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\begin{abstract}

In this paper we describe an approach to high-level multisensor

integration in the context of an autonomous mobile robot. Previous
papers have described the development of the INRIA mobile robot
subsystems:

\begin{enumerate}
\item {\bf sensor and actuator systems}

\item {\bf distance and range analysis}

\item {\bf feature extraction and segmentation}
\item {\bf motion detection}

\item {\bf uncertainty management}, and

\item {\bf 3-D environment descriptions}.

\end{enumerate}

We describe here an approach to:

\begin{itemize}

\item the {\bf semantic analysis} of the 3-D environment descriptions.
\end{itemize}

This analysis is organized in terms of

robot goals and behaviors. This is accomplished by the use of logical
behaviors. Such an approach allows for active control of

the sensors in acgquiring information.

\end{abstract}
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\section{Introduction}

Multisensor integration has received a good deal of attention in recent
years due to the availability of sensors, actuators, and processors.
Two major testbeds for such work are:

\begin{itemize}

\item robotic workcell automation, and

\item mobile autonomous robots.



\end{itemize}

The first of these involves applying strong knowledge-based techniqgues
to the manufacturing environment, while the second concerns
integrating several levels of information processing into a single
autonomous system. We restrict our attention here to the second
problem.

Autonomous mobile robots have been studied in a wide range of
contexts. Figure 1 imposes an organization on most of the typical
keywords.

\begin{figure}

\vspace{3.5in}

\caption{Autonomous Robot Vehicle Research}

\end{figure}

Obviously, the problem of navigation is basic to mobile robots and
consequently has been studied by many people on

specific implementations \cite{Chattergy85,Crowley87,Giralt84,%
Harmon87,Is1k88,Kriegman87,Milberg87, Selfridge85, Smith87, Thorpe87,%
Triendl87}. Most such systems must use sensors (e.g., sonar Or
cameras \cite{Draper87,Elfes87,Faugeras86,Triendl87a}) and actuators
and must control them \cite{Espiau85,Hirzinger86,Meystel87,Nevinsd4,%
Tuijnman87, Turau88}. The use of sensors requires the study of
uncertainty management \cite{Hager88,Pertin88, Schott87,Smith87a} and
multisensor integration \cite{Chiu86,Durrant86,Henderson87b,Lowranced3,%
Luo88,Mitiche86}. More global approaches to the sensorimotor problem
can be found in \cite{Albus81,Bhatt87,Giralt85}, and special purpose
architectures are being planned \cite{Arkin87a,Stentz87,Whittaker87}.

One level up, the mapping of procedural behaviors onto the
sensorimotor control structure is of interest \cite{Andersson88,%
Arkin87,Braitenberg87,Henderson85a, Henderson85h, Henderson84a, Henderson84c, Tsuji87
}.

The world representations also exist at this level: both the
metrological \cite{Ayache87,Ayache88,Moravec88,Rao87}, where precise
measurement is paramount, and

topological \cite{Bhanu87,Boissonnat88,Chatila86,%
Faverjon87,Faverjon88,Gex87,Ghallab88,Goldstein87, Jarvis88,Levi87,%
Metea87, Sobek85, Tournassoud88, Yeung87}, where adjacency relations are
useful for path planning, etc. It is even possible to study primitive
forms of learning in this context \cite{Salzberg85, Tournassoud88}.

Broader studies are usually oriented towards particular applications
(e.g., the nuclear industry \cite{Carlton87,White87}, road following
\cite{Davis87,Dickmanns88,Nasr87}) or towards well-defined, but limited
goals (e.g., indoor \cite{Brady88,Faugeras87} or outdoor
\cite{Kuipers88,Levitt87} navigation) .

Finally, the 'highest' level involves the specification and
representation of the knowledge appropriate to a given

task \cite{Chandrasekaran87,Kak87,Kak88,Lenat87,Nilsson85} and its
compilation into executable robot behavior (or programs)
\cite{Dufay84, Henderson88, Latombe88}. The literature is quite large
on most of these subjects, and these references are

intended as representative of the work in this area. It should be
pointed out that most system designers use a central balckboard and
some form of direct production system or a compiled version (i.e., a

decision tree) to represent knowledge.

