAD and
computer vision systems, as well as synthe-
sis techniques for automatically deriving vis-
ual inspection, object recognition, and pose
determination modules. We use the Alpha-1
CAGD system, developed by Rich Riesenfeld
and Elaine Cohen and their colleagues at the
University of Utah for all of our design and 3D
data manipulation. Their system is a bound-
ary representation, B-spline based modeler,
and provides exceptional design and
analysis capabilities.
For the computer vision system, we use the
IKS (Image Kernel System). This developed
out of an early set of vision tools acquired
from Bill Havens at the University of British
"Columbia. The majority of the current IKS
system, however, has been developed over
the last few years at the University of Utah.
The functions range from low-level image to
" image processing routines to 3D intrinsic
characteristic functions for the analysis of 3D
range data.
The knowledge-based component of the sys-
tem described here has been developed on
top of PCLS (Portable Common Lisp Stan-
dard) in FROBS (FRames and OBjectS).
These systems were developed by Bob Kes-
sler and the PASS (Portable Ai SystemS)
group at the University of Utah.

2.Computer Aided Geometric Design
2.1.General Considerations

Computer vision has been an active research
area for over 25 years. In the past, emphasis
was on low level processing such as intensity

and signal processing to perform edge detec-
tion. More recently, models of objects and
knowledge of the working environment have
provided the basis for driving vision sys-
tems. This is known as model-based vision.
The pursuit of the fully automated assembly
environment has fueled interest in model-
based computer vision and object manipula-
tion. This in volves building a 3-D model of
the object, matching the sensed environ-
ment with the known world and determinig
the position and orientation of the recog-
nized objects. The goal is to provide a solu-
tion to the problem of visual recognitionin a
well-known domain.

In the automation environment, recognition
schemes and representations have typically
been constructed using ad hoc techniques.
Although objects used in the assembly pro-
cess are designed with a CAD system, gener-
ally there is no direct link from the CAD sys-
tem to the robotic Workcell. This means the
recognition systems are constructed inde-
pendently of the CAD model database. What
is desired is a systematic approach for both
the generation of representations and recog-
nition strategies based on the CAD models.
Such a system provides an integrated auto-
mation environment. The system is com-
posed of several components: a CAD sys-
tem, a milling system, a recognition system
and a manipulation system. In this paper, the
automatic generation of recognition
strategies based on the CAGD model is
studied. It has also been determined that the
use of shape, inherent in CAGD models, can
also be used to drive the recognition process.
Others have been studying portions of this
system. Recent work by Ho has focused on
the generation of computer vision models di-
rectly from a CAGD model [2], [15].

The work described here investigates the use
of geometric knowledge in constructing 2D
recognition codes. These codes provide a
robust mechanism for recognition and locali-
zation of two-dimensional objects (occluded
as well as non-occluded) in typical manufac-
turing scenes.

One of the first researchers to study the au-
tomatic synthesis of general recognition
strategies was Goad [11]. He was concerned
with automatic programming for 3-D model
based vision. His work generated a recogni-
tion scheme for matching edges based on a
general sequential matching algorithm. His
algorithm proceeded in three steps: (1) pre-
dict a feature, (2) observe (match) a feature,
and (3) back-project (refine the object
hypothesis based on step 2). These three
steps form a template which is used by the
automatic programming phase. He used a

unit sphere to gather loci of view angles
(camera positions) which represent orienta-
tions of the object. The only features used
were straight edges from intensity images
and the search trees were generated from a
template and ordered by hand rather than
automatically. His system didn’t consider
partial occlusion. However, this was a major
contribution since it was one of the first at-
tempts to automate the generation of recog-
nition schemes.

