@Make (Article)

@Device (1n01)

@Style (Spacing 1, LineWidth 8.4inches, LeftMargin 0.0inches)
@Use[Bibliography="general.bib"]

@MajorHeading (CAGD-Based Computer Vision)

@begin (format)

@begin (center)

Thomas C. Henderson and Chuck Hansen

Department of Computer Science
The University of Utah
Salt Lake City, Utah 84112

@end (center)
@end (format)
@Center [Qu (ABSTRACT) ]

Three—-dimensional model-based computer vision uses geometric models of
objects and sensed data to recognize objects in a scene. Likewise,
Computer Aided Geometric Design

(CAGD) systems are used to interactively generate three-dimensional
models during the design process. Despite this similarity, there has
been a dichotomy between these fields. Recently, the unification of
CAGD and vision systems has become the focus of research in the
context of manufacturing automation.

This paper explores the connection between CAGD and

computer vision. A method for the automatic generation of recognition
strategies based on the geometric properties of shape has been devised
and implemented. This uses a novel technique developed for quantifying

the following properties of features which compose models used in
computer vision: robustness, completeness, consistency, cost, and
uniqueness. By utilizing this information, the automatic synthesis
of a specialized recognition scheme, called a Strategy Tree, 1is
accomplished. Strategy Trees describe, in a systematic and robust
manner, the search process used for recognition and localization of
particular objects in the given scene. They consist of

selected features which satisfy system constraints and Corroborating
Evidence Subtrees which are used in the formation of hypotheses.
Verification techniques, used to substantiate or refute these
hypotheses, are explored.

@Newpage

@Center[Ru (1. INTRODUCTION) ]

Computer vision has been an active research area for over 20 years.

In the past, emphasis was on low level processing such as intensity

and signal processing to perform edge detection. More recently, models of
objects and knowledge of the working environment have provided the basis for
driving vision systems. This is known as model-based vision. The pursuit of
the fully automated assembly environment has fueled interest in model-based
computer vision and object manipulation. This involves building a

3-D model of the object, matching the sensed environment with the

known world and determining the position and orientation of the

recognized objects. The goal is to provide a solution to the problem of
visual recognition in a well-known domain.



In the automation environment, recognition schemes and representations
have typically been constructed using @i{ad hoc} techniques.

Although objects used in the assembly process are designed with a CAD
system, generally there is no direct link from the CAD system to the
robotic workcell. This means the recognition systems

are constructed independently of the CAD model database. What is
desired is a systematic approach for both the generation of
representations and recognition strategies based on the CAD models.
Such a system provides an integrated automation environment.

The system is composed of several

components: a CAD system, a milling system, a recognition system and a
manipulation system.

In this paper, the automatic generation of recognition

strategies based on the CAGD model is studied.

It has also been determined that the use

of shape, inherent in CAGD models, can also be used to drive the
recognition process. Others have been studying portions of this
system. Recent work by Ho has focused on the generation of computer
vision models directly from a CAGD model@cite{Bhanu87,Ho87}.

The work described here investigates the use of geometric knowledge in
constructing @i{strategy trees}.

These trees provide a robust

mechanism for recognition and localization of three dimensional

objects (occluded as well as non-occluded) in typical manufacturing scenes.

The run time matching of 3-D models to a scene can be expensive. If
the search technique is optimized, cost can be decreased,
thereby improving run time performance. One way to

accomplish such optimization is by the off line
examination and evaluation of the 3-D model.

Our main goal of is the automatic synthesis of recognition system
specifications for CAD-based 3-Dimensional computer visionCcite[Hansen87].
Given a CAD model of an object, a specific, tailor-made

system to recognize and locate the object is synthesized.

To attain this goal, the following problems have been solved:
@begin{enumerate}

@b {Geometric Knowledge Representation}:

The use of geometric data i1s central to a strong recognition paradigm.
Weak methods can only be avoided when better information is available.
The Alpha_1l B-spline model

allows the modeling of freeform sculptured surfaces. To obtain the
geometric features of interest for 3-D recognition,

techniques for the transformation to a computer vision representation
have been developed.