From this short summary, it can be seen that the scope of autonomous
robot research is indeed wvast, but the difficult problems found here
are yielding to the steady advance of technical and theoretical
developments. In the remainder of this paper, we describe current
work on the mobile autonomous robot at INRIA.



\section{Problem Definition}

We suppose that our mobile robot is wandering through an unknown
indoor environment. The robot must:

\begin{itemize}

\item {\bf incrementally build a 3-D representation of the world}
(i.e., determine its motion and integrate distinct views into a
coherent global view),

\item {\bf account for uncertainty in its description} (i.e.,
explicitly represent, manipulate and combine uncertainty), and

\item {\bf build a semantic representation of the world} (i.e.,
discover useful geometric or functional relations and semantic
entities) .

\end{itemize}

In this paper we describe an approach to solving the third problem.
(See \cite{Ayache88} for details on efficient techniques for producing
a local 3-D map from stereo vision and structure from motion as well
as a method for combining several viewpoints into a single surface and
volume representation of the environment and which accounts for
uncertainty.)

The mobile robot must use the 3-D representation to locate simple
generic objects, such as doors and windows, and eventually more
complicated objects like chairs, desks, file cabinets, etc. The robot
can then demonstrate "~ “intelligent'' behavior such as going to a
window, finding a door, etc. The representation should contain
semantic labels (floor, walls, ceiling) and object descriptions
(desks, doors, windows, etc.).

\section{Logical Behaviors}

The proposed approach is straightforward and exploits our previous
work on logical sensors, the Multisensor Knowledge System, and
multiple semantic constraints. The World Model is defined in terms of
a semantic network (e.g., see Figure 2).

\begin{figure}
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\caption{Semantic Net Defining World Model}

\end{figure}

The nodes represent physical entities and the relations are
(currently) geometric. " "Behind'' each node is a logical sensor which
embodies a recognition strategy for that object. The relations are
simply tabulated.

A goal for the robot is defined by adding a node representing the
robot itself and relations are added as requirements (see Figure 3).
\begin{figure}

\vspace{2.5in}

\caption{Defining the Robot Task}

\end{figure}

This method permits the system to focus on objects of interest and to
exploit any strong knowledge that is available for the task. The added
relations are satisfied (usually) by the robot's motion. Techniques
for the satisfaction of the relations are called {\bf logical
behaviors}.

As an example, consider the world model in Figure 4 which represents a
specific office at INRIA.

\begin{figure}
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\caption{A Representation of the Command: =~ Go to the office door''}
\end{figure}

The addition of the robot and the " "Next\_to'' relation fires the

" Find\_door'' logical sensor. This in turn causes the strategy for
door finding to be invoked. Such a strategy may attempt shortcuts
(quick image cues) or may cause a full 3-D representation to be built
and analyzed. Logical behaviors are then the combined logical sensors
and motion control required to satisfy the " "Next\_to'' relation.

Note that it is in the context of such a strategy that high-level
multisensor integration occurs in goal-directed behavior. We are
currently implementing a testbed for experimentatiocon.

\subsection{Robot Behavior as Real-time Programming}

Robots must maintain a permanent interaction with the environment, and this is th
e

essential characteristic of {\it reactive programs}. Other examples include
real-time process controllers, signal processing units and digital watches.

We have selected the Esterel synchronous programming languagel\cite{Berry88} as th
e

specification language for the reactive kernel of the robot's behavior. A reacti
ve

system is organized in terms of three main components:

\begin{itemize}

\item {\bf reactive kernel}: specified in Esterel and compiled into C or CommonLi
sp

for execution,

\item {\bf interface code}: handles drivers and sensors, and

\item {\bf process or data handling code}: routine calculations.
\end{itemize}

The programs produced are:

\begin{itemize}

\item {\bf deterministic}: produce identical output sequences for identical input
sequences,

\item {\bf concurrent}: cooperate deterministically, and

\item {\bf synchronous}: each reaction 1s assumed to be instantaneous.
\end{itemize}

Interprocess communication is done by instantly broadcasting events, and statemen
ts in

the language take time only 1f they say so explicitly; for example:
\begin{tabbing}

1234567 \= 123 \= 123 \= 123 \= \kill

\> {\bf every} 1000 MILLISECOND {\bf do} {\bf emit} SECOND {\bf end}
\end{tabbing}

In this example, a SECOND signal 1is sent every thousand milliseconds.