Another influential project was the 3DPO sys-
tem by Bolles and Horaud [4]. This work is the
3-D generalization of the Local Feature Focus
method [3]. Their system annotates a CAD
model producing what is called the extended
CAD model. From this' model, feature analysis
is performed to determine unique features

from which to base hypotheses. The focus fea- -

ture in their system is the dihedral arc. When
the recognition system finds a dihedral arc, it
looks for nearby features which are used to
discriminate between model arcs with similar
attributes. From these, an object’s pose is
hypothesized and subsequently verified.
Recently, lkeuchi has explored the use of in-
terpretation trees for representation of rec-
ognition strategies [16]. His system uses the
concept of visible faces to generate generic
representative. views, called aspects. From
this set of aspects, an interpretation tree is
formed which discriminates among the dif-
ferent aspects. His system uses a variety of
object features such as: EGI, face inertia, ad-
jancency information, face shape, and sur-
face characteristics. Most of these features
are based on planar faces. A very specific in-
terpretation tree is generated for an object
using a set of object specific rules. The rules
were selected by hand rather than generated
automatically. There doesn’t appear to be
any algorithmic approach for the application
of the rules to discriminate between the as-
pects. The branching on the tree seems to be
a function of the particular aspects chosen
rather than being based on the geometric in-
formation in the model.

Hansen and Henderson [13] have also prop-
osed a CAD-based 3D recognition and locali-
zation scheme based on strategy trees. That
system isn‘t dependent on a certain class of
features but rather can be extended to in-
clude many classes of features. The system
also performs automatic selection of fea-
tures based on a set of constraints: feature
filters. These features are used to form a
strategy tree which provides a scheme for
hypothesis formation, corroborating evi-
dence gathering and object verification. The
flexibility of this approach makes it signific-
antly different from related work.

Out
ofr
bas
[22
cific
catt
To

hav
1.G
The
strc
can
isa
low
sur
inte

res
2.8
be
exe
be
obj
Mc
the
In
tec
niti
fici
sys
3.F
rok
tur
eg'
eg'
an
the
col
we
sei
po
sis
tov
ing
no
by
str
str
str
Th
the
au
tui
gc
de
gi
tic
Cc
drr
C/
fo
pe
ar
ce
SE
fo
st
pr
us
ra
re

Our main goal of is the automatic synthesis
of recognition system specifications for CAD-
based 2D and 3D computer vision [12], [13],
[22]. Given a CAD model of an object, a spe-
cific, tailor-made system to recognize and lo-
cate the object is synthesized. :
To attain this goal, the following. problems
have been studied:

1.Geometric Knowledge Representation:
The use of geometric data is central to a
strong recognition paradigm. Weak methods
can only be avoided when better information
is available. The Alpha_1 B-spline model al-
lows the modeling of freeform sculptured

surfaces. To obtain the geometric features of .

interest for 3-D recognition, techniques for
the transformation to a computer vision rep-
resentation have been developed.

2. Automatic Feature Selection: The part to
be recognized or manipulated must be
examined for significant features which can
be reliably detected and which constrain the
object's pose as much as possible.
Moreover, such a set of features must cover
the object from any possible viewing angle.
In solving the feature selection problem, a
technique is available for synthesizing recog-
nition systems. This produces much more ef-
ficient, robust, reliable and comprehensible
systems.

3.Recognition System Synthesis: Once a
robust,- complete and consistent set of fea-
tures has been selected, a recognition strat-
egy is automatically generated. Such a strat-
egy takes into account the strongest features
and how their presence in a scene constrains
the remaining search. The features and the
corresponding detection algorithms are
welded, as optimally ‘as possible, into a
search process for object identification and
pose determination. The automatic synthe-
sis of search strategies is a great step forward
toward the goal of automated manufactur-
ing. Generation of strategies is constrained,
not only by the feature selection process but,
by the actal task to be accomplished. Thus,
strategies for a specific task might not be as
strong when applied to a different task;
strategies are task specific.

The remainder of this paper explains how
these three components can be.exploited to
automate the process of selecting proper fea-
tures and recognition schemes for specific
goals. Algorithms are described which were
developed for feature selection and which

give supporting evidence for their formula- -

tion.