@b {Automatic Feature Selection}: The part to be recognized or
manipulated must be examined for significant features which can be
reliably detected and which constrain the object's pose as much as
possible. Moreover, such a set of features must (@i{cover} the object
from any possible viewing angle.

In solving the feature selection problem, a technique is

available for synthesizing recognition systems. This produces much
more efficient, robust, reliable and comprehensible systems.

@b{Strategy Tree Synthesis}: Once a robust, complete and

consistent set of features has been selected, a search strategy 1is
automatically generated. Such a strategy takes into account the
strongest features and how their presence in a scene constrains the
remaining search. The features and the corresponding detection
algorithms are welded, as optimally as possible, into a search process
for object identification and pose determination.



The automatic synthesis of search strategies is a great step forward
toward the goal of automated manufacturing.

Generation of strategies is constrained, not only by the feature
selection process but, by the actual task to be accomplished.

Thus, strategies for a specific task might not be as strong when
applied to a different task; strategies are task specific.
@end{enumerate}

The remainder of this paper explains how these three

components can be exploited to automate the process of selecting
proper features and recognition schemes for specific goals.
Algorithms are described which were developed for feature selection
and which give supporting evidence for their formulation.

Lastly, strategy trees are defined,

their use in specific domains is explained, and a technique for

the automatic generation of these search trees is given.

@Center[@b{2. GEOMETRIC KNOWLEDGE REPRESENTATION} ]

Computer vision utilizes object models in a

different manner than computer graphics or CAGD. In CAGD, the models
must contain information about the 3-D object for rendering,
performing finite element analysis, milling and other processes.
Computer vision 1is concerned with recognition of the objects from
sensory data.

CAGD models must contain information for the local design operations
such as what shape to extrude or what is the profile curve for a sweep
operation. Features used in construction of models are implicitly
rather than explicitly used in the CAGD representation. For example,
a dihedral edge formed from two adjoining surfaces isn't modeled as an
edge Qi{per se} but as two surfaces with adjacency information.

With computer vision models, the ability to index into an object
model for the purpose of recognition is needed. For example, 1if

a 30 degree dihedral edge of length 4 inches is detected in a scene,
it is necessary to

determine which 30 degree dihedral it matches in the model. One
approach i1s to index into the model and extract all 30 degree
dihedral edges with similar attributes (length, adjacent faces, etc.).
Some way to represent this information is required.

We propose to use intrinsic features as the interface between CAD
and vision. Recent research by Ho has examined the generation of
several classes of computer vision models directly from a CAGD
system@cite{Ho87}.

In the experimental system developed here, a modified winged-edge
model@cite{Baumgart74} is used as the interface between CAD and vision,
where relationships between features are explicit

in the model. It is extended for inclusion of non-planar

surfaces. 1In addition to special mechanisms for matching,

access to the geometric knowledge of the object is required for the automatic
generation of strategy trees. From

this modified winged-edge description, -an index on

feature attributes can be generated which can quickly and efficiently
access the

geometric knowledge contained in the model. The edge and surface
information used in the aspect computation, provides additional geometric
knowledge.

In this case, it is necessary to know which edges or surfaces are
self-occluded by the object from a particular viewpoint. When not

fully visible, the knowledge of the extent of occlusion can be used in
determining the potential of the feature for use in the matching process.



@Center[@b{3. AUTOMATIC FEATURE SELECTION} ]

Several kinds of knowledge are

required for feature selection. Geometric knowledge permits the
selection of a complete and consistent set of features, while the
sensor knowledge provides information on the robustness and reliability
with which such features can be extracted. On the other hand, domain
specific information about the task can be used to select feature
extraction algorithms

based on their complexity, robustness, etc.

Object recognition techniques are based for the most part on geometric
features of the objects to be recognized. This includes corners,

edges and planar faces for polvhedra, as well as points, arcs of

distinct curvature and regions of constant curvature for sculptured
surfaces. Other features such as axes of inertia, profile curves,

surface texture properties, reflectance, etc. can also be used.