Thus, Esterel provides a high-level specification for temporal programs. Moreove
r,

the finite state automata can be analyzed formally and give high performance in e
mbedded

applications. They help encapsulate the specification of sensing and behavior fr
om
implementation details. This simplifies simulation, too.

Other advantages include the fact that synchrony is natural from the user's
viewpoint; e.g., the user of a watch perceives instant reaction to pushing a



control button on the watch. Synchrony is also natural to the programmer. This
reconciles concurrency and determinism, allows simpler and more rigorous
programs and separates logic from implementation. Finally, such automata are
easily implemented in standard programming languages.

Details of the language are not given here; however, a brief summary is in order:
\begin{itemize}
\item {\bf variables}: not shared; local to concurrent statements.

\item {\bf signals}: used to communicate with environment or between concurrent
processes; carry staus (present or absent) and value (arbitrary type).

\item {\bf sharing law}: instantaneous broadcasting; within a reaction, all
statements of a program see the same status and value for any signal.

\item {\bf statements}: two types:
\begin{enumerate}
\item standard imperative style, and

\item temporal constructs (e.g., {\bf await} {\it event} {\bf do}).

\end{enumerate}

\end{itemize}

An extremely useful output from Esterel is a verbose description of the automaton
This

can be used for debugging purposes. Esterel also produces a C program which

implements the automaton.

Another useful output is a CommonLisp version of the automaton. This makes
simulation straightforward, so long as reasonable functions can be written which
simulate the world and the physical mechanisms of the robot. But these, too,
can be specified in Esterel and then combined.

\subsection{Robot Behavior Debugging Environment}

In developing Esterel specifications for robot behavior and sensor control,

we are faced with the problem of integrating diverse kinds of knowledge

and representations. In particular, debugging robot behaviors requires knowledge
of the world model, the robot's goals and states, as well as the behavior
specification, and sensor data (intensity images, sonar data, 3-D segments, etc.)

Figure 5 shows the current implementation organization.

\begin{figure}
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\caption{The Debugging System Organization}

\end{figure}

We use POPLOG (an interactive environment which combines CommonLisp, Prolog and
Popll) to support manipulation and display of prior knowledge, the robot world, a
nd

some sensor data, while other Suntool-based utilities support display of the
trinocular stereo camera images, etc.

Figure 6 shows a representative collection of windows which provide:
\begin{itemize}
\item POPLOG source code (window management, etc.)

\item Prolog source (semantic entity definition; e.g., walls, doors, etc.)
\item sensor data display (e.g., sonar range data, 3D segments)

\item Esterel generated automaton (e.g., COMBINE.debug)

\end{itemize}

\begin{figure}
\vspace{6in}



\caption{Collection of Windows for Debugging}

\end{figure}

Esterel permits state tracing during execution, and this combined with access
the robot's sensory data permits rapid and accurate debugging.

In Appendix A we give the details for the specification of a wandering robot

which must avoid colliding with objects in the world. This specification has
been compiled and loaded onto the robot and successfully executed.

\section{Implementation}
\subsection{Mobile Robot}

Figure 7 shows the operational mobile robot at INRIA. It is similar
to other mobile robots (e.g., like those at CMU or Hilare at LAAS).
\begin{figure}
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\caption{The INRIA Mobile Robot}

\end{figure}

Figure 8 shows the geometry of the robot (length: 1.025m, width: .7m,
and height: .44m) and the locations of the sonar sensors. The two
rear wheels drive the robot.

\begin{figure}
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\caption{The Geometry and Sensor Placement on the INRIA Mobile Robot}
\end{figure}

The onboard processing consists of two M68000 series microprocessors
on a VME bus; one controls the sonar sensors, and the other runs the
real-time operating system, Albatros. The two main wheels are
controlled separately, and the system has an odometer.