Computer vision utilizes object models in a
different manner than computer graphics or
CAGD. In CAGD, the models must contain in-
formation about the 3-D object for rendering,
performing finite element analysis, milling

and other processes. Computer vision is con-’

cerned with recognition of the objects from
sensory data. CAGD models must contain in-
formation for the local design operations
such as what shape to extrude or what is the
profile curve for a sweep operation. Features
used in construction of models are implicitly
rather than explicitly used in the CAGD rep-
resentation. For example, a dihedral edge

formed from two adjoining surfaces isn’t
modeled as an edge per se but as two sur-
faces with adjacency information.
Constructive solid geometry (CSG) and
boundary representations are the best un-
derstood and currently most important rep-
resentation schemes in computer aided de-
sign. Present day 3-D wireframe models used
in CAD and model-based vision have -many
deficiencies including ambiguity — it is easy
to build a wireframe model that can be sur-
faced in several ways [19]. In CSG, the basic
idea is that complicated solids can be rep-
resented as various ordered "additions” and
"subtractions” of simpler solids by means of
modified versions of Boolean set operators-
union, difference and intersection [18]. For
inherent boundary representations a
number of different approaches are used.
These include Coons patches, bicubic sur-
face patches, Bezier methods and B-splines
[11.

Most Geometrical Modeling Systems (GMS)
use a limited class of primitives such as re-
ctilinear blocks and conic surfaces (cylinders,
cones and spheres). Although these suffice
to design a large number of conventional un-
sculptured parts, a GMS which includes
sculptured solids is highly desirable. Also
since the sculptured design is surface
oriented, it is easier to incorporate it in a
boundary based system. In general, bound-
ary modelers tend to support stepwise con-

“struction of the models more easily than CSG

modeiers but require greater data storage.
CSG modelers are inadequate for modeling
sculptured parts: they have no capability at
all for constructing and using sculptured sur-
faces as part of the boundary of the solid
model. Some advantages of boundary rep-
resentation are: there are many known sur-
face models available from which to choose
[1]: the mathematics of surface representa-
tion is well developed and complex shapes
can often be represented with a single primi-
tive [8], [21]; and it results in an intuitive
model. A minor disadvantage is that it may
be difficult to ensure the validity of a bound-
ary representation of a set. On the other
hand, CSG representations are not unique in
general, since a solid may be constructed in
many ways; the final result may not be easily
visualized by looking at the primitives. How-

ever, the CSG representation is concise, val-
idity is guaranteed and such a representation
can be easily converted to a boundary rep-
resentation. The comparison of CSG and
boundary representation methods can be
found in [19], [20]. :

Until recently it was not possible to carry out

.Boolean operations on sculptured surfaces.

Work by Thomas [21] attempts to combine
the best attributes of CSG and surface-based
representation systems by using subdivision
techniques developed by Cohen et al. [10]. -
He uses a uniform boundary representation.
The "primitives” are solids bounded by B-
spline surfaces. As compared to the other
work in solid modeling, his method does not
require that the objects being combined have
closed boundaries; they must only satisfy a
weak completion criterion. Thus this method
results in a powerful shape description sys-
tem which allows the combination of primi-
tives using set operations into arbitrarily-
complex objects bounded by curved sur-
faces and the production of a model which
represents such objects. Adjacency informa-
tion about surface points and the intersection
curve between two surfaces as a polyline can
be obtained. Although he has used B-spline
surfaces, his techniques are applicable to any
surface representation scheme [8]. All this
work has been incorporated in the Alpha_1
system [9]. (More details about Alpha_1 are
presented below.) Thus, the advantages of
both CSG and sculptured surface representa-
tion can be obtained in the shape representa-
tion of objects and the combination of ob-
jects via set operations. As a result of these
significant advances in CAGD, we decided to
use the Alpha_1 system for exploring the
computer vision application.

