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Abstract—A major appllcatldn of syntactlc pattern recognition is the

analysns of two-dimensional shape. This paper describes a new syntactic
shape analysis technique which combines the constraint propagation
-~ * techniques which have been so successful in computer vision with the

syntactic representation techniques which have been successfully applied
to a wide variety of shape analysis problems. Shapes are modeled by
stratified shape grammars. These grammars are designed so that local
constraints can be compiled from the grammar describing the appearance

" of pieces of shape at various levels of description. Apphcahons to the " trees (the engine position, e.g., can distinguish between a Boe-

ing 747 and a DC10). This leads to much larger grammars and:
often less efficient. parsers (especlally when the number of .,]" L

_ analysis of airplane shapes are presented

" Index Temzs-—Artlfic;al mtelhgence, relaxatxon procedure, shape rec-
ognmon, syntactic pattem recognition. FRRRT

I INTRODUCTION o

HIS paper presents anew approach to shape representa’aon :

and recognition based on a union of constraint propaga-

tion procedures and syntactic pattern analysis procedures. -
Constraint propagation procedures have been applied to a wide
- variety of problems in computer vision, especially low-level -
vision. They can, to a great degree, overcome the intrinsic am-

biguity to assigning descriptions (such as “horizontal edge,”

initially assigning a set of labels (descriptions) to each picture

part and then iteratively updating each labeling based on label- :
"ings at “adjacent” parts and a model of label compatibility -
-~ (usually expressed as a relation). Their advantages include lo-
" cality, since only “adjacent” parts interact, and speed, since

each iteration is performed in parallel to each picture part.
Davis and Rosenfeld [1] contain a recent survey. '

must be segmented into pieces which we shall call primitives.

* Each primitive must then be assigned a terminal symbol name
~ . from the grammar at hand. The resulting string (or cycle) can

- then be parsed by an appropriate parsing mechanism, which
can even be designed to account for a limited number of miss-
_ ing symbols, extraneous symbols, and incorrect symbols. The

7 advantages of the syntactic approach include its flexibility in

““analyzing noisy and dlstorted data and the orgamzatxon 1t im-
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levels.
Syntactic pattern analysis techniques have been extenswely

applied to problems in planar shape recognition and analysis -
- (Fu [2]). In order to apply the syntactic paradigm, a shape

- Manuscript received November 30, 1979; revxscd April 3, 1980 This

poses on the data by generating a parse tree. Although itis
possible in applying syntactic techniques to a recognition prob-
lem to design a specific grammar for each recognition class

(such as a Boeing 747 or a DC10), the more general approach, . V

and the one adopted in this paper, is to design a single grammar

for the largest class of shapes (e.g., airplanes) and then to rec- e

ognize specific shapes based on an analysis of the resulting parse

recognition classes is small). o
There are, however, several shortcommgs of tlus syntactxc

B “:'vapproach (some of which are partially overcome by top-down £

parsing; see, e.g., Stockman [3]). They include

1) the necessity for computing a umque segmentatton of the , T

shape into primitives, and

2) the requirement of assxgmng a smgle termmal symbol v

name to each primitive. . -« -

© In computer vision it has been recogmzed that any smgle seg- e

mentation based on low-level analysis will be bound to contain "

e ®rrors, i.e., missing segments, extraneous segments, etc., because
* “vertical edge™) to image parts (e.g., pixels). They operate by -

of the many scales of events in an image (Marr and Hildreth

[4]). One way to overcome the problem of missing segments .
is to allow for multiple, overlapping pnmmves on parts of the A

shape which are difficult to segment. i g
Furthermore, it is also the case that a premature comrmtment :
to a single description of each piece will be highly erroneous. b
These errors can be catastrophic as processing reaches hlgher '
‘ A more conservative approach assigns all plausible de-
scriptions or labels to each piece and allows higher level pro-
cesses to disambiguate the labelings of each piece.. o

- We will therefore adopt the position that the shape to be :
analyzed will be decomposed into many, possibly overlapping,
primitives, and that each primitive will be labeled with all plau- °

sible terminal symbol names. A level-0 hypothesis will denote
the association of a smgle pnmmve with a single terminal.
symbol. . oo

. The goal of the syntax analy51s procedure is to discover all
subsets of the set of level-0 hypotheses which can be used to
form a parse of the shape. Note that many (probably most) of

the level-0 hypotheses will not be part of any such grammatical

subset—it is the contention of this paper that the sooner it is
discovered that a level-0 hypothesis (or, as we shall see,alevel-n -

hypothesis) cannot be part of a grammatical description of the -
shape and can therefore be discarded from further considera-;

tion, the more efficient, in space and time, the grammatical

'analysxs will be. Such superfluous hypotheses can be dlSCOV- N
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ered by constraint propagation procedures which apply local
constraints on the appearance of a shape to a hierarchical net-
work of hypotheses about the shape. We describe how such
local contextual constraints can be generated from a particular
class of shape grammars, called stratified context-free shape
- grammars. These constraints are not only derived for terminal
symbols, but for symbols at all levels of description.

Thus, the grammar plays two important roles, as follows:

1) as a source of constraints on the local appearance of the
shape, and s

2) as a model for imposing organization on larger and larger
pieces of the shape. o .

The remainder of this paper is devoted to the description of
a shape analysis process, called a hierarchical constraint process
for integrating these two roles of grammars into one bottom-
up, constraint-based parsing procedure. They are an extension
of the hierarchical relaxation process described in Davis and

Rosenfeld [5]. The thrust of this paper is primarily how this

integration is accomplished, and only secondarily is it con-
cerned with grammar design, except to the extent that the
grammars be of a form from which constraints can be derived.

The hierarchical constraint process can be compared with
other recently proposed syntactic shape analyzers. Pavlidis
and Ali [6] suggest that many shape analysis problems can be
solved using relatively simple grammars (i.e., finite-state) whose
terminal symbols are themselves syntactic objects (corners,
arcs, etc.) and whose input is a piecewise linear approximation
to the shape being analyzed. They describe applications to
~ character recognition and printed circuit board analysis. They
do not deal explicitly with the problem of superfluous hypoth-
- eses, although their system could be extended to handle this

v ~ problem. In fact, the type of constraints described in Section

.. HI could be applied to a network of hypotheses about the lo-

- cations at “corners,” “arcs,” etc., so that the parser of Pavlidis
- and Ali can be extended to include constraint propagation
" techniques. : et ,
- Tang and Huang [7] do explicitly consider the problem of

 superfluous hypotheses and propose a solution to the problem
based on the design of what they call a “creation machine.” A
creation machine is an abstract mechanism which applies for-
mal language theory to the construction of strings which are
prefixes of sentences of the language for the grammar at hand.
The syntactic-semantic grammars described by Tangand Huang
are similar to the stratified grammars presented in Section II.