A graphical interface has been developed which permits a model of the
ground floor to be specified and for the robot to be instructed to
move in that envirnoment while avoiding obstacles. Figure 9 shows a
session at the Rocquencourt location of INRIA. For full details, see
\cite{Robles88}.

\begin{figure}

\vspace{7in}

\caption{Graphical Interface to the Mobile Robot}

\end{figure}

\subsection{Building Environment Descriptions}

Many papers have been published describing our methods for building

robust environment descriptions\cite{Ayache87,Ayache88,Faugeras87,Faugeras86}.

Current capabilities include 3-camera stereo and robust multi-view
fusion.

Figure 10 shows a typical office scene and Figure 11 shows a set of 3-D
segments reconstructed from the analysis of such a scene. This 3-D
description provides the basis for the development of logical sensors
for object recognition and localization.

\begin{figure}

\vspace{3in}

\caption{Typical Office Scene}

\end{figure}

\begin{figure}
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\caption{3-D Segments Recovered from Scene}

\end{figure}

\section{Summary and Future Work}

to



High—-level multisensor integration must be investigated in the context
of real-world problems. We have described current work on an
autonomous mobile vehicle under development at INRIA. We propose

" " logical behaviors'' as an approach to robot goal representation and
achievement.

We intend to continue development of algorithms, architectures and systems for

multisensor robotic systems. Moreover, we are currently investigating the
simulation of such systems; this involves embedding the reactive kernel in a
modeled robot world. Finally, as can be seen by the rough nature of the definiti
ons

of walls, doors, etc., we must develop a suitable formal model of the world in wh
ich

the robot finds itself. We intend to exploit optimized refinements of conceptual

clusters defined in first order predicate calculus.

\appendix
\section{Wandering Robot Example}

In this appendix, a system is developed which combines several
ESTEREL modules (ALARM, GET\_MIN\_DISTANCE, WANDER and COMBINE) with
the on-board robot command routines to generate random robot movement.
The robot generates a random move every 10 seconds, and executes it;
if there is any obstacle closer than the predefined threshold, the
robot makes an emergency stop.

The COMBINE.strl, ALARM.strl, GET\_NEAREST\_OBJ.strl and WANDER.strl modules are
as follows:
\begin{verbatim}

% SHeader: COMBINE.strl,v 1.1 88/12/07 +tch Locked $
©00000000000000000000000090900090009992020990229999009909900909

OO o0 OO0 O OO OO0 0O0O OO0 OO0 O00O™©O0O 0000000000000 OO0 00OV O0O OO0V O™©O™O OO0

% MODULE TO COMBINE READING WITH WATCHING THE SONAR SENSORS%
0.0 00 0000000000000000000000000000000000000000000000000000OQ0

8 9090000000020000000000000000000022008800000009000000900000009

module COMBINE:

type DISTANCE,
PING,
R_THETA,
MOVE ;

constant OMEGA_MIN, OMEGA_MAX : integer;

input S;
input MOVE_TIME;

relation MOVE_TIME => S;
sensor CURRENT_SONAR (PING);

output DISPLAY_ALARM(R_THETA) ;
output MOVE_CMD (MOVE) ;

[
signal GET_SONAR (PING), NEAREST OBJ(R_THETA) in

every S do
emit GET_SONAR (?CURRENT_SONAR)
end
I
copymodule ALARM
I
copymodule GET_MIN_DISTANCE



ALARM.strl,v 1.1 88/12/07 tch Locked $

copymodule WANDER

end
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TO_DISTANCE (DISTANCE, DISTANCE)
DISTANCE;

(

’

DISTANCE;

then emit DISPLAY_ ALARM

)

(PING)

;
R_THETA

(

function SONAR_TO_R_THETA

function EXTRACT_R

r

GET_MIN_DISTANCE.strl

SONAR (PING)