Alpha_1 is an experimental CAGD based
solid modeler system incorporating
sculptured surfaces [9]. It allows in a single
system both high quality computer graphics
and freeform surface representation and de-
sign. It uses a rational polynomial spline rep-
resentation of arbitrary degree to represent
the basic shapes of the models. The rational
spline includes all spline polynomial rep-
resentations for which the denominator is tri-
vial. Nontrivial denominators lead to all conic
curves. Alpha_1 uses the Oslo algorithm [10]
for computing discrete B-splines. Subdivi-

1 - Design and Viewing Control Windows

2MRR

Liaim AR AR TAaAAAL A0

VT

2 Surface Grid for Main Shape of Linkage

3 Rendering of Main Shape of Linkage

sion, effected by the Oslo algorithm, sup-
ports various capabilities including the com-
putation associated with Boolean opera-
tions, such as the intersection of two arbi-
trary surfaces [21]. B-splines are an ideal de-
signtool, they are simple yet powerful; many
common shapes can be represented exactly
using rational B-splines. For example, all of
the common primitive shapes used in CSG
systems fall into this category. Other advan-
tages include good computational and rep-
resentational properties of the spline approx-
imation: the variation diminishing property,
the convex hull property and the local inter-
polation property. There are techniques
for matching a spline-represented boundary
curve against raw data. Although the final
result may be an approximation, it can
be computed to any desired precision
(which permits nonuniform sampling). At
present, tolerancing information is not in-
cluded in the object specification in Alpha_1
system.

Given the CAGD model (perhaps by combin-
ing several modeling paradigms), a corres-
ponding set of vision models (with some
control structure) is generated. Once these
models are available, they provide the basis
for standard 2-D and 3-D scene analysis. An
early example of such an interactive system
is the ACRONYM system [5], [6] designed for
applications in computer vision and manipu-
lation. The world is described to ACRONYM
as volume elements and their spatial re-
lationships and as classes of objects and
their subclass relationships. It uses a hybrid
CSG and general sweep scheme for the rep-
resentation of rigid solids. The representa-
tions are CSG-like trees whose leaves are
generalized cylinders. Like PADL (a geomet-
ric modeling system [7]) it allows variation in
size, limited variation in structure and vari-
ation in structural relationships of the mod-
eled objects. However, in ACRONYM, it may
be difficult to design algorithms for comput-
ing properties of objects.

The Alpha_1 modeler allows the user to de-
sign an object by giving a sequence of com-
mands. These commands define the
geometry of the object. At the same time, the
result of each command can be viewed in a
separate window. Although specific Alpha_1
commands are given here, we use them to de-
scribe a more general philosophy of design.
The underlying motivation is to exploit wher-
ever possible the geometric modeling system
functions to provide the information required
to support computer vision applications.

2.2.Front Suspension Shock Linkage

To ‘illustrate our modeling philosophy, we
will use the design of a front suspension
shock linkage. This part was designed by
Samuel H.Drake at the University of Utah,
and was actually milled and used in a small
off-road vehicle built for the SAE Mini-Baja
student competition.

The design is specified in such a way so as to
facilitate the machining and automatic in-
spection of the part. The annotated specifica-
tion is now given. First, an X window is pro-
vided so that the result of every geometry
creating command can be viewed. A control
window is also provided for viewing trans-
formations (see Figure 1).

% creates geometry for the front suspension
shock linkage for Mini Baja vehicle

grab xgen; —Grab an X window to display the
results

The next commands bring in the (Lisp) defini-
tions of design features (e.g., pockets, holes,

- etc.) and set up reference axes.

{ .

load features; — Load feature definitions
setSrfNorms(T);

Xref := XAxis; — Define coordinate axes
Yref := YAxis;

Zref := ZAxis;

I A

Now, a set of bounding lines can be defined;
the reverseObj command is used to keep

the normal pointing into the shape (i.e., .

each bounding line has an orientation).