Another area of current research in CAD

systems is the possibility of designing by feature, which could

include process knowledge. Such capabilities would facilitate the feature
selection process for object recognition.

The feature selection process can be viewed as a set of @i{filters}
applied to the complete original set of features of an object.

Filters select and rank features; order of application is important.
Conceptually, the filters remove features from the input, in order of application
, which do not meet the filter's criteria.

The goal here is to automate and optimize this filtering process.

The filters select features based on the following gualities:
@begin{itemize} :

@b[rare] - histogram the features; rare features are useful for
quickly identifying the object; these features make good root nodes in
a search tree.

@b [robust] — measure of how well the features can be detected; error
and reliability.

@b[cost] - measure of complexity (space and time) for computing feature.

@b [complete] - does set of features cover all possible views of the object.
@b [consistency] - how completely does feature characterize object pose;
(i.e., how many DOFs are unresolved);

how well does the feature differentiate between

objects; measure of likelihood of correctly identifying the object.
RGend{itemize}

@u{3.1 Rare Features}

The first Qi{filter} in the feature selection phase is used to

determine the uniqueness or commonality of features. This can be
tuned to filter out either common features or unique features. Model
features are histogrammed according to occurrences. This

occurrence histogram can be used to select those features which rarely
or often occur depending on the system needs.

@u{3.2 Robust Features}

There are two types of feature robustness a system can quantify: the
robustness of a feature itself and the robustness of the extraction
techniques which are applied to obtain the feature. Furthermore,
features should be dependable with respect to artifacts in the
scene. For example, concave dihedral edges can occur whenever a



polyhedron is placed upon another polyhedron; moreover, this is likely

to occur due to occlusion in a polyhedral scene. On the other hand, the
likelihood of a convex edge being formed as an artifact of occlusion
is very low. The knowledge of such robustness, or lack thereof, can

be incorporated into the Robust Feature filter.
@u{3.3 Complete Features}

Three dimensional models define

the entire object, yet, during scene analysis

only a single view is available, or possibly multiple

views, but not a complete view.

How then, can the model be matched with the sensed data

from the scene?

Unless special fixturing is used in the manufacturing environment,
we must assume that the pose of the object in the

scene 1is unknown. One solution is the use of aspect graphs.

An aspect graph is a representation of an object's topology; thus it
captures all viewpoints of an object@cite{Koenderink76}.

The QRi{aspect} is the topological appearance of the object from a particular
viewpoint. Slight changes in the viewpoint change the size of
features, edges and faces, but do not cause them to appear or disappear.
When a slight change in viewpoint causes a feature to appear or
disappear, an Q@i{event} takes place. An aspect graph, or visual
potential graph, 1s formed by representing @i{aspects} as nodes and
@i{events} between aspects as paths between corresponding nodes.
Several researchers have developed algorithms for the

construction of aspect graphs, however, the size of the graphs poses
computation limitations to their uselcite{Kent86,PlantingaDyer87}.

We use a discrete approximation by placing a tessellated sphere around the
model, where each of the polygons represents a different viewpoint.

The tessellation can be made arbitrarily fine, thus obtaining any

desired granularity. Since the distance

of the sensor from the work space is known @i{a priori}, and

the sensor's physical characteristics (focal length, sensing

field size, etc.) are also known, 1t 1s possible to position the

sphere to correspond to the sensor's position.

An icosahedral tessellation of a unit sphere is used and then

the tessellated sphere is uniformly scaled to the proper size. In
experiments, it has been found that a tessellation of 80 fully covers the
set of aspects. If the tessellation is subdivided to 320 cells,

same apparent aspects are obtained, but they are spread across many more
cells.

Each tessellation cell, called a tessel, can be thought of as a

feature accumulator. That 1is, all object features which are

visible from a tessel (i.e., that viewpoint and distance from the

model) are recorded.