R_THETA;

PING,

if LESS THAN DISTANCE TO _DISTANCE
end

SHeader:

output DISPLAY_ALARM(R_THETA) ;
end

function LESS_THAN_DISTANCE
every immediate NEAREST_OBJ do

input NEAREST_OBJ (R_THETA)

constant MIN_ALARM_DIST
input GET

module ALARM:
type DISTANCE,
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WANDER.strl,v 1.1 88/12/22 tch Locked $

SONAR (PING)

R_THETA;

emit NEAREST_OBJ

every immediate GET_SONAR do
SHeader:

module GET_MIN_DISTANCE:
output NEAREST_OBJ(R_THETA) ;
function SONAR_TO_R_THETA

type PING,
input GET

end
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module WANDER:



type MOVE;

constant OMEGA_MIN, OMEGA_MAX : integer;
input MOVE_TIME;

output MOVE_CMD (MOVE) ;

function rand(integer, integer) : integer;
function TURNS_TO_MOVE (integer, integer) : MOVE;

every MOVE_TIME do

var left_wheel_turns, right_wheel_ turns : integer in
left_wheel turns := rand(OMEGA_MIN, OMEGA_MAX) ;
right_wheel_ turns := rand (OMEGA_MIN, OMEGA_MAX);

emit MOVE_CMD (TURNS_TO_MOVE (left_wheel_ turns,right_wheel_ turns))
end
end

\end{verbatim}

The finite state machine produced for COMBINE is:
\begin{verbatim}
Automaton COMBINE (Debug Format)

1. Memory allocation

V0: boolean (boolean of signal S)

V1: boolean (boolean of signal MOVE_TIME)

V2: R_THETA (value of signal DISPLAY_ALARM)
V3: MOVE (value of signal MOVE_CMD)

V4: PING (value of signal GET_SONAR)

V5: R_THETA (value of signal NEAREST_OBJ)

V6: integer (variable left_wheel_ turns)

V7: integer (variable right_wheel_turns)

V8: PING (value of sensor CURRENT_SONAR)

V9: boolean (boolean of sensor CURRENT_SONAR)

2. Actions
2.1 Present signal tests

Al: VO (signal S)
A2: V1 (signal MOVE_TIME)

2.2 Output actions

A3: DISPLAY_ALARM (V2)
A4: MOVE_CMD (V3)

2.3 Assignments

A5: V4 := (V9 ? V8 : (V9:=true,V8:=S_CURRENT_SONAR())
A6: V2 := SONAR_TO_R_THETA (V4)
A7: V5 := SONAR_TO_R_THETA (V4)

A8: V6 := rand(OMEGA_MIN, OMEGA_MAX)
A9: V7 := rand(OMEGA_MIN, OMEGA_MAX)
Al10: V3 := TURNS_TO_MOVE (V6, V7)

2.4 Conditions



All: LESS THAN DISTANCE_TO DISTANCE (EXTRACT_R(V5), MIN_ALARM DIST)
Al2: false

3. Automaton
State O

goto 1

State 1

if Al then
A5;
if A2 then
A8;A9;A10;A7;
if All then
Ab6;A3;A4;
goto 1
end;
Ad;
goto 1
end;
A7;
if A1l then
A6;A3;
goto 1
end;
goto 1
end;
goto 1
\end{verbatim}

Multiple processes can be added to the robot by using
the add\_process command in the Robuter C interface software.
However, a send with APRO works better:
\begin{verbatim}
sprintf (cmd, "MOVE P RC=%d, $d P=%d \n",move.left_wheel_ turns,
move.right_wheel_ turns,
move.period) ;
send (cmd) ;
\end{verbatim}

The program must be loaded into the robot memory, and the go command
issued to start it. The program then requests the user to enter a
delay which corresponds to how long the program is to run
(independently monitored) .

The robot then generates random moves (the number of turns for each
wheel is independent) of not more than 20 centimeters a move every ten
seconds and stops 1f an object is detected closer than two centimeters.
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