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Abstract

In this paper we describe an approach to high-level mukigemtegration in the context of an autonomous
mobile robot. Previous papers have described the develupohéhe INRIA mobile robot subsystems:

. sensor and actuator systems

. distance and range analysis

. feature extraction and segmentation
. motion detection

. uncertainty management and
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. 3-D environment descriptions
We describe here an approach to:
e thesemantic analysioof the 3-D environment descriptions.

This analysis is organized in terms of robot goals and beinsawviThis is accomplished by the use of logical
behaviors. Such an approach allows for active control o#resors in acquiring information.

1 Introduction

Multisensor integration has received a good deal of attarti recent years due to the availability of sensors,
actuators, and processors. Two major testbeds for suchaverk

e robotic workcell automation, and

e mobile autonomous robots.

The first of these involves applying strong knowledge-basetiniques to the manufacturing environment,
while the second concerns integrating several levels afrindtion processing into a single autonomous
system. We restrict our attention here to the second prablem
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Figure 1: Autonomous Robot Vehicle Research [figure migsing

Autonomous mobile robots have been studied in a wide rangergéxts. Figure 1 imposes an organization
on most of the typical keywords. Obviously, the problem ofigation is basic to mobile robots and conse-
guently has been studied by many people on specific implertiens [15, 24, 30]. Most such systems must
use sensors (e.g., sonar or cameras [10, 29]) and actuathr®ast control them [9]. The use of sensors
requires the study of uncertainty management [16] and sautior integration [8, 18, 26]. More global ap-
proaches to the sensorimotor problem can be found in [1,a],special purpose architectures are being
planned [2].

One level up, the mapping of procedural behaviors onto tinsmenotor control structure is of interest
[3, 17, 22, 20, 21]. The world representations also exishigtlevel: both the metrological [5, 4], where
precise measurement is paramount, and topological [6,3, 28], where adjacency relations are useful for
path planning, etc. It is even possible to study primitiverfe of learning in this context [28].

Broader studies are usually oriented towards particulplieations (e.g., the nuclear industry, road following)
or towards well-defined, but limited goals (e.g., indoor1¥] or outdoor [25] navigation).

Finally, the ’highest’ level involves the specification argpresentation of the knowledge appropriate to a
given task [23] and its compilation into executable robdideor (or programs) [19]. The literature is quite
large on most of these subjects, and these references aneduat as representative of the work in this area. It
should be pointed out that most system designers use aldegitrboard and some form of direct production
system or a compiled version (i.e., a decision tree) to sspreknowledge.

From this short summary, it can be seen that the scope of @uimus robot research is indeed vast, but the
difficult problems found here are yielding to the steady adeaof technical and theoretical developments.
In the remainder of this paper, we describe current work ermibbile autonomous robot at INRIA.

2 Problem Definition

We suppose that our mobile robot is wandering through anawmkrindoor environment. The robot must:

e incrementally build a 3-D representation of the world (i.e., determine its motion and integrate dis-
tinct views into a coherent global view),

e account for uncertainty in its description (i.e., explicitly represent, manipulate and combine uncer
tainty), and

¢ build a semantic representation of the world(i.e., discover useful geometric or functional relations
and and semantic entities).

In this paper we describe an approach to solving the thirdipm. (See [4] for details on efficient techniques
for producing a local 3-D map from stereo vision and strueftwm motion as well as a method for combining
several viewpoints into a single surface and volume reptasien of the environment and which accounts
for uncertainty.)
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Figure 2: (a) Semantic Net Defining World Model (b) With Roffagure missing]
Figure 3: A Representation of the Command: “Go to the officertiiigure missing]

The mobile robot must use the 3-D representation to locatelsigeneric objects, such as doors and win-
dows, and eventually more complicated objects like chaiesks, file cabinets, etc. The robot can then
demonstrate “intelligent” behavior such as going to a wimdinding a door, etc. The representation should
contain semantic labels (floor, walls, ceiling) and objextatiptions (desks, doors, windows, etc.).

3 Logical Behaviors

The proposed approach is straightforward and exploits mwvigus work on logical sensors, the Multisensor
Knowledge System, and multiple semantic constraints. Thdd\WModel is defined in terms of a semantic
network (e.g., see Figure 2a). The nodes represent phgsitiiés and the relations are (currently) geometric.
“Behind” each node is a logical sensor which embodies a mgtiog strategy for that object. The relations
are simply tabulated.

A goal for the robot is defined by adding a node representiegratvot itself and relations are added as
requirements (see Figure 2b). This method permits the my&idocus on objects of interest and to exploit
any strong knowledge that's available for the task. The ddditions are satisfied (usually) by the robot’s
motion. Techniques for the satisfaction of the relatiorscailedlogical behaviors

As an example, consider the world model in Figure 3 whiches@nts a specific office at INRIA. The addition
of the robot and the “Nexto” relation fires the “Finddoor” logical sensor. This in turn causes the strategy
for door finding to be invoked. Such a strategy may attempttshts (quick image cues) or may cause a
full 3-D representation to be built and analyzed. Logicdldgors are then the combined logical sensors and
motion control required to satisfy the “Neta” relation.

Note that it is in the context of such a strategy that higlelewultisensor integration occurs in goal-directed
behavior. We are currently implementing a testbed for expantation.

4 Implementation

4.1 Mobile Robot

Figure 4 shows the operational mobile robot at INRIA. It imir to other mobile robots (e.g., like those at
CMU or Hilare at LAAS). Figure 5 shows the geometry of the rofeength: 1.025m, width: .7m, and height:
.44m) and the locations of the sonar sensors. The two reagla/deve the robot.

Figure 4: The INRIA Mobile Robot [figure missing]
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Figure 5: The Geometry and Sensor Placement on the INRIA E&tobot [figure missing]

The onboard processing consists of two M68000 series nmacegsors on a VME bus; one controls the sonar
sensors, and the other runs the real-time operating sy#t#ratros. The two main wheels are controlled
separately, and the system has an odometer.

A graphical interface has been developed which permits aetrafdhe ground floor to be specified and for
the robot to be instructed to move in that envirnoment whitgiding obstacles. For full details, see [27].

4.2 Building Environment Descriptions

Many papers have been published describing our methodsiildiry robust environment descriptions [5, 4,
10, 11]. Current capabilities include 3-camera stereo abdst multi-view fusion.

We work on typical office scenes and reconstruct 3-D segnfenits such scenes. This 3-D description
provides the basis for the development of logical sensarshject recognition and localization.

5 Summary and Future Work

High-level multisensor integration must be investigatedhie context of real-world problems. We have
described current work on an autonomous mobile vehicle uheleelopment at INRIA. We propose “logical
behaviors” as an approach to robot goal representation@riev@ment.
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