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Abstract

This paper discusses parameter estimation and error
analysis techniques applicable to range data. Extract-
ing surface parameters from noisy range data amounts to
data reduction (parameter estimation) and error analysis,
the most popular method for which is the least squares
method. Most researchers usually assume that range data
is Gaussian. It is argued here that linear least squares
can be used profitably and with good theoretical basis re-
gardless of the distribution of data. Using least squares,
it 1s shown how error in range data percolates upward to
manifest itself in the value of each parameter that is cal-
culated either directly or indirectly from data. In addition
to estimating surface parameters, errors in the parameters
themselves are also estimated. The formalisms (with ex-
amples) for estimating error in a computed parameter, and
combining two or more sets of parameter estimates into a
single estimate are presented.

1 Introduction

Recently, there has been several articles dealing with param-
cter estimation and error analysis in range data. For example,
Durrant-Whyte [4] discusses uncertain geometries in robotics.
Bolle and Cooper [2] discuss ways to optimally combine esti-
mates. All measurements contain error. Extracting surface pa-
rameters from a set of points amounts to data reduction and error
analysis. The least squares analysis of data is the most popular
method for these tasks. Surprisingly, however, in the computer
vision literature, there is not a comprehensive description of ap-
plications of least squares methodology to range data. This paper
fills that void for linear least squares.

There has been several works that use least squares analysis
in range data. Faugeras and Hebert [5], for example, use least
squares to extract surfaces from range data. Several aspects of
least squares methodology is dealt with by Bolle and Cooper [2].
In particular, Bolle and Cooper discuss the problem of optimally
combining pieces of information which is also dealt with here.
They assume that range data is Gaussian. It is argued here
that linear least squares can be used profitably and with good
theoretical basis regardless of the distribution of data.

If a quantity is calculated using estimated parameters each of
which has an associated uncertainty, then the value of the calcu-
lated quantity will also contain some degree of uncertainty. This
paper shows how to calculate uncertainties in the parameters of
an edge which is computed from the parameters of the two planes
which intersect to form it in the first place.

CH2555-1/88/0000/1709$01.00 © 1988 IEEE

1709

2 Theory of Fitting a Plane to Noisy Range Data
The equation of a plane is given by

az +by+cz=d (1)

where
a2+ 6P+t =1 (2)
d>0 (3)

and (z,y,2) is any point on the plane. The triplet (a,b,¢) de-
notes the direction cosines of any perpendicular drawn on the
plane pointing away from the origin of the coordinate system.
Equivalently, it denotes the components of the unit normal vec-
tor drawn on the plane pointing away from the origin. d denotes
the perpendicular distance between the plane and the origin.

2.1 Fitting a Plane to Noisy Range Data by the Eigen-

vector Method

The range data consist of n measurements {(z;,y;,2;): ¢ =
1,2,...,n}. The coordinates (z;,y;,2;) all contain noise. Sup-
pose that the best fitting plane is given by az + by + cz = d,
where a, b, ¢ and d satisfy conditions 2 and 3. Then the distance
of the ith point to the plane without regard to sign is given by

(4)

where (z,,Yp, 2p) is any point on the best fit plane. The second
term of RIS of 4is the distance from the origin to the best fitting
plane, and the first term is the distance from origin to another
plane parallel to the former and passing through the ith data
point. According to one least squares method the best fitting
plane is that plane which minimizes the non-negative quantity

D? = zn: d?
i=1

Even before the direction cosines and d that minimize the
sum are determined, one point that lies on the best fitting plane
can be found. That point is the “center of mass” (z., yc, z:) of
the data points:

di = (az; + by; + cz;) — (azp + by, + c2p)

(8)

zc=$1+12+"+2n (6)
n

C=91+y2+'”+yn )
n

o ARt ®)




To see this [3], suppose that the best fit plane has been found
by minimizing D?* = 3L, d?. Now form a coordinate system
whose zy-plane is parallel to the best fit plane. Let the z; be the
z-coordinate of the ith data point, and z, be the z-coordinate of
the best fit plane in this coordinate system. In this coordinate

system, D? = 3% d? = (2 — 20)%. To minimize D2, set
dY " (2 — 20)?
21_1( 1 O) =0 (9)
dZO
which yields
no,.
20 = ==l (10)
n

Therefore, zg is the z-coordinate of the center of mass z. of the
data points. But the location of the center of mass is invariant
to coordinate systems. So, the best fit plane must go through
the 2. in any coordinate system, and, by similar arguments, also
through z. and y,.