In contrast to the creation machine, the hierarchical constraint.

process finds locally ungrammatical fragments at all positions
in the shape (rather than just grammatical fragments at the be-
ginning) and propagates the effects of deleting those fragments

“. from the current set of hypotheses about the shape. Thus, the
- creation machine of [7] and the hierarchical constraint process -

described in this paper represent different approaches to solv-
- ing the same problem. Again, it would be possible to integrate
the constraint propagation procedures employed by the hier-

archical constraint process into the design of Tang and Huang’s.

creation machine. ‘

The remainder of this paper is organized as follows. Section I

discusses the grammatical formalism adopted-stratified context-

free shape grammars. They are similar to other existing gram-

- known,
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matical formalisms, e.g., the geometrical grammars of Vamos - -
[8] and Gallo [9], as well as the more recent syntactic-

-semantic grammars of Tang and Huang [7] or You and Fu .

[10]. The class of grammars discussed in Section IT has no
more formal power than any of these other formalisms, but is
designed so that local contextual constraints can be compiled
from them for use by the hierarchical constraint process. Sec-
tion III discusses how local constraints are compiled from the
grammar, while Section IV discusses how the hierarchical con-
straint process applies the constraints in conjunction with the
grammar to the analysis of a shape. Section V includes experi-

ments in airplane shape analysis and discusses both storage and

time requirements of the hierarchical constraint process. Sec-
tion VI introduces an extension of hierarchical constraint pro-

~ cess to uncertain hypotheses; finally, Section VII contains a
summary and conclusions. BRI R e

Il THE GRAMMATICAL SHAPE MopeL
This section introduces the grammatical formalism used by
the hierarchical constraint process. The principal design cri-

terion of this formalism is that local constraints on the appear- ) ;‘ i

ance of the shape can be compiled from the grammars. The

- shape grammars which we will consider are an extension of

the geometrical grammars suggested by Vamos [8] and Gallo .
[9]; they are similar to other formalisms in the literature (see -
SectionI). - . By :

- We define a stratified context-free éramin)zrr G as a 4-tu§lé,
C(TLN,P,S),where oco o

T is the set of terminal symbols, =~ =~
N is the set of nonterminal symbols,

P is the set of productions, and
§ is the set of start symbols.

Let V= (N U T)be the set of vocabulary symbols. -

Associated with every symbol v € V is a level number,ln(v). LA :
. For each terminal symbol v, In(v) =0. The set of terminal =~

symbols corresponds to the smallest segments of the shapes
modeled by the grammar, e.g., short straight-edges of the

shape boundary. . o D
. Each nonterminal symbol has a level number from 1 to n as- £

sociated with it. A start symbol has level number n, and for -

any rule v :=v40; -+ - v, if In(W) =k, 1 <k <n, then In(v;)) =

k-1,i=1,---,r. Unlike conventional string grammars, vo- ©
cabulary symbols have a nontrivial structure. A vocabulary

symbol v is composed of a (name part), {attachment part},”
and a [semantic part] , where o , e
1) (name part) is a unique name by which the symbol v is

2) {attachment part} is a set of attachment points of the -

symbol, which are required to specify how the symbol can be .
combined with other symbols to form higher level symbols, -
cand :

3) [semantic part] is a set of predicates which describe cer- ;
tain properties of the symbol, such as its axis, length, etc.

Each production in the grammar is of the form :=vvy - -
v,4,C,G,,Gg),where e S
- 1) vi=vv, - - - p, is the rewrite part which irfidicates that the
symbol v is constructed from the group of symbols v v, - - - v,
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<engine front>

esp‘an——_e ei'é_____a'_'____)ei'

at'e

{ <engxne sxde) -

Fig 1 Example of a productnon

2) 4 is an applicability condition on the syntactic arrange-
ment of the v;; 4 specifies how the various attachment pomts
of the v; must be attached in order to produce a v, - :

3) C contains semantic constraints on the v;, and cons1sts of

" various predicates describing geometric and other properties
" and relations of the v; which must be satlsﬁed in order to pro-
- duce av, :

4) G, contains rules for generating the attachment part for : z

v,and . - . s
5) G contains rules for generatmg the semantlc part of v

formed (see Fig. 1) in a grammar for an atrplane ]

(engme){el e2}[a,span] :=
{engine side ) {el’, €2’ }[a ]
+ { engine front){el" e2"} [a"] :

A : [Join(el' ore2’,e1" ) and Join(el"" or €2, €2")

or Join (e1"" or €2", €1") and Join(el’ or e2',2") ]" e

C" : [ Parallel (@' 4a'")and Length (@")=Length (a'"‘)‘ e

and Perpendicular (¢’,a"") -

~: [Set(el, Unjoined (e1',€2"))and -
Set (2, Unjoined (el'" €2"))or
Set (el, Unjoined (el'" e2""))and *
Set (e2 Un]omed (el e2 ))] X

Hl

[a ~(a +a )/Zandspan =q' ]

, * This rule specifies that an “engine” is composed of two “en-.
gine side” symbols and an “engine front” symbol. 4,C, G,, "

and G, can be viewed as a program for producing “engine”

- v"v hand side, i.e., that each end of the “engine front” has an

the shape. C indicates that the two “engine side”

front.”
points and semantic features for “engine
~ points of the “engine side” symbols can be given either attach-
ment point name due to the symmetry of the symbol. The

HIERARCHICAL CONSTRAINT PROCESSES

grammarG (T N, S, P) where

N ={top, bottom, house}

_ (productxon 1) ki

L Ga ks
" As an example of a production, consider how engmes are” R e

+{engine side ) {el",e2™ }[a"' ] - e

and Parallel (g", Vector (Midpt (a ), Mldpt (a'"))) ].

~ from symbols on the right-hand side of the rewrite rule. 4 .
~ specifies the physical connections of the symbols on the right- N

“engine side” attached to it, but the “engine side” symbols -
are not connected to each other (see Fig. 1). The predicate
Join (x, y) is true if x and y correspond to the same point in "
' symbols .
should be parallel, of the same length, perpendicular to the
“engine front” symbol, and on the same side of the “engine
G, and G; describe the derivation of the attachment -
”; the unjoined end-
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: _ function Unjoined (x,y) computes the endpoint which did not '
" satisfy the Join condition in the applicability condition of the = - -

production. The function Set (x, ) assigns the physical attri-

- butes of the existing endpoint y to the endpoint x of the sym- - :
“bol being constructed. The main axis is the “average” of those = ..
. of the “engme side™ symbols and the span is exactly that of

“engine front.” . i N
Asa 51mple example of a complete grammar con51der a house

T {roof, wall floor}, °

S= {house} and :

