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Apparent symmetries in range data

'Roderic A. GRUPEN, Thomas C. HENDERSON and Charles D. HANSEN
University of Utah, Dept. of Computer Science, 3190 Merrill Engg. Building, Salt Lake City, UT 84112, USA

Received 27 May 1987

Abstract: A procedure for extracting symmetrical features from the output of a range scanner is described which is insensitive
to sensor noise and robust with respect to object surface complexity. The acquisition of symmetry descriptors for rigid bodies
from a range image was in this case motivated by the need to direct pre-grasp configurations in dextrous manipulation systems.
However, object symmetries are powerful features for object identification/matching and correspond explicitly to useful geometric

object models such as generalized cylinder representations!.
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1. Introduction

Work has been done previously concerning the
segmentation of range imagery based on sparse
data that relies on surface hypothesis testing [1,4].
These techniques use sparse sets of data to con-
struct hypotheses which are either supported or de-
nied by other such local hypotheses. This approach
could conceivably be generalized to identify that
class of objects which can be represented by genera-
lized cylinders. The resulting procedure is efficient
and may be implemented as a VLSI range image
pre-processor. The algorithm described by Lozano-
Pérez et al. [4] requires that hypotheses are con-

structed from a model of the object’s surface. The

resulting number of competing interpretations of
the object derived from such sparse surface measu-
rements, in noisy data, over a large set of object mo-
dels could prove to be prohibitive. It is in this case
that global information concerning the symmetries
apparent in the range image can be used to effec-
tively prune the tree of competing interpretations.
Symmetries are a powerful feature in object iden-

!This work was supported in part by NSF Grants MCS-
8221750, DCR-8506393, and DMC-8502115.

tification and are also quite useful in applications
which require no further surface information. Con-
sider, for example, the problem of selecting initial
orientations and approach vectors for a manipula-
tor which has functional symmetries. Knowledge of
the principal symmetries of an object and a manipu-
lator are sufficient to prune the set of initial hand/
object interaction configurations to an optimal sub-
set. It is in this context that the approach described
here was developed. '

The procedure has proven useful for identifying
symmetrical features within range images. It will,
however, produce symmetry parameters (eigenva-

lues and eigenvectors) for any object and is robust .

with respect to object orientations. The procedure
begins by assigning a normal to each point in the
range image from which we identify approximately
planar, contiguous segments. This step produces es-
sentially a least squares planar approximation to
the object’s surface and therefore removes random
noise in the sensed data. The planar patch approxi-
mation of the object consists of a set of patches each

described by centroid, area and normal (directed

outward). The centroids are projected backwards
along their respective normals to identify positions
in space where several such projections converge.
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nar faces. A perfect cylinder, when scanned from a
particular set of perspectives, will produce a set of
planar patches each of which is a vertical stripe of
the cylinder’s surface with approximately the same
areas and with centroids at roughly the same posi-
tion along the cylinder’s axis. This phenomenon
can conceivabley produce too few mass nodes to
predict an object’s symmetry. The solution to this
problem is the definition of a maximum area for
contiguous surface elements which creates a new
patch if areas grow too large.

The examples presented in this paper were com-
puted without using a maximum area in the planar
patches segmentation. To improve the results in
those cases where few mass nodes were produced,
we lowered the accumulator significance threshold.
This permits more ‘data, but unfortunately, data
which is less significant.

3. Computing the principal axes

After having identified an object’s center of mass
and the apparent distribution of mass, a real va-
lued, symmetric inertia matrix, M, can be comput-
ed:

i ,
M= z ; X7 %
i=1
where
M = a3 x 3 inertia matrix for the object,
w; = weight of mass node i, and
%; = world frame position of mass node i.

The principal axes of the apparent mass distribu-
tion are just the eigenvectors of the inertia matrix,
M. In our experiments we found that a simple itera-
tive method (Jacobi’s method) suited our objecti-
ves. The magnitude of eigenvalues associated with
each of these eigenvectors is proportional to the
spread of mass along that particular eigenvector.
That is, large magnitude eigenvalues indicate a wide
range in the mass distribution along the cor-
responding axis. If 4;, A;, and 4, represent the three
eigenvalues:

- Ay A;> >4 = a plane whose normal is in
the direction defined by the k-th eigenvector,

. Ay ;< <X = an axis defined by the k-th
eigenvector, or,
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- Ay~ A;~ 4 = spherical symmetry, or two
planes of symmetry.

4. Results: Some repesentative examples

Some of the results produced so far by this proce-
dure are presented in the following figures. These
demonstrations were all made using the UTAH Ran-
ge Database [3]. All figures depict the original
pointwise data, the mass nodes which satisfy the ac-
cumulator significance threshold (the radius is pro-
portional to the mass) and the resulting principal
axes. The relative magnitude of the eigenvectors as-
sociated with these axes are the principal moments
of inertia of the object. It is possible, therefore, to
identify the dominant type of symmetry: axial, pla-
nar or spherical. In the figures, the relative length
of the principal axes expresses the apparent symme-
try class of the object. Figure 2 illustrates a case
where the accumulator threshold indicating the sig-
nificance of the apparent mass nodes was lowered
to include more of them. The lower portion of this
surface was represented by tall thin planar patches,
whose centroids are prone to error due to the shape
of the plane produced in the segmentation. It was
not probable that the backcast centroids would in-
tersect. As was mentioned before, the correct solu-
tion is to segment the surface into planar patches
which do not exceed an area limit. The result will
be a roughly uniform segmentation of these large,
but  somewhat featureless surface regions. The
examples presented in Figure 3 did not suffer from
a lack of apparent mass nodes and the results are
relatively good. Figure 4 demonstrates by the lack
of mass nodes near the threaded portion of the light
bulb, that the area constraint on the planar patches
will undoubtedly improve the results.

The weight of the mass nodes shown here are sim-
ply the total area of all the patches which contrib-
uted to them. Since the accumulator is used to jud-
ge the confidence that a node reflects a symmetry
in the object, it stands to reason that areas that con-
tribute to a node be roughly equivalent. A node
that reflects the intersection of a large and a small
surface area may have a significant total area, but
may not reflect the correct symmetrical nature of

~ the object. Future versions of this procedure will in-

109



Volume 7, Number 2 PATTERN RECOGNITION LETTERS February 1988

Figure 4. The original 3-space data for a light bulb from two viewing perspectives and the resulting mass nodes (where radius is propor-
tional to mass) and principal axes (where relative length reflects the magnitudes of the eigenvalues).

dure. It is actually more correct to describe the re-
sults of this analysis as the apparent principal axes
of the object which correspond to the axes of sym-
metry in symmetrical objects. The program also
finds these axes for entirely non-symmetrical, irreg-
ular objects and the effectiveness of the procedure
to disambiguate these objects is equivalent to its ef-
fectiveness for symmetrical objects.
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