The minimization of D? is done with respect to a,b and c.
However, a,b and ¢ cannot be freely varied; if they could, then the
result would be @ = b = ¢ = 0, and D? = 0. But null values for
a,band c violate the constraint of 2. So, the minimization process
must be subject to constraint 2. To that end, it is necessary to
introduce the Lagrange multiplier A and minimize the quantity

DodP—Ad® b2+ ) (11)
=1
or, equivalently,
D (aATi +bAY +cAz)? = Aa2+ b2+ ) (12)
1=1
where
Az =i — T, (13)
Ayie = yi — Ye (14)
Az = z; — 2, (15)

4 for d;, and the fact that (z.,y.,2.) is a point on the best fit
plane are used to obtain 12. The minimization is, of course, with
respect to a,b and c. Setting the derivative of 12 with respect to
a equal to zero, one gets

n
Z(“AI‘C + bAYi + cAzi)Az, . —Aa =0

=1

(16)

Taking derivatives with respect to b and ¢ yields two more sim-
ilar equations. These three equations can be combined into one
matrix eigenvalue equation:

Y ArAr Y AyAz Y AzAx a a
Y ArAy T AyAy Y AzAy bl=A|0»d (17)
LAzTA: T AyAz S AzAz c c

where the shorthand 3~ Az Ay stands for 371, (A, Ayie). and
other elements of the 3 x3 matrix, denoted by S, stand for similar
expressions.

S is a real symmetric matrix; it must have three real eigen-
values Ag,k = 1,2.3, and three corresponding normalized eigen-

T
vectors [ ap by ok ] Jk =1,2,3. Identities

Y AzAz Y AyAzr Y AzAz ay
[ak by Ck] TArAy Y AyAy Y AzAy by | =
YArAz Y AyAz T AzA: I
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]ﬁllk

1
N i
[(lk by cp E/\,"- br | (18]
and
Ak
[ ap br ¢ ] by | =1 (19)
Ck
vield
Ao =D (aAZie +bAyic + ¢ Azi)? = St (20)

=1 1=1

20 proves that the eigenvalues of S are non-negative, and that
the minimum value of 7| d? equals the lowest eigenvalue. The
corresponding eigenvector determines parameters a.b and ¢ of
the best fit plane. To determine d of the plane. use the fact that
(e, Yer 2c) lies on that plane, and compute d = az. + by. + cz.
It should be noted that the other two eigenvalues correspond to
stationary values of 7% | d?.

On some instances, one may want to find the best fit line
rather than the best fit plane to a set of points [3]. There is an
interesting relationship between the two problems. Both prob-
lems lead to the same eigenvalue equation! The only change is
that the triplet (a,b,c) denotes the unit direction of the best
fit line. The unit normal of the plane corresponds to the low-
est cigenvalue. The unit direction of the line corresponds to the
greatest eigenvalue. The best fit plane contains the best fit line.

For details on least squares, see [1,2,7]. Following Duda and
Hart [3], the least squares method used here will be called the
eigenvector method to distinguish it from other least squares
methods.

2.2 Applying the Least Squares Method to Find the

Best Fit Plane

The eigenvector method of finding the best fit plane is more
general than the least squares method. It will be seen that the
former method assumes that all measured variables contain er-
ror. In many experiments of physics and chemistry, only one
variable contains error. This is the dependent variable. All other
variables are independent variables which are assumed to contain
no or negligible error. For example, in an experiment designed
to measure the z-position of a particle as a function of time, one
usually assumes that only the measurements of z are in error,
not those of corresponding times. The least squares problem in
these situations is relatively simple. In the present section, this
method is specialized to finding the best fit plane to a set of
points in 3-D space.

Assume that the data set consists of n points {(z;, ¥, 2;): ¢
1.2,...,n}, where z; and y; are independent variables with no

error, and z; is the dependent variable which does contain error.
Also suppose that the functional dependence of z on z and y is
given by

z= f(z,yipg,r)=p+az + 1y (21)

Here p, ¢ and 7 are parameters which will be found by the least
squares procedure. In other words, from the family of infinitely
many functions f each of which is characterized by a unique
triplet of values of p,q and r, least squares procedure will pick
out one particular f that is optimal in some sense. f describes a
plane as can be seen by setting



u = Cp 124
a= —qc (23)
b=—rc (24)
and, finally,
1
(25)

| = —
= VEe

The sign of ¢ is chosen such that d is non-negative.

With the form of f as given above, if independent variables
liave values z; and y;, then the the measured value of z should
be p 4 gqr; + ry;. However, the measured value of z is z;. The
error in the ith measurement is then

e = flzi,yip,0) - (26)

2q

According to the least squares method, p,q and r are to be so
chosen as to minimize the following sum of the squares

n
£? = Z €?
i=1

=D (p+qzi+ryi — 2)°

=1

(27)

To that end, take derivatives of E? with respect to the param-
eters, and set cach derivative equal to zero. This yields three
simultaneous equations which are lincar in the unknowns p,q
and 7. Combining the three equations results in the following
matrix equation

n 1T Ly P 2
T oyt Yy g | =| Xz (2%)
Ty Taiy Lyl r T viz

where the summation is from ¢ = 1 to n. This equation can be
casily solved for p,g and 7. a,b,c and d can then be recovered by
using 22 through 25.