(top) Aet, e2} [a]
" Aroof) {el’ e2} [a ]
o +(roof){el",e2"} "1 p e
: [ Join(el’ el") or Join (el e2") or o
~ Join(e2',e1") or Join(e2', e2")]
: [ Perpendicular (¢, a")and
Equal( Length ("), Iﬁﬂg"h(ﬂ")) ]
[ Set (el, Unjoined (el1’, 2')) and
_ Set(e2, Unjoined (1", e2")) or
_Set(el, Unjoined (el" e2'"")) and
_ Set(e2, Unjoined (el ey ] .
[ Set (a, Vector (el e2)].‘
(productxon 2)
- {bottom) {el, e2} [a]
 (wall) {el’,e2 Y'1
+(floor) {e1”, 2"} [a"] .
L+ (wall){el'" 2"} @] ’
A : [ Joined(el’ el") and Joined (e2", el"') or
.. Joined (el’,e1"") and Joined (e2",€2"")or . =
- Joined (el’,e2"") and Joined (e1”,e1"")or
.. Joined (el ', €2'") and Joined (e1"”, €2""') or
. Joined (¢2',e1"") and Joined (2", e1"") or
- Joined (e2',e1") and Joined (€2", 2"") or
Joined (e2', 2"y and Joined (1", e1"") or -
~ Joined (e2',€2") and Joined (e1”, e2'") }"
C : [ Parallel (@',a"") and Perpendicular (a',a"")""and  ©
Equal( Length (2"), Length (@), Length (') ) ]

[ Set(el, Unjoined (el', €2")) and
Set (e2, Unjoined (el i ,e2""))or
Set (e1, Unjoined (e1"", e2"')) and
Set (e2, Unjoined (el e2 )) ]
Gy i [Set (a a")] :
(productton 3)
¢house) - { } [a] =

~ (top){el’, e2 } [a ]
+ (bottom){el" e2""} [a"] o o
A : [ Joined(el',e1")and Joined (€2, e2")or
’ " Joined (el’,e2"") and Joined (e2',e1") ]
: [ Equal(d', a") and Parallel (¢',a"") 1
Ga : [ ] ' i
Gs © [Set(@,d)]}.

Fig.2 shows a typical example of the shapes descnbed by G.
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 ficult inference problem by itself; let alone in the context of a .

roof roof .

wall wall

floor
- Fig. 2. Typical house shape.

. The grammérs utilized by the hierarchical constraint process
are ordinarily quite large (the grammar for the airplanes ana-

lyzed in Section V fills 28 typed pages); it is important, there-

~ fore, to discuss the automatic generation of these grammars

even though all grammars used so far have been completely
hand-generated. It is doubtful, at this time, that such grammars

‘could be inferred automatically and thhout human interven-

tion for the following reasons.
1) Many nonterminal symbols correspond to meanmgful

rather than arbitrary, pieces of the shape (for airplanes, eg.,’
 wings, engines, tails, etc.). It is doubtful that an automatic

technique would choose meaningful constituents.
2) The semantic information specified in each productlon is

- also meaningful. One could imagine an inference system com-

puting axes for a set of arbitrary pieces and then searching for

“-relationships (such as parallel) between such axes, but it is un-

likely that any useful relationships would be drscovered 1f the
pieces themselves were not meaningful. '
3) The semantic generation part G for a rule, presents a drf-

- grammatical inference process.

5 hypothesis. Of course, other segments have been hypothesized

Y
t

‘vanda' of v'.

III. COMPILATION OF CONSTRAINTS

Two types of constraints, syntactic and semantic, can be
- compiled from a stratified shape grammar.

straints describe the possible neighbors a symbol may have at

- a specific attachment point. If v is a symbol in a grammar G, -
~ then let Nei(v,q) denote the set of ordered pairs of symbols -
" and attachment points which can be attached to v at attach-

ment point a in some sentential form of G. Thatis, (v',a") €

shape a shape segment s is hypothesized to be an instance of v.
Then some actual point of s, say p, is associated with a by the

as corresponding to other vocabulary symbols. A necessary
condition for the hypothesis relating v to s to be part of a
grammatical descnptxon of the shape 1s that some other hy-
pothesis relates symbo] v to a segment s "and a point p'in s to
attachment point @' of v’ such that ' : o

T pisx:=

Syntactic con- -

since
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1) (v',a")E Nei(v, q), and

2) p'is actually attached to p in the shape.

The sets Nei(v,a) represent the syntactic constraints and
they can be utilized to discard extraneous hypotheses. If these
constraints are not applied to the analysis of a shape, then sev-
eral levels of vocabulary symbols might be built before it is dis- =

covered that some hypothesis lacks appropriate context. The . =~
“use of such constraints, however, makes it possible to detect e
* the lack of appropriate context much earlier.

Semantic constraints correspond to relations between the
semantic features of vocabulary symbols. For example, it can
be determined from the grammar for airplanes that the main
axis of a (plane) is parallel to the main axis of an {engine). Se-
mantic constraints facilitate the incorporation of high-level in-
formation into the analysis of a shape, e.g., if the orientation
of the fuselage of a plane is known (possibly due to prior image
analysis which has discovered runways), then this information
can be automatically compiled into constraints on the orienta-
tion of the wmgs through the productrons of the grammar. ;

A. CompzlmgSyntactzc Constraints

Let G = (T, N, P,S), and let v, w, and xGV Letat(v) de-
note the set of attachment points of v, and let av Eat(v) We
define the three binary relations as follows. v

1) v ancestor:av,aw w iff there exists a production p such
that the rewrite rule of p is v :=- - - w - - and there exists an
aw € at (w) such that aw is identified with av in G, of p. That

is, the attachment point aw of the right-hand side symbol w

becomes the attachment point av of the left-hand side symbol
v. So, for example, in the house grammar we have :

The most realistic approach to the generatlon of such gram- = (bottom) ancestor : el, el (wall)

. mars at this time then seems to be an interactive one, where -
- the human specifies meaningful shape pieces at various levels
- of description, as well as potentially useful semantic features, .
7 "and the computer performs the laborious bookkeeping chores,
~.as well as confirmation/refutation/refinement of the human s

i hypotheses about useful semantrc features B :

a) there is a production {bottom) :=- -« (wall) - -

b) there exists an aw € at ({(wall))-namely el'-that is iden- .-

tified with av € ar ((bottom)) in G, of the production in ().
- 2) wdescendent:aw,av v iff v ancestor:av,aw w.
3) v neighbor: av,aw w iff L
a) there exists a production p such that the rewnte rule of
-+v--w---and aw Eat(aw) is specified as being
joined to av € at(v) in the applicability condition 4 of p, or
b) there exists x € V with ax €at(x),and y € V withay €

at(y) such that x ancestor:ax,av v, and y neighbor:ay,ax x, - .
and w descendent:aw,ay y. Note that computing the neighbor - -

relation for level k symbols assumes knowing the nelghbor re-
lation for all levels greater than k. :

. So, for examiple, to illustrate 3a) with respect to the house'

. Nei(v, a) if and only if v can be attached to v’ using point a of ;grammar we have -

Now, suppose during the analysis of an actual (wall) neighbor:el’, elu (floor)

3
N

-1) thereisa productlon bottom := - - - (wallXfloor)  * -,

2) el’ €ar ((wall)) is joined to el"Eat ((ﬂoor)) in the ap-‘ G

plicability condition 4 of that production. :

Condition 3b) is more complicated and enables us to com-
pute the constraint that a (roof) is adjacent to a (wall), even
though (roof) and (wall) are not mentioned in the same pro-
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i “duction. Specifically, we have
(roof) neighbor: el’, el’ (wall).