Tessels which contain the same features are merged into the same

aspect. When no more tessels can be merged, the

minimal aspect set for the model/sensor pair is reached.

Each aspect corresponds

to a topologically different viewpoint; since all possible viewpoints
are considered, complete coverage of the model is achieved.

This is similar to what Tkeuchi does in

the generation of viewpoints for his interpretation trees
@cite{Ikeuchi87}. However, the technique described here differs from his
in that he uses a CAD system to generate 60 views and then, by hand,
combines views with similar aspects where the only features considered
are faces.



Our method can be further refined by including knowledge of the
sensing characteristics determined in the Robust Feature phase of the
process. If it is determined that a feature can't be reliably
detected when the sensing angle reaches a certain position,

this knowledge can be used to eliminate features from tessels.

Qu{3.4 Cost of Features}

The expense of feature computation can by

divided into two classifications: time and space. However, time

is usually the more critical element. Thus, in the experiments the cost
in time of feature computations is of greatest concern.

The amount of time for feature calculation is determined by both the
algorithms which are available and the hardware at hand. Certain
feature computations can occur at the hardware level making those
features more attractive (faster) to obtain. In addition to the
possibility of specialized hardware, there is a trade off between
speed and reliability of feature detection algorithms. Such knowledge
needs to be utilized in this filter.

@u{3.5 Consistent Sets of Features}

Although features may fulfill the requirements of the above filters
for a specific workcell and task configuration, they may not
discriminate between views of the object or between different objects.
A feature set is considered consistent if it possesses the necessary
geometric information to distinguish between aspects. Symmetric
objects pose problems for this type filter since multiple aspects
appear similar to the system. The consistency filter forces the set
of features to be strong enough to form a hypothesis.

The geometric information contained in features differs with feature
type. It is desirable to use features which make available the maximal
amount of pose information possible. One way to measure geometric
content 1s in terms of degrees of freedom, DOF, which remain unknown
after a feature is matched to the model.

@u{3.6 Use of the Filters}

When used in combination, these filters provide the mechanism with
which to build a strategy tree. The task requirements may be such
that the result of these filters is the

null set of features. This can be dependent on the order in which
the filters are applied to the complete feature set. For example,
if the filter for rare features determines that a 1/4 inch
dihedral edge is the Qi{best} feature and is applied prior to the
robustness filter, that dihedral might not be accepted by the
robustness filter since it is so small. Thus, the set of features
would be null after the application of the robustness filter.
Whereas, if the robustness filter is applied first, it wouldn't
accept such features and when the rare filter is applied to the
features accepted by the robustness filter, it would determine a
different set of features as being @i{best}. The order of
application is to be determined by knowledge of both the task to be
accomplished and experience.

Since there 1is this possibility of null feature sets when filters are
applied such that they absolutely eliminate features, the filters need
to be applied in a relative manner. That is, the filters should rank
the features rather than Jjust eliminate those which don't meet the
criteria. If the features are ranked by the filters,

null sets should never occur. However, the order of application is
still important.



@Center[@u{4. STRATEGY TREE SYNTHESIS}]

Strategy trees describe the search strategy used to

recognize and determine the pose of objects in a scene. This is a
generalization of a hierarchical classifier or decision

tree. The use of strategy trees permits one to

exploit knowledge of relations between the geometric features in the
models. Such trees also

define a sequence of measurements or evaluations of the scene data so
as to eliminate certain classifications at particular nodes.

The system consists of two parts: the off-line model analysis and
strategy generation and the run time environment. The CAD model is
analyzed in terms of the geometric knowledge needed for object
recognition. This geometric information, which is analyzed by the
feature selection process, 1is

used by the strategy tree builder to produce the core of the run time
recognition system. During run time, the strategy tree provides the
search structure and control for the hypothesis generator. By using
the information provided from the feature extractors and the strategy
trees, the hypothesis generator attempts to hypothesize pose
descriptions for recognized objects in the scene. These hypotheses
are verified for correctness and a description of recognized objects
and their poses are the end result.