{

UpLinkConstLine1 := lineVertical(-0.5);

UpLinkConstLine2 := lineVertical(2.5);

UpLinkConstLine3 : = lineHorizontal(0.75);

UpLinkConstLine4 := lineHorizontal
(—0.75);

UpLinkConstLine5 := reverseObij(lineHori-
zontal(0.5));

'UpLinkConstLine6 : = lineHorizontal

(—0.5);

UpLinkConstLine7 := lineHorizontal(0.44);

UpLinkConstLine8 := reverseObj(lineHori-
zontal(—0.44));
UpLinkConstLine9 := reverseObj(lineVer-

tical(0.875));
UpLinkConstLine10 := lineVertical(1.5);
The following commands define the remain-
ing points, arcs, and segments needed to
specify the shape. Note that the shape is de-
fined in the x-y plane.

_UpLinkConstArc1 := arcRadTan2Lines

(0.275, UpLinkConst
Line7, UpLinkConst
Line9)$

UpLinkConstArc2 := arcRadTan2Lines
(0.275, UpLinkConst
Line9, UpLinkConst
Line8)$
UpLinkConstPt1 := centerOfArc (UpLink
ConstArc1);
UpLinkConstPt2 : = centerOfArc (UpLink
ConstArc2);
UpLinkConstCir1 := circleCtrRad (UpLink
ConstPt1, 0.585)$
UpLinkConstCir2 := circleCtrRad (UpLink
- ConstPt2, 0.585)$
UpLinkConstPt3 := ptintersect2Lines
(UpLinkConstLine2,
UpLinkConstLine5);

UpLinkConstPt4 := ptintersect2Lines

(UpLinkConstLine5, Up
LinkConstLine10);
UpLinkConstPt5 := ptintersect2Lines
(UpLinkConstLine3, Up
LinkConstLine1);

" UpLinkConstLine11 := linePtCircle (UpLink

ConstPt4, UpLink
ConstCir1, T);
UpLinkConstLine12 := linePtCircle (UpLink
ConstPt5, UpLink
ConstCir1, nil);
UpLinkConstPt6 := ptintersectCircleLine
(UpLinkConstCir1,
UpLinkConstLine11);
UpLinkConstPt7 := ptintersectCircleLine
(UpLinkConstCir1,
UpLinkConstLine12);

v 1

4 Surface Grid of Shape with Solid for Hole

5 Rendering of Shape with Solid for Hole

6 Surface Grid of Boolean Combined Surfaces

Upl

Upl

Upl

Upl

Upl

Upl!

Upl!

Up

Up

Up

Up

Up

Up

Th
Up

7 Rendering of Linkage

p

8 Orthogonal Hendering of the Linkage

UpLinkConstArc3 := arcRadTan2Lines
(0.275, UpLinkConst
Line5, UpLinkConst
Line11)$
UpLinkConstArc4 := arcEndCenterEnd (Up
LinkConstPt6, UpLink
ConstPt1, UpLinkConst
Pt7)$
UpLinkConstPt8 : = ptintersect2Lines (Up
LinkConstLine1, UpLink
ConstLine7);
UpLinkConstPt9 : = ptintersect2Lines (Up
LinkConstLine1, UpLink
ConstLine8);
UpLinkConstPt10 := ptintersect2Lines (Up
LinkConstLine1, Up
LinkConstLine4);
UpLinkConstPt11 := ptintersect2Lines (Up
LinkConstLine8, Up
LinkConstLine10); '
UpLinkConstLine13 := linePtCircle (UpLink
ConstPt10, UpLink
ConstCir2, T);
UpLinkConstLine14 := linePtCircle (UpLink
ConstPt11, UpLink
ConstCir2, nil);
UpLinkConstPt12 := ptintersectCircleLine
' (UpLinkConstCir2, Up
LinkConstLine13);
UpLinkConstPt13 := ptintersectCircleLine
(UpLinkConstCir2, Up
LinkConstLine14);
UpLinkConstArc5 := arcEndCenterEnd (Up
LinkConstPt12, UpLink

ConstPt2, UpLinkConst

Pt13)$

UpLinkConstArc6 := arcRadTan2Lines
(0.275, reverseObj(Up
LinkConstLine14), Up
LinkConstLine6)$