Since, letting x ={top), ax = el' in production 3, y = {bottom), -

and ay =el" again in productron 3, we see that
1) {top) ancestor: el’, el (roof) from production 1,
- 2) (bottom) neighbor: el”, el (top) from production 3,
3) (wall)descendent: el’, el ’ (bottom) from production 2.

Using matrix representations for these relations, the descen- o
~ dents and neighbors of a symbol at a particular attachment

point can be computed (see Gries [11] for an introduction to
binary relations, their representation using matrices, and their
manipulation). The notation w R:aw,av v indicates that w is

_ in relation R to v through attachment point aw of w and av 7
Given k attachment points per vocabulary ‘symbol, the ,
~ neighbor:i,j relation (which is equivalent to the sets Nei (v,a)
~ discussed above) is computed by 1terat1ng the following matrix

""ﬂ of v.

omputatxon n - 1 times:.

nelghbor ij: —nerghbor i,j +E{descendent i, m

[E(nelgh bor:m,n * ancésto‘{ﬁ',;)]} -

Asan example consrder the house grammar given in Section II A

* An ancestor matrix My, g is a square matrix whose order is

-~ the number of vocabulary symbols in the grammar, and for
" which aw specifies the attachment point of the vocabulary -
symbol for the rows, and av specifies the attachment point of

" the vocabulary symbol for the columns. Since there are twoat-

tachment points for each symbol of the grammar, there should R : . ;i
_B Comprlmg Semantlc Constramts e

‘be four matrices specifying the ancestor relation; however, as

the attachment conditions and the attachment part generator -

are symmetnc all four ancestor matrices are equal

‘;krwf
00

,-,

r
w
A Au =4y, ’-421 "Azz =f

oofo{ooo-
o O O O O &

t
0
0
o
0
0

o '3,-‘" oi{jo =

o~ o0 oo
o oj,..‘o‘ O

o

: , h 000000
‘where the rows and columns 1 through 6 correspond to the vo-
" cabulary symbols {roof), (wall), {floor), {top), {bottom), and
~ (house), respectively. Note that the (house) symbol could be
* left out as it has no attachment pomts The descendant matrix
D,, is Just the transpose of A,] SRCIET s %

"rwf t'b
r00010
w0000l
' D=Dyy =Dy, =Dy —D22 =f 00000
t 00000
b 00000
h00OOO

rwftbh

r 100000

ST . w001000
 N=Ny =N12 Nzr sz =f 01 0000
It  too00010
5000100

h oooooof'
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Finally, the explicit neighbor relation is given as

wh1ch is determmed by the grammar The full nerghbor rela-
tion is computed as

rwf't’bhi'

r 110000

w 101000
N=N+DNA=f 010000
.+ 000010

, 000100
000000,

The full neighbor relation includes the relation between {roof)

_ and {wall), which was not directly represented in the grammar.
“The “one’s” in each row specifies the set of vocabulary symbols -
which can possibly nelghbor the symbol associated with that e

FOW. © 0 litod Ty

Semantic constraints can be generated in exactly the same =
‘way as syntactic constraints, i.e., by defining binary relations ~

and compiling their transitive closure. This approach is analo-
gous to the syntactic neighbor case; now a relation is defined
between every two symbols whose semantic features are re-

lated and the closure contams relatlons not exphcrtly men- o

tioned in the grammar. -

~ As an example, consider the parallel relatron The parallel_ W
~ relation can occur between the axes of two vocabulary symbols
' in a variety of ways: .
B 1) they can be explicitly defined as parallel in the sernanuc "
 consistency part of a production,

2) the semantic generation part of a production may set an '
axis of the new vocabulary symbol equal to an axis of one of
the vocabulary symbols being used to produee the new symbol v
or '

.3) they may be mdxrectly parallel 1f there exrsts a thrrd vo-
" cabulary symbol to which they are both parallel.

These relations are computed using a binary-valued matrix,
whose rows and’ columns correspond to the axes of the vo- -
cabulary symbols. s PR s

Again, consider the grammar for the srmple house shape

Let the matrix P denote the parallel relation between the axes

of the vocabulary symbols (ordered as in Section III-A) Since
only one axis exists per vocabulary symbol, only one matrix is -

- necessary to define the parallel relation. The matrlx gwen di-
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rectly by the grammar is

w f
00

B!
, T v
S e T T
© 0o 0o o0 o~

o O O =

- 0 o o
—_— O OO O~
0 O = - 0 O W
g.o'o»-oooa-

h 000
The transitive closure of

wfb

o~

poooooi
o 0o = o
‘»—-o»—aoo‘m
— b s O O N

b
0
0
1
1
0
1

. N ;
L[}
O Sy 54‘.\

0
0
0
1
1
1

00

~except that elements on the diagonal of P remain unaltered,

1

o

 where P= (P V =1I) AP'"!, where I is the Boolean identity ma-
trix and P'! is the transitive closure of P’. This must be done

since by transitivity a vocabulary symbol would be parallel to
-itself through any other element to which it is parallel. For
example, any (wall) hypothesis must have a distinct (wall} hy-
pothesis parallel to it.
- explicit in the productions; a less obvious constraint is that
" any (top) symbol must be parallel to a {floor) symbol. Since
" {floor) is a lower level symbol, all {floor} symbols will already

have been built by the time (top) symbols are being built, and
this can be used to delete (top) hypotheses which are not par- -

allel to any {floor) hypotheses. 4

In order to add other semantic constraints, a matrix to repre-
sent the constraints is needed. The matrix can be computed
from the grammar once the relation has been defined in terms
of the predicates which appear in the productions. Parallel is a

) traiisitiye relation, and other transitive relations can be com- .
* puted in much the same way. Relations which are not transi-

tive, e.g., perpendicular, require special procedures for their
computation.
- Some applications may prohibit the precompilation of all

" constraints, e.g., due to the size of the grammar. In such cases

" a possible alternative is to compute relations only when nec-

essary. Of coursg, once the relations between the features of
two vocabulary symbols have been computed, they can be

stored for future reference and need not be recomputed every
. time.

IV. THE HIERARCHICAL CONSTRAINT PROCESS
“ As discussed previously, a major problem associated with

i applying syntactic techniques to shape analysis is segmenting .

a shape into pieces which correspond to the terminal symbols
of the grammar required to parse the shape. In general, in
order to obtain all the required segments, the segmentation
procedures must have a high false alarm rate. This results in

However, this constraint was already
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a large search space for parses of the shape. To overcome this - :

* problem, the hierarchical constraint process (HCP) uses hier-
archical models of objects and model derived constraints to -
eliminate inconsistent hypotheses at all levels. In particular,

‘using the stratified context-free grammars already described,
syntactic (e.g., spatial concatenation) and semantic (e.g.,

. symmetry, collinearity, etc.) constraints can be automatlcally

" generated to guide the analysis of the shape.*" EU :

The hierarchical constraint process computes a bottom-up

" parse of the shape by applying the constraints to a network

of low-level hypotheses about the pieces of the shape and

_ constructing a layered network of hypotheses containing
“alternative parses of the shape. S
~work can be easily described by specifying three simple pro-
cedures and two sets which the procedures mampulate The - -

The processing of this net- |

three procedures are as follows.