Another benefit of the tree structure is the inherent parallelism of
trees. This occurs whenever there is a

branch; thus, trees with greater breadth will, in general, have higher
inherent parallelism. The sequentiality of trees refers to the depth
of paths in the tree. Strategy trees are shallow trees with many
branches in the first two levels. Thus, there is a great deal of
inherent parallelism in these trees.

The matching strategy consists of two phases: the hypothesis

generation phase and the hypothesis verification phase. This
recognition technique is known as hypothesize and verify. The
hypothesis generation phase is controlled by the

strategy tree and the verification phase substantiates or refutes

the hypotheses generated from the strategy tree. As will become apparent
in the next subsection, the confidence of a hypothesis can be increased
at the hypothesis generation phase which has two effects: increased cost
of hypothesis generation and decreased cost of the verification phase.
Conversely, the confidence in an initial hypothesis can be decreased,
thereby expediting the hypothesis generation phase, which increases the
computational expense of the verification phase.

@Qu{4.1 Description of Strategy Trees}

A strategy tree consists of three major parts:
@begin{enumerate}
@u{The Root} — Which represents the object to be recognized.

Qu{Level 1 Features} — Which are the strongest set of
view independent features chosen for their ability to permit rapid
identification of the object and its pose.

@Gu{Corroborating Evidence Subtrees, CES} - Whose purpose

is twofold: they direct the search for corroborating evidence that
supports the hypothesis of the level 1 features and they direct the
search for geometric information to completely determine the pose
prior to hypothesis generation.

@end{enumerate}



Strategy trees determine the procedure a recognition system follows
for object recognition. There will be at least one strategy tree for
each model under consideration. If a model is used in a different
task or environment, there could possibly be a different strategy tree
for each of those tasks. The level 1 features are selected using the
@i{feature filters}. These conform to

the regquirements which constrain the task, environment, and model yet
contain the strongest geometric information which leads to a
solution. The corroborating evidence subtrees, CES, are constructed
using geometric information derived from the CAD model.

@u{4.2 Construction of Strategy Trees}

A method is now needed for extracting the features of interest from

the aspects. The level 1 nodes of the

strategy tree are built from these features.

Recall, that an aspect is a feature accumulator which

forms a topologically equivalent set of features from multiple

viewpoints. The Aspect Coverage Algorithm is used to form level 1 nodes by
extracting the best, unigque features from the aspects.

When @b{D} not the empty set, it means

there is at least one feature which is contained in all the aspects.

Thus, that feature is used as a level 1 node. In the case where

@b{D} is null but all the QRb{D@-[ij]}s are not empty, there is a
combination of features which uniquely spans the aspects. Thus,

a set of features for the level 1 node is used. In the last case,

where the

@b{D}@-{1i3} is null for some @i{j}, then @b{D} will also be

null. Additionally, it is known that the aspect, CGb{A}QR-[i1] is completely
contained in aspect Q@b{A}C@-[j]. Cb{A}R-[1i] must be a subset of

@b{A}@—[7J] because the set difference is null and if the two aspects,
@b{A}E-[1] and @b{A}@-[7J], contained the exact same elements, they would have
been merged at the tessel stage. Since @b{A}@-[i] is contained in
@b{A}@-[j], a level 1 node is not created at this point. Rather, this
aspect will be covered by the level 1 node generated from aspect @b{A}€-[7J].

Once the level 1 nodes are built, it is necessary to generate the CES,
Corroborating Evidence Subtrees.

The CESs simply substantiate that a hypothesis should be generated based
on a feature matching a level 1 node. Sufficient

evidence must be found that a correct hypothesis is being made before
a hypothesis for the verification phase to validate is generated.

This process serves two purposes:

find spatially local supporting evidence for the level 1 feature and
completely constrain the object's pose.

Which features are used in this local

corroboration is dependent on which class of feature(s) the level 1
node contains.