UpLinkConstPt14 := ptintersect2Lines (Up
LinkConstLine6, Up
LinkConstLine2);

The object’s profile can now be defined:

UpLinkProfile1: = profile (UpLinkConstPt3,

UpLinkConstArc3, — Create the 2D shape

UpLinkConstArc4, UpLinkConstPt5,
UpLinkConstPt8, UpLinkConstArc1,
UpLinkConstArc2, UpLinkConstPt9,
UpLinkConstPt10, UpLinkConstArc5,
UpLinkConstArc6, UpLinkConstPt14,
UpLinkConstPt3)$

Now we define the bounding z positions and
extrude the shape in 3D:

UpLinkExPt1 := pt(0.0, 0.0, 0.55); — Define

the z extent and extrude the

shape

UpLinkExPt2 := pt(0.0, 0.0, -0.55);

UpLinkShape := extrude (UpLinkProfile1,

" UpLinkExPt1, UpLinkExPt2,

T,T$:

¥

Thus, the basic shape is defined (see Figures

2 and 3). Next we add a hole:

UplinkFixHole2 := objTransform (hole(ori-
gin, 0.3125,0.15, 0.0, T),
tx(1.325), t2(0.075))$ —
Define a hole feature

We can view the hole shape with the profile

shape as shown in Figures 4 and 5. However,

\

to actually put the hole through the profile.

surface, we need to perform a Boolean sub-
traction. First, we store the two shapes (as
defined by-the variables UpLinkShape and
UpLinkFixHole2) to a file named UpLinkTest
Op.al.

dumpatFile (list(UpLinkShape,
Hole2), “UpLinkTestOp.a1”)$

UpLinkFix

Atthe shell command level, we then perform
the Boolean set operation which subtracts
the hole from the main shape:

cs>set_op<UpLihkTestOp.a1>Up0ut.a1

The final object is shown in Figures 6 and 7.
2.3. Model Synthesis)

The geometric specification described in the
previous section facilitates the direct extrac-
tion of object features. However, many mod-
eling systems do not allow this. Therefore,
the easiest way to provide models for a 2D vi-
sion system is to render an image from the
CAD model and provide that image as the
training set to the 2D vision system.

That is what we have done here. However,
the viewing parameters must be carefully
selecteds in order to produce an orthogonal
view of the object. Figure 8 shows such a

rendered version of the linkage. This consti- _

tutes the input, then, to the computer vision
training techniques.

Note that this method also permits the
analysis of arbitrary surface geometries,
whereas a syntactic approach to discovering

surface features in tHe Alpha_1 specification,
may be quite complicated.

3.The FROBS Knowledge and Rule Base
The knowledge-base component of CBCV is
written in FROBS (FRames + OBjectS) which
is- an object-oriented frames package that
runs on top of CommonlLips and provides:

B object oriented programming

B frame based programming

B daemons

H rule based programming.

An overview of the system is given here; for
more details, see the FROBS Manual [17].
3.1.Overview of FROBS

The basic building block of the FROBS pack-
age is called a module. Modules consist of a
class FROB and all of its associated methods.
This provides for total method and data ac-
cess hiding with no distinction between
methods and slots. The organization of class
FROBs can be viewed as a tree structure, al-
though more complicated schema-type
structures are possible through multiple in-
heritance. FROB class instances are leaves of
the tree.

The class frob is used to define the structure
of instance frobs of that class. It is also the
frob that daemons and methods are defined
over. Inheritance of methodsis done through
the class frobs. A special feature of the class
frob is that it is an instance of itself. It can be
used like any other instance of the class. Fi-
gure 9 shows how an algorithm class FROB
and a subclass FROB are defined.

FROBS are used to build both the knowledge-
based vision system and the application sys-
tem it synthesizes. This allows templates in
the knowledge-based system to be directly
used in the application system. The concept
of logical sensors ‘is implemented easily
using objects to form logical sensors [14].
Class FROBS represent logical sensor
templates to be instantiated for application
system synthesis.