_ 1) BUILD: Given level k of the network BUILD uses the\ o

productions of the grammar to construct nodes corresponding
to level £ + 1 hypotheses. Any level k symbols which are used
to generate a node at level k + 1 are associated with that level
k +1 node as supporting it, and it, in turn, is recorded as
supported by them. After all nodes on a given level are gen-
erated, node pairs corresponding to adjacent boundary seg--
ments are linked only if the constraints allow the symbols
hypothesized for that pair to be adjacent. Building level 0
involves applying the segmentatlon strategy to the shape to '
generate the level 0 nodes. : i
2) CONSTRAIN: Since each node corresponds to a smgle
hypothesis and since nodes are only linked. to compatible
nodes, the within layer application of syntactic constraints

“simply involves removing a node if it has no neighbor at some -

attachment point. Likewise, a node is removed if any semanuc
constraints are not satisfied.

3) COMPACT: Given a node n at level k, if ]evel k+1 has o

_ been built and n does not support a level k + 1 node, thenn

_is deleted from the network. If any of the nodes which pro-

- duced n have been deleted, then n is deleted, too.

. These procedures operate on two sets of nodes, R, and R,
both of which are initially empty. When at level k¥ with R,

~and R, empty, BUILD produces the level k£ + 1 hypotheses

(or stops if k is the highest level) and puts them into R,,
while putting all level k£ nodes into R,. CONSTRAIN examines
nodes from R,..

deletes # from R,. Otherwise, CONSTRAIN deletes node n
from the network and puts its same level neighbors in R,
(since n might have been their only neighbor at some attach-
ment point) and its supporting and supported nodes in R,.
COMPACT removes nodes from R,, taking no action if all of

_ the node’s original supporting nodes still exist at level k- 1 -
- and the node still supports at least one level k+1 node (if - -
level k + 1 has been built); otherwise, COMPACT deletes the =

node from the network and puts its same level nelghbors in
R, and its across level neighbors in R,. ‘

HCP does not eliminate any hypothesxs which can be part
of a complete parse. This can be seen as follows: BUILD
simply generates the next level symbols, and if used without
CONSTRAIN and COMPACT will produce all possible hypoth-

Let n be a node from R,. df n satisfies all ,:_ ,
_ syntactic and semantic constraints, then CONSTRAIN simply
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. Fig. 3. House hypotheses. (a) Primitives (1, 2), (1, 3), etc., and their
T hypotheses. (b) Network of hypotheses. . it

eses at every level. CONSTRAIN deletes a hypothesis 4 only
if one endpoint of & has no neighboring hypothesis which can
_ be joined to it, or if it fails to satisfy a semantic constraint.
Thus, either & cannot be used to build a higher level symbol,
or any symbol which A can be used to build will lack appro-
priate context at the next higher level. As for COMPACT,

there are two cases to consider. First, if a level k hypothesis
is not used to produce any level k + 1 hypothesis, then due to
" the stratification that level k¥ hypothesis will never produce

. any higher level hypothesis; thus, it cannot be part of a parse.
* -, Finally, if a level k hypothesis / loses the support of one or
" "more of the hypotheses which produced it, then it cannot be
" part of a complete parse because if it were, then its supporting
* nodes would be too. - SR :
. To illustrate the application of HCP, consider once more
" the house grammar. Suppose the level O hypotheses for the

and h stand for (roof), (wall), (floor), {top), (bottom), and
* (house), respectively, and every possible hypothesis has been

- straints are as given in Sections III-A and B.-

" Fig. 3(b) shows the set of level-0 hypotheses organized asa

network which we refer to as an adjacency graph. The nodes
~ correspond to level-0 hypotheses, and given two nodes, n, and
" ny, ny is connected by a directed arc to n, if the primitive
corresponding to n, in the shape “precedes” and is adjacent to

~ the primitive corresponding to n, (precedes is well defined if
we adopt a specific sense for following the shape boundary).

~ The number next to each node is the number of distinct paths
(from left to right) to that node from a leftmost node. This

L2 (L3 (2.3 (4 (4.5 (5,6 (6,1

hypotheses -

seven primitives are as given in Fig. 3(a), where r, w, f, ¢, b,

“'made for each primitive. The syntactic and semantic con-
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number is computed for nodes from left to right by assigning
the leftmost nodes a value of one, and continuing to the right
assigning to each node the sum of those nodes immediately to .~
the left and adjacent to it. Each rightmost node connects to

each leftmost node for a closed shape. The goal of HCP is to
find all the cycles in the network that correspond to shapesin

the language defined by the grammar. In the diagram the
ordered pair (#,7) indicates a hypothesis which describes the

segment of the shape from point i counterclockwise to pointj. -

Thus, a hypothesis concerning (fy,/;) is connected to a hy- =~
pothesis concerning (#3,72) if jy = i, of j, = iy. The networks
in Figs. 3-5 are columnated, and the ordered pair at the top of
each column indicates the shape segment associated with each
hypothesis in that column. Thus, when we speak of the °
@i,) hypotheses below, we are referring to the set of hypoth-
eses in the column headed by (,/). co
HCP begins by applying CONSTRAIN to the network of -

hypotheses. = All the syntactic constraints are satisfied since "

all primitives_have been labeled with all level O vocabulary - '

symbols. However, the (wall) hypotheses of primitives (1,3) . -
and (6,1) are deleted since neither of them has a parallel =
Awall) hypotheses, thus failing to satisfy a semantic constraint. * - -

. The result is shown in Fig. 4. The syntactic constraints now = -

cause several hypotheses to be deleted: the (floor) hypotheses

are deleted from (1, 2), (1, 3), and (5, 6) since one attachment .
point fails to have a neighboring (wall) hypothesis. Fig. 5 =

shows the resulting network. =

At this point, all syntactic and semantic constraints are -

satisfied and all possible level 1 vocabulary symbols can be
built. Each hypothesis is checked against all applicable pro-
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Fig. 7. Fihal levei 0 hypotheses.

ductions in building the next level. For example, the primi-

. tives in Fig. 5 can be combined in the following way: the (1, 2
(roof) hypothesis can be joined with the (2, 3) (roof) hypoth- - .~

~esis to form a (top) hypothesis; however, the axis of the re-
- sulting (top) hypothesis has no (floor) hypothesis parallel to

. ; it, and this (top) hypothesis is therefore discarded. The 1,2); N

* (roof) hypothesis and the (1, 6) (roof) hypothesis, although
. connected properly, fail the semantic consistency part of the
~ production as they are not perpendicular. The other level O

hypotheses are matched to productions in 2 similar manner,
and the resulting level 1 hypotheses are shown in Fig. 6. .
COMPACT is now applied to the level 0 hypotheses and the-

result is shown in Fig. 7. At this point all incorrect hypotheses

B _have been eliminated and the level 2 start symbol house is’