Occlusion becomes a factor during the determination of the CES
strategy. Since dihedral edges and arcs

provide the most consistent information (solve the most DOFs), they
are used for level 1 nodes more often than regions or curved
surfaces. FEdges and arcs are composed of a starting point, an ending
point, and the connecting edge or arc. When forming a strategy to
handle occlusion for these features, both ends of the

feature must be considered since it can't be known @i{a priori}
which end is occluded. Generally, four cases are considered when
forming the subtrees for local feature corroboration:

(1) detected feature is not occluded,

(2) one end of detected feature is occluded,

(3) other end of detected feature is occluded, or



(4) both ends of detected feature are occluded.

For some features,

such as faces or regions of constant curvature, there 1s no

concept of direction; hence, the end conditions check can be replaced with
adjacency information.

There are several rules which are implemented to

control the construction of the CES level. These rules are

feature dependent and are expandable should other classes of features
be included in the system (e.g., @i{generalized cylinders}).
@begin{itemize}

@b [Dihedral Edge] rules are:

@begin{itemize}

First look for another dihedral edge nearby which matches the model.

Failing this, look for an appropriate 2-D corner.

Failing this, use the approximate areas of adjacent faces.
@end{itemize}

@b [Dihedral Arc] rules are:
@begin{itemize}
First look for another dihedral edge nearby which matches the model.

Failing this, look for an appropriate 2-D corner.

Failing this, look for the surface type of adjacent faces or
other attributes of the adjancent regions (area, radius of cylinder).
@end{itemize}

@b [Planar Region] rules are:
@begin{itemize}
First determine the orientation of the adjacent faces.

Failing this, look for a nearby dihedral edge which matches the model.

Failing this, look for an appropriate 2-D corner.
Rend{itemize}

@b [Curved surface] rule is:

@begin{itemize}

Determine surface types of adjacent surfaces
@Qend{itemize}

@end{itemize}

A CES is generated for every feature in the model which has
similar attributes as the level 1 node. For example, suppose the level 1
node is a dihedral edge of included angle 30@+{o} and a dihedral
edge in the scene is detected with an included angle close to
30@+{o}. A CES is generated for

all 30@+{o} angles in the model. In other words,

an attempt is made to determine which 30@+{o} dihedral was
detected.

The use of

corroborating evidence focuses the search strategy by pruning
unattractive paths at an early stage of the search.

@u{4.3 Usage of Strategy Trees}

The strategy tree @1i{guides} the search through

possible solutions. When a level 1 node is matched in the strategy
tree and it is supported by the Corroborating Evidence Subtrees, then
a hypothesis is generated. The hypothesis is passed to an object



verifier which
determines whether the hypothesis is valid within some confidence
level.

The combinatorial explosion of the matching process is controlled by
the use of heuristics. For a detected feature to match a level 1
node, it must satisfy the following rules:

@begin{enumerate}

The attributes in the detected feature must be less than or

equal to the attributes in the model (i.e., the length of a detected
edge must not be longer than a model edge, area of a detected surface
must not be greater than the area of the model, the included angle of
a dihedral arc must be within some range of the model).

If the detected feature i1s not occluded, the attributes must be
within some tolerance of the model's values.

@end{enumerate}

These simple rules greatly reduce the possible matches to the

level 1 features. The check " “less than or equal to'' for feature
attributes is used due to the possibility of occlusion. In

dealing with 3-D data, perspective doesn't alter the measurable
attributes. Even with occlusion, a feature cannot

appear larger (longer for edges, larger area for surfaces) than the
original model.

In the above method, occlusion must be detected in the range data.
Three simple cases suffice to determine whether

occlusion is present or not. These tests are performed at the boundary
of the detected features (i.e., dihedral edge - endpoints, surface/face
— bounding edges) .

@begin{enumerate}

Feature ends with a jump edge. In this case, look at the

relationship between the feature and the part of the scene which forms
the jump edge (scene—jump) :

@begin{enumerate}

feature 1s nearer than scene-jump. Implies @b{Non-occluded}

scene—jump 1s nearer than feature. Implies @b{Occluded}
Rend{enumerate}

Feature ends with a shadow edge. This is an unfortunate

artifact of triangulation systems. However, this is the prevalent

class of 3-D sensor

in use at research labs at the present. It is unfortunate

because the cause of the shadow edge is unknown. It could be

the shadow is caused by the actual edge of the object (e.g., the back-top
edge of a cube), or is caused by occlusion, or is caused by a
non—occluding object casting a shadow on the feature in question.