Most importantly, the FROBS package pro-
vides forward chaining rules as well as slot
daemons. Slot daemons are useful for au-
tomatic data consistency checking and hid-
den slot calculations. The forward chaining
rules provide the mechanism needed to
create the knowledge base.

3:1.1. System Support

The knowledge-based system must have
utilities for supporting the networking of log-
ical sensors and objects. These utilities pro-
vide the foundation from which the system is
built. Higher level utilities are built on top of

(def-class algorithm nil

:slots (name
size
language
machine

(def-class feature-calculator ({class algorithm})

9 Example of FROB class Definition

:slots (feature-type
focus-type))

(def-rule select-1ff
:type ((?req requirements))

:prem((not (member "Iff (applications ?req)))
(equal ’recognition (task ?req)))
:conc ((assert-val ?req ’applications
(cons "Iff (applications ?req)))

(make class system-specs
:task ’recognizer
:method ’Iff
‘time (time ?req)

:space (space 7req)
:accuracy (accuracy 7req))))

(

10 A FROB Forward
Chaining Rule

lower level ones for sophisticated system op-
erations. The lowest level utility functions
should have a maximal amount of flexibility
since it is not known what or how more pow-
erful constructs built upon them will be used.
In the prototype system they are im-
plemented as methods attached to FROB
classes which define major components of
the system. These classes and their methods
form the templates from which application
systems are synthesized. The application
specific rules use knowledge of these
templates to apply the line interpretation
rules by relying on the transparent nature of
the methods to handle lower level hardware
or operating system specific tasks.
An example is the FROB representing the
class of cameras. Knowledge about operat-
ing this class of camera is represented in a
“run” method which is local to the class. It
executes operating
which are not of concern to the object using
the method. A "run” method is also provided
to other sensors which have other operating
system commands which are transparent to
"the caller of the method. '
3.1.2. Language Issues .
Since the application system is created from
FROBS in the same environment as the
knowledge-based system, the application
system runs in the Common Lisp environ-
ment. To require that all of the algorithms in
the system be written in Common Lisp would
be a severe restriction to its ﬂe)kibility. The
object-based approach allows algorithms
written in any language to be incorporated
into the system as an algorithm object.
Methods are used to run the algorithm and
provide it with the necessary I/0. Since the
internal representation of the object is trans-
parent to I/O from the outside, algorithms
written in any language can be incorporated
into the system as long as there are low level
utilities in the system to support the methods
which run them.
3.1.3. Object Communication Protocol
When designing a CBCV vision system using
objects, there must be a well defined way for
one object sensor to pass information to
another. Logical sensors address this problem
in an abstract sense, but a specific protocol
must be chosen which has the flexibility to ac-
cept all kinds of data. The protocol is rep-
resented in the slots and methods of the logi-
cal sensor objects. There must be a way to

system commands

pass information from machine to machine as
well as an efficient way to pass information in
the Lisp environment itself. We separate the
two as different types of information passing,
file piping and S-expression passing.

Passing S-expressions between objects is a
trivial task. All that is required is a slot in the
algorithm object which stores the expression
to be passed. This slot is read by any object
requiring the expression as input. To per-
form file piping on any hostin the system, the
simplest approach is to use the Unix pipe
facility which allows executables to work as
filters passing their output to the next pro-
gram in the pipe. This is the easiest im-
plementation since it is supported by the re-
mote shell command “rsh” which is used to
perform tasks on remote machines. It re-

quires, however, that most programs writte

for the knowledge-based system be writter{yt
in filter form on machine supporting Unix,
This is not an unreasonable requirement -
since Unix is a widely supported Operating .

system and itis good modular styleto have 5
system designed with filters. Other pro.

grams can be run as well as filters although i :

is up to the user to supply names and flagsin
slots of the object which contains the pro-
gram. Only filters are handled "automati-
cally” by the piping method.