- directly built. Even this simple example shows the advantage
- of using syntactic and semantic constraints. non

V. EXPERIMENTS
A set of Pascal programs implementing HCP has been devel-

oped. Input to HCP consists of a stratified shape grammar

defining the class of shapes to be analyzed and a set of primi-

- tives computed from a shape to be analyzed. The primitives -

are a set of line segments whose descriptions provide informa-
* tion including orientation, length, and endpoints. HCP pro-

~duces a (possibly empty) network of hypotheses relating
~ primitives to the vocabulary symbols at each level of the

grammar. Thus, any highest level hypothesis corresponds
" to a complete shape in the grammar. T

A grammar describing the top view of airplane shapes (down
to the level of detail of engines) has been developed. The
grammar consists of 37 productions and has seven levels of
" vocabulary symbols. Note that the grammar was not designed
to describe a particular airplane (such as a 747), but rather to
model a wide class of airplanes. o : -'
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" Fig. 8. (2) Shape 1. (b) Segmentation of shape 1.

o We will deséﬁ‘ﬁe the application‘of v HCP to the iop view of

airplanes. The shapes used in this study were obtained from
the literature (shape 1 [10]) and from model airplanes (shapes
2 through 5). Figs. 8-12 display all of the shapes.

The split-and-merge algorithm [12] was used to obtain
piecewise linear approximations to the shape. The algorithm
was applied at several thresholds of goodness of fit. For these
shapes two thresholds were used, ie., both a close.fit and a
loose fit were obtained. The close fit picks out small pieces
of the shape, while the loose fit picks out longer pieces.

Once the primitives have been found, the initial hypotheses
for each primitive must be made. HCP was run with several
different numbers of hypotheses per primitive. When only
one hypothesis was associated with each primitive, the correct
one was associated with each primitive that formed part of a
grammatical description of the shape; a “reasonable” hypoth-
esis was chosen for each other primitive which was not part .
of a grammatical description of the shape (e.g., if the primitive
were short, then it might be labeled as an engine side). In the '
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| 1 o i
N Fig. 9. (a) Shape 2. (b) Segméntation of shépe 2.

_ other experiment described, three hypotheses were associated
* with each primitive. In general, every terminal symbol should .
be associated with each primitive, unless some prior informa-
tion on size or orientation is available which can eliminate .

~some of those guesses.

' For each of these sets of initial hypotheses, HCP was run
with full constraints and with no constraints. Running HCP -+ -

" with no constraints means that procedure CONSTRAIN is not

" applied, ie., procedure BUILD simply builds level after level . -
until all start symbcls are created. A measure of space effi- "
ciency was defined in terms of the number of hypotheses pro- - .
duced at each level versus the number of hypotheses actually -

necessary to parse the shape. Given a shape and a level i there

is some fixed number of hypotheses N, (i) which are required -

at that level to construct all parses of the shape. Let No(i) be

the number of nodes produced at level i when no constraints

e ey T
" Fig. 10, @) Shape 3. (b) Segmentation of shape3.

| were'.xised, and let N, () beﬁ the number 6f nodes'éxzoduced at

" fevel i when the constraints were used. Then the efficiency of
* each process can be givenas . e A
0= MO d eO=NOMEO.
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Fig. 11. (a) Shape, 4. (b) Segmentation of shape 4.

TABLET v

Nobk EFFICIENCY WITH ONE HYPOTHESIS PER PRIMITIV
Node level
Shape 0 17 - 2 3 a4 s 6
1 .91 .94 . .82 .93 .56 .83 / 1 (No constraints)
.95 .94 .92 1 .1 1 1 (All constraints)
2 .50 .50 .50 .45 .32 .50-i 1. ..
.63 0 .63 .63 .90 1 101
3 59 .89 .58 .6 .50 .5l 1.
20 .70 .70 L1818 1 e
4 76 .76 .76 .80 .60 1 1
189 .89 .89 . 1 1 1
s | e .67 .67 .62 -.48 .80 1 o . ®) e o
67, 676712 o1 Fig. 12. (a) Shape 5. (b) Segmentation of shape 5.
Average | .69 .69 .69 .68 . .49 .73 1 SRR C ; :
. 7117 77 e .95 1 1 . . w
' : Tables I and II give a comparison of the node efficiency of =~ °

HCP for each shape at each level. The first row gives the node
- . efficiency when no constraints are applied to eliminate hy-
These measurements reflect the efficiency of the processes in  potheses. The second row gives the node efficiency of HCP
terms of storage space used, where a value of one means that with all constraints applied. For several shapes, the node
only as many nodes were used at level 7 as were needed. Tables efficiency remains fairly constant over the first three levels.
I and II give the results for the experiments. This is due to the fact that the first two levels are involved
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TABLE II
NobE EFFICIENCY WITH THREE HYPOTHESES PER PRIMITIVE
Node level
" Shape 0 1 2 3 4 s 3
1 .30 .26 .21 .21 .30 .50 1 (Nobconstraints)
.50 .44 .39 .50 75 1 1 (All constraints)
2 .17 .25 .50 . .45 . .32 .50 1
J18 . .63 .63 .90 11 1
sl 22 a3 e s .15 11
.33 0 .33 .78 .92 1 101
4 25 .25 .25 .22 .24 1 1
.30 .30 .30 .29 1 1 1
5 L19 .29 .58 .53 - .38 .50 1
9 .29 .58 1 1 1 1
. Average .23 . .27 0 .44 .45 .40
: .30 .39 .53 .72 .96
" TABLE III

] COMPUTATION TiMEs ForR HCP WITH (W) AND WITHOUT (WO)
CONSTRAINTS. NOTE: AVERAGE FOR 3w DoEs NoT INCLUDE SHAPE
1 For WaicH HCP wo Dip Not CoMPLETE EXECUTION

Number of Hypotheses .

L L 3 . .

Experiment“ W wo i W wo w - wWo
1 1:29 1:23 5:22 - - -
1:20 1:35 : 3:15
2:25 2:49  2:54
[ 141 239 0 - 2:39
5 - 1:23 1:28 3:12
1:27 .. 1:35 3:00

in the description of airplane eﬁgines, and if the shape has no .

* engines, then each symbol usually gives rise to a single higher

" level counterpart. It should be observed that HCP with con-.

straints is consistently more node efficient at all levels and

" converges much more rapidly to the correct solution than -

HCP without constraints. As a matter of fact, with constraints
HCP always found the correct solution by level 5. .

~ Table III lists computation time for running HCP both with :
and without constraints, and with 1, 3, and 7 hypotheses per
primitive. Several points should be made with respect to this
‘ : " be accomplished by the A+ algorithm [13]. This is just one

table. Tt T ,
1) The entries which are left blank indicate that HCP ex-
~ ceeded available storage,
~ aborted.

2) The computation times only grossly reflect the time .
spent by the programs analyzing the data because of the sig-
nificant amount of 1/O, monitoring, and tracing which the

programs perform. Our primary concern throughout is with
the design and organization of HCP. S ,

3) The previous remarks nonwithstanding, HCP shows clear
computational advantages over a no constraint-based parser,

especially when the number of hypotheses/primitives is high.