Since the cause 1s not known, it must be considered

occluded even though it may not be. Implies (@b{Occluded}

Feature ends with neither a shadow edge nor Jjump edge. It is known
conclusively that the feature is @b{Non-occluded}.
@end{enumerate}

Once a level 1 node has been matched using the heuristics described above,
and a determination made as to whether the feature is occluded or not,

the local CES can be evaluated, as prescribed by the strategy tree.

This local evidence gathering limits the number of hypotheses

generated and passed to the object verification phase by determining
whether a hypothesis is justified by the local evidence. If there isn't
supporting local evidence, as prescribed by the strategy tree, then

that level 1 match fails and the detected feature is marked as unmatched.



If there is enough local supporting evidence, a hypothesis is
generated for the object verification phase to accept or reject.

Two forms of verification have been examined: structural and pixel
correlation. Structural verification refers to verifying spatial
relations among the features which should be present in the scene.
This is similar to relational graph matching in 2-D.

Pixel correlation refers to the verification technigque of matching
predicted depth, pixel by pixel, in a generated image and the sensed
@i{image}. This corresponds to template matching in 2-D.

Either of these methods provides for verification.

This follows the hypothesis verification techniques used by
others@cite{BRolles82,Rolles86,KnollJain86}. One of three

states is assigned to the match of the hypothesized feature or pixel
with the observed feature or pixel:

@begin{itemize}

@b [positive evidence] When the observed feature or depth is
approximately the same as predicted. This means the observed
object matches the transformed model in the predicted image.

@b [neutral evidence] When the observed feature or depth is closer to

the sensor than the predicted one. This seems

counterintuitive but it simple means that the predicted

feature/depth can't be observed because something is possibly blocking
sight of the object. In

the presense of occlusion, it can't be determined whether the difference
between the prediction and the scene 1s due to an incorrect hypothesis
or due to an occluding object. This also holds for shadow
pixel/region in the range image for the same reason.

@b [negative evidence] When the observed feature or depth is much
farther from the sensor than the predicted one. This definitely points
to an incorrect hypothesis since the observed feature/depth is not
occluded but is not where it should be.

@Qend{itemize}

If these measures are accumulated for the predicted range image or
structural features, the hypothesis can be quantified and accepted or
rejected accordingly. This guantification provides a measure of
confidence in the hypothesis.

@Center[Qu (6. CONCLUSIONS AND FUTURE WORK) ]

The concepts which have been outlined above

have been implemented in an experimental system.

The synthesis of strategy

trees has been demonstrated for polyhedra and bottle surfaces.

The equipment used for the experiments consisted of a

Technical Arts 100A White Scanner, DEC VAX class processors and an HP
Bobcat. The images used in the experiments are part of the the Utah

Range Database which was compiled for standardization of research on

range images for the research community@cite{Hansen86}.

Feature computation was coded on a VAX 750 in C.

The automatic generation of strategy trees and the matcher were coded
on an HP Bobcat in HP Common Lisp.

Range data was obtained with the White Scanner 100A which

returns actual Cartesian data. The structured light is a laser beam
which is spread into a plane of light and directed onto the work
space. The sensing mechanism is a GE CCD camera with a 240 x 240
image.

It has been shown that the automatic generation of recognition strategies



is possible. A method is presented which analyzed the geometric
information of an object to determine the best strategy for
recognition within the constraints of the sensing environment and the
task. Using this information, a recognition system, a strategy tree,
is produced which effectively matches models with sensed data.

@Qcenter (Qu[7. ACKNOWLEDGMENTS])

This work was supported
in part by NSF Grants MCS-8221750, DCR-8506393, and DMC-8502115.)