" At some point in the CBCV system'’s opera-

tion, information from a remote machine wil|
have to be read by an object in the Lisp envi-
ronment or vice-versa. This requires some
special processing on the part of the me-
thods performing the pipe. To send the S-ex-
pression output of a Lisp algorithm to a non-
Lisp algorithm, certain conventions must be
adopted. The program receiving the S-ex-
pression must know that its input is in such a
form. Each algorithm in the knowledge base
must have information regarding what for-
mat it expects its input to be in and what for-
mat is produced as output. This is done with
methods using slot information in the al-
gorithm object. These methods. determine
what format conversions are necessary for
information piped between algorithms. In-
formation transfer between machines is per-
formed when objects have slots indicating
that their executables are on different
machines.

Informiertsein —Voraussetzung fiir erfolgreiche Unternehmen

Zu den traditionellen Produktionsfaktoren
Grund und Boden, Kapital und Arbeit ist in
jingster Zeit — und zunehmend verstérkt —
ein neuer Produktionsfaktor getreten, der un-
ter der Bezeichnung Information zusammen-
gefal3t wird und besonders in der elektroni-
schen und mikroelektronischen Industrie
von Bedeutung ist. Informationen entstehen
dabei in einem Unternehmen intern selbst,
von wesentlicher Bedeutung sind aber ex-
terne Informationen fir die erfolgreiche Un-
ternehmensfihrung, deren Beschaffung
meist zeit- und kostenaufwendig ist.

Hier haben sich zur L&sung der Zielstellung
Nachweis und Beschaffung von externen In-
formationen internationale Datenbanken
herausgebildet, die im Online-Betrieb unmit-
telbar im Dialog mit dem Anfragenden Aus-
kunft geben. Auf dem Gebiet der Technik,
einschlieBlich Elektrotechnik/Elektronik,
steht das Fachinformationszentrum Technik
(FIZ Technik) in Frankfurt (Main) an vorder-
ster Stelle. Das FIZ Technik wird von den drei
Industrieverbanden ZVEl (Zentralverband
der Elektrotechnik- und Elektronik-Industrie),
VDMA (Verband Deutscher Maschinen- und
Anlagenbau) und Gesamttextil sowie den In-
genieurverbédnden VDE (Verband Deutscher
Elektrotechniker) und VDI (Verein Deutscher
Ingenieure) und weiteren getragen. FIZ
Technik und seine Vorgéngerorganisationen

bieten seit rund. 15 Jahren Online-Daten-
banken an. Heute betreibt FIZ Technik
rund 60 solcher Online-Datenbanken, die
grundsatzlich fur jedermann zugénglich
sind.

Der direkte Zugang <(Dialogbetrieb) zur FIZ-
Datenbank ist durch den Anfragenden Gber
einen Personal-Computer (Schnittstelle V.
24), ein Modem und das 6ffentliche Daten-
ferntbertragungsnetz (Datex-P) méglich.

In den Datenbanken kann dann mit einer ein-
fachen Abfragesprache gearbeitet werden.
Die Abfragesprache umfaBt Funktionen, wie
.Suche”, ,Informationsausgabe”, ,Wérter-
buchausgabe” der Suchbegriffe, ,Suchlo-
gik”, ,Datenbankwechsel”, ,Dialogende”
usw. .

Beim FIZ Technik werden verschiedene Fach-
literaturdatenbanken im Bereich der Technik
gefiihrt. Zu ihnen gehéren Arbeitsschutz
(BAU-LITDok), Elektrotechnik/Elektronik/
Physik (ZDE, INSPEC), Informationswissen-
schaft (INFODATA), Kunststoffe/Kautschuk/
Fasern (DKI), Maschinenbau/Fertigungs-
technik (DOMA), Medizinische Technik
(MED/TEC) und metallische Werkstoffe
(SDIM2, METADEC). Weitere Datenbanken
betreffen die Bereiche Unternehmensfih-
rung, Hersteller, Produktinformationen und
Wirtschaftskontakte, Normen und Richtli-
nien.