For a low number of hypotheses/primitives, time with and
without constraints are quite close, while the storage require-

s obtained as follows: :
 Le=min{l@h o i=Leems o ik
" Hypotheses rellzlgtingvfe’}minal symbols to primitives are con-
structed if certain features of the primitive satisfy numerical -
* constraints specified ini the definition of the terminal symbol.’

and execution at that time was. ..

"~ 1) Put node rin a set called OPEN. ’ 7 ey
2) Select n € OPEN such that f(n) >f(m), for any m dis-

4 VI UsinGg HCP me UNCERTAIN HYPOTHESES
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% ’n_lents of HCP with constraints for these problems was genér-
_ ally much lower than for HCP without constraints. Dol

" In the preceding discussions all hypotﬁéses of vocabulary S
. symbols for shape segments were considered to be equally
~ likely. In many situations though, some hypotheses should = .
 be regarded with more confidence than others. In what " .

follows we present a generalization of the discrete HCP de- : '

' scribed above to an HCP which associates likelihoods with

hypotheses and applied _co‘xitivnuoug relaxation-like operators

~ to update the likelihoods. We also discuss embedding HCP
. intoa state-space search procedure for finding the most likely
 parse of ashape. ™" i

.let G=(P,N,T,S) be vva‘stratiﬁed context-free grammar,

" and let V=NUT. A hypothesis consists of a vocabulary
" symbol and a likelihood. For hypothesis k, let L (k) be the'

likelihood of A If k is a level k + 1 hypothesis formed from

the level & hypotheses hy,

For example, the length of a primitive might be measured,

- and if the length is found to be less than some value, then
it may be possible for that primitive to play the role of an'

(engine side) in the current shape being processed. The de-

_gree to which these numerical constraints are satisfied deter- ~~
“mines the likelihood of the associated hypothesis. - "
. If only the most likely start symbol hypothesis is desired, .
then HCP can be embedded in 2 search algorithm in such a
~ way as to find the best (i.., most likely) start symbol hypoth- - -

~ esis first. The search algorithm employed here is a modified WL
version of the state-space search algorithm (called M*) de-
scribed by Barrow and Tennenbaum [13]. The state-space = -
 search is organized as a tree. Let T(r) be a finite tree with -
root node r. For every n € T(r), let T(n) designate the subtree ‘
with root node n: If ¢ is a terminal node of T(r), then v(f) de-
notes the value of £. A best terminal node # is a terminal node.
“such that v(f) >v(n) for every n € terminal nodes. If n is a
‘nonterminal node, let v(n) be the value of the best terminal. - “

node in T'(n). Finding the best parse can now be formulated

by, then the likelihood of

as finding the best terminal node in a search tree 7'() and can

form of the ordered search algorithm. -

Algorithm A+

Let f be an evaluation funétion fovr’évsthnating the value of .
nodes in T(r). That is, f(n) is an estimate of v(n)and v(n)is

bounded by f(n). Search algorithm A+ is defined as follows.

tinct from n in OPEN. Break ties arbitrarily, but in favor of
terminal nodes. -

3) If n is a terminal node, then terminate; else continue.

4) Expand n. Put the successors of n on OPEN. Remove n
from OPEN. ' '
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5) Goto2).

It is shown in [13] that A+ is admissible and optimal.

We next describe how HCP can be embedded in the A+
- algorithm. The nodes (or states) of the tree represent multi-
. layer networks of hypotheses. Nodes having start symbol

' hypotheses are termmal nodes -Each nontermmal node has
either
: 1) one successor corresponding to the result of applying

~ BUILD to the highest level hypotheses of that node, or
 2) two successors: one representing the assertion of the
most likely hypothesis (called the instantiation hypothesis)
for a previously ambiguous piece of the boundary, and the
other representing the denial of that assertion.

A level k hypothesis is asserted for a piece of the boundary
if no other level k hypothesis which concerns that piece of
the boundary is allowed to remain in the network. Likewise,
a hypothesis is denied by being deleted from the network.

_The evaluation function used to order OPEN, f, is the maxi-
... mum of the likelihoods of the highest level hypotheses of
o7 astate.

~ The constraints between pieces of a shape are no longer
“used simply to delete a hypothesis, but rather to change its
likelihood. The likelihood of a hypothesis is dependent not
only on the hypotheses which produced it, but also on the
For a hypothesis
to contribute to a complete parse, it must be joined to a

e neighboring hypothesis at each endpoint. Thus, given a hypoth-

esis #, an ‘upper bound on the likelihood of any hypothesis

- ‘produced from & is the minimum of L (k) and the maximum
Then in addition

likelihood of any neighboring hypothesis.
to applying CONSTRAIN and COMPACT to sets of hypotheses,
we define a constraint operator (called CONSTRAIN¥) to be
" applied to the likelihood of a hypothesis.
operator assigns likelihoods as follows: -

LT*1(k) := min {L*(K), max {L(h): h; € Nei(h)}}

* where L'(h) is the likelihood of hypothesis h after the tth

iteration of CONSTRAIN* and Nei() is the set of hypoth-

" eses which neighbor h. LO(k) is the initial likelihood of

hypothesis & computed when the level containing k is built.
This operator is applied iteratively until no changes in likeli-
hood occut. The M* algorithm of Barrow and Tennenbaum
[13] can be modified to perform search in conjunctxon with
HCP We call this new algorithm HCP*.

Algorzthm HCP*

0) Generate the initial set of hypotheses and compute
the corresponding likelihood of each hypothesis.
CONSTRAIN* and CONSTRAIN to the network Save the

" result on OPEN, N
1) Select the current globally best node s from OPEN, and ‘
- remove s from OPEN. In case of a tie, choose any terminal

node; if none, choose the node with the highest level hypoth-
esis. If s is a terminal node, then halt.
2) If s has no ambiguous pieces of boundary, then

a) build the next level of the network for s, put the re-

sulting node on OPEN and go to 3), otherwise
b) disambiguate a piece of the boundary by instantiating
the best hypothesis of s, i.e., generate a branch corresponding

The constraint
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to asserting and denying of the instantiation hypothesis
setting up a new node for each.

3) Apply CONSTRAIN COMPACT, and CONSTRAIN* to
the new nodes.

-4) Evaluate the global score of each node by computmg 5
the maximum likelihood of the highest level hypotheses in the . - .
network for the node. (If all possible pnmmve hypotheses are -

deleted, set the score to 0.) :

5) Update the likelihoods of the hypotheses associated w1th
new nodes and put the new nodes on OPEN

6) Gotol).

"HCP is the above algonthm with 2b) removed and with hke- '
lihoods {0, 1}. -

We will now show that the application of such an operator
during the search is admissible, i.e., the start symbol produced
using HCP* is the same as the start symbol which is produced
by using HCP and then choosing the most likely start symbol.

Let H=1{hoo,Hh01," " ,hon} be the level 0 hypotheses for
some shape, and let S = {S;,S,,"**,Sp} be the start symbol -
hypotheses whxch can be constructed from H accordmg to G
That is, -

S, "huhu ce
S, "’thlhzz *

Pirs

..hzrz

Sm "hmlhmz < Pem

and let L(S;)=min {L(#): 1 <1<rz} Suppose that Sb is
the best start symbol hypothesis, i.e., L(Sp) = L(S;) for i #b
and 1 <i<m. We first show that if h is a level & hypothesis
used in"the production of any S, then even if the constraint
operator is applied, L (hg) = L(S).

"Lemma: Let hy, be a level & hypothesis used in the produc-

tion of a start symbol Sc- Then L(hy,) is never lowered below o
~ L(S.) by CONSTRAIN*.

Proof: For k=0 it is ime since initially L(h .= L(Sc),

for 1 < i< re, by definition. Suppose L'(H, )>L(S )forall -

iL1<i<re. ThenL’”(h ) = min {L"(k, ),max{L'(h,) he
Nel(h )3} but Lk, )>L(Sc) by assumpt:on, and since

ENe1(h ;) and L'(hc +1)>L(S ) by assumptlon then
pa ISLE).

. Now suppose that for k<j, L(hg) = L(S,), forall hypoth- -

esesin level 0, - - ,j~ 1 used to produce S,. Then initially, all -

level § hypotheses h;, have L(k;)>L(S,) since they are pro- -

duced from levelj - l hypotheses whose likelihoods are greater

. than or equal to L(S.). But then, by an mductlon sumlar to .
 above, L'(h;)>L(S,.), forall z. :

Apply
_ hypothesis used to construct S, below L (S,).

Thus, CONSTRAIN* never lowers the likelihood of any

Proposition 1: If L(S,,)>L(Sc) for all ¢ such that c#b,
then S}, is the first start symbol hypothesis produced by HCP*.
Proof: Suppose not. Let v be the first node removed from -
OPEN containing a start symbol hypothesis Sc #S,. Then
there must be some node m an OPEN containing all of the
hypotheses required to construct Sy up to level k <n (node
m could not yet contain Sy, since otherwise m would have
been picked from OPEN). But, from the lemma the likeli- -

hood of those hypotheses must be greater than or equal to

L(Sp) and thus, f(m)=>L(Sp). But, f(v)=L(S.) because
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: | S, is the only level n hyoothesis in the network of node v.
* Thus, L(S,) =) > f(m)=L(Sp), contradxctmg the assump-
tion that L(Sy) > LS.

VIIL. CONCLUSIONS

This paper has dxscussed the design of merarchlcal constramt
processes and presented their application to shape recognition.
The particular class of shapes considered was the silhouettes

of airplanes viewed from above. We have not considered the -
more general problem of recognizing a three-dimensional -

: object based on an arbitrary two-dimensional projection.

~ There are a variety of issues concerning the design of a gen--

~ erally useful shape analysis system which this paper has not

_ addressed. For example, the construction of the airplane

" grammar was a painful, time-consuming process. Here, it would
have been useful to have an interactive tool for constructing
such models. Completely automatic grammatical inference
mechanisms do exist, but they tend to produce unwieldy and
unnatural grammars.

Another important question which deserves further consider-

:y ation is the way in which hypothesis formation is integrated
. into the constraint application system. This will have a major
impact on the efficiency and performance of the system. For -

~ example, instead of assuming that only level O symbols of the
grammar have semantic descriptions which can be directly
compared with the descriptions of the primitives, it may

' " be that there are several levels of the grammar at which this =
HCP would now begin by detecting primitives

" is possible.
at some suitably high level in the grammar, and applying
CONSTRAIN, COMPACT, and BUILD to the resulting layered
network. Once HCP has stabilized on this network (all higher

@

12

18]

277

parsing,” in Computer szzon Systems, Hanson and Riseman, Eds.
New York: Academic, 1978, pp. 101-109.

T. Pavlidis and F. Ali, “A hxerarchlcal syntactic shape analyzer,” .-~
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, pp. 2-10 -
1979. oy

{61

Intell., vol. PAMI-1, pp. 135-144, 1979, ‘
T. Vamos and Z. Vassy, “Industnal pattern recogmnon expen-"_ )
ment—A syntax aided approach,” in Proc. 1973 IJCPR, Washing-
""" ton, DC, pp. 445-452.

9]

on the linguistic method of the description and analysis of geo-
metrical structures,” in Proc. 1975 IJCAI, Thilisi, Georgxa, USSR,
1975, pp. 628-634. Kk
K. You and K. S. Fu, “Syntactic shape recognition,” in Image .
Understanding and Information Extraction, Summary Report of
Research for the Period Nov. 1, 1976-Jan. 31 1977, T.S. Huang -
and K. S. Fu, Co-Principal Invcsugators, Mar. 1977 pp. 72-83.
D. Gries, Compiler Constmctxon for Digital Computers. New -
York: Wiley, 1971. :

T. Pavlidis and S. Horowitz, “Segmentahon of plane curves
IEEE Trans. Comput.,vol. C-23, pp. 860-870, 1974, :

H. Barrow and M. Tennenbaum, “MSYS: A system for reasomngl
about scenes,” SRI, Menlo Park, CA, Al Tech. Rep. 121, 1976. .
R. Haralick and L. Shapiro, “The consistent labeling problem,”
IEEE Trans. Pattern Anal Machme Intell., vol. PAMI-1, pp..
173-183, Apr. 1979. . - .
R. Haralick, L. Davis, A. Rosenfeld and D. Milgram, “Reducﬁon

(10}
(11]

[13]
[14]

199-219, 1978. SioE
A. K. Mackworth, “Conslstency in networks of relatxons,“ Arti-
ficial Intell. ,vol. 8, pp. 99-118, 1977. \ i
J. Gaschnig, “Expenmenta.l case studies of backtrack vs. waltz-..
type vs. new algorithms for satisficing assignment problems,” in
- Proc. 2nd Nat. Conf. Canadian Soc. for Comput. Studies of
Intell., Toronto, Canada, July 19-21, 1978, pp. 268-277.
R. Harahck and G. Elliot, “Increasing tree search efficiency for™
constraint satisfaction problems,” presented at S5th Int, Jomt‘;'v.
Conf on Amﬁaal Intell,, Tokyo Japan, Aug. 1979 :

[16]
un

(18]

levels constructed and all constraints satisfied), the surviving -

" lowest level hypotheses can serve to guide the search for still

lower level, and probably even less rehably detected pxeces of
the shape. .

Many claims have been made [14]-[16] about the relative
efficiency of constraint processes when compared with con-
ventional search strategies, but very little effort has been de-
voted to substantiating or invalidating these claims (exceptions
include Gaschnig [17] and Haralick and Gordon [18]). As
- another research goal, the computational complexity of HCP
" needs to be investigated by both analytical and empirical (e.g.,

~ simulation) studies on abstractions of the pattern analysis -
" problem. Only through such studies can we hope to assess
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~ the real significance and practical importance of such systems.
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