2.3 Estimating Uncertainty in a Derived Quantity

Since the range data contain noise, it is reasonable to en-
quire about the uncertainties in the best fit parameters a,b,c
and d. Unfortunately, for the eigenvector fit, this is not easy to
do. However, this is casy to do for the least squares technique
and modifications thereof. This is done in section 2.4. Now, how
error propagates in a derived quantity is discussed [8].

Suppose that ¢ is a quantity that is computed from m mea-
sured quantities j,... If 7,7;,...,T,, denote the most
likely values of the corresponding quantities then, in general,

f(Z1,..

where f(--+) denotes some functional dependence of gon 7, .

VT

q: .,Tm) (29)

T

Now suppose that there are n measurements of the m-tuple (zy,.@,,):

thus z,;,7=1.2,...,n;j = 1,2,...,m, denotes ith measuremec.it
of the jth quantity. It follows that for each measured m-tuple,
one can compute n quantities ¢;,1 = 1,2,...,n,

Qz:f(lliv“-’zmi) (30)
Then, using the the formula for the total differential,
of af
= oL AT it e AT 31
A(/z Ofl AT}1+ + Ofm r ( )

where A¢; = §— ¢; and Azj;; = T; — rj; denote errors contained
in ¢; and zj;, respectively. The total differential can be squared.
summed over all i and the resulting equation can be manipulated
to give the following approximate equation embodying standard
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daeviations o's

af *? ' af *?
ot = (2o oy (2L ot (32)
IT 9T
where >
U? = lim Yor(g—7) (33)
n—oc n
n =2
o? = lim Liz(2ii 2 T)° (34)
n— n

The standard deviation o of a quantity can be used as a
measure of uncertainty in its “true” value. 32 can be used, in
principle, to compute 03,03,0’3 and cr?i. However, applying this
formula to find the standard deviations of the parameters of the
best fit plane obtained using the eigenvector method is totally
unmanageable. On the other hand, this formula can be applied
with ease to find the standard deviations of the parameters ob-
tained using least squares method.

2.4 Generalizing the Least Squares Method

Since, the least squares method assumes that only the depen-
dent variable is in error, it needs to be modified to handle range
data. The modification consists of weighting [7] each e? by wy,
and minimizing

n
E2 = Zw,-e? (35>
i=1
where 1
wi = _ ‘ (36)
A 4 (EhR Al +(5hes, a2

Here A ,A; and Ay denote the errors in the corresponding
data points. The formula for w; is applicable to any f of two
independent variables; for the plane, it becomes

1
T A% +q2A2 +r2A2

w; (37)
Even when the independent variables are error-free, one may still
be compelled to introduce weights if each measurement of z; has
a different precision 0’3‘. Then w; is taken to be inversely pro-
portional to 0’3.. This is in agreement of the appearance of the
factor ;12)— in 77.

:
The matrix equation involving unknowns p,¢ and r becomes

Twp o Twirp o Y wiy P T wiz;
Twizy Lwirl Y wiiy g | =| Zwizzi | (38)
Twiyi  Lwiziy y wiy? r >wiyiz
or,
P > wiz
g | =Ew | X wizz; (39)
r > wiyizi

where Ew now stands for the inverse of the modified 3 x 3 matrix
Rw appearing in 38.
Using 32, the variance of p is given by

n ap 2
2 2
Up = 022(0_ (40)
=1 =7
Using gf’]— = Zzzle,lku’jukjs where u;; = 1,u; = x; and
Uz; = Yj.
n 3 3
(41)

2 2 )
o, = a. Eu/,llwzuli Ew,lkwiukz
P +
=1 =1 k=1




Assuming that w; = ;’3—, where the constant of proportionality k

is often unity,

n 3 3
1
2 _ . . ‘
o=k = " Eywiug 9 Buikwit
: k=1

=1t =1

3 3 n
= kY Bunt 3 Ewak ) withitti (42)
=1 k=1 =1

Using, Sy wingtki = Rk, where R, is the [k-element of
RW7

3 3 3
o2 = kS Eunt Y EwiRugi = kY Bwnéi = kEvn (43)
I1=1 k=1 =1

and, similarly,
03 = kvazz (44)
(772_ = kEw'33 (45)
Ifo? = 0%, a constant, and w; = 1, then k = a2,
The formulas for the standard deviations of a,b,c and d for
the weighted least squares are given by

2 2 2
a4 — UP g
ZeptE (46)
2 g2 42
a 9 4 ¢ 7
@ ¢ + 2 (47)
2 2 2
of o7  0Of
Fowta (4
and, finally, ) -
2 ( 2
a q o.q +7 Ur)
T o 1 (49)

c (14 g2 +r2)?
These follow from 22 through 25, and 32.

There is an intuitive justification of the weight factor w; as
defined by 36. The denominator of w; is a sum of two “variance-
like” quantities. In fact, the A’s can be replaced by the corre-
sponding o’s in 36. The first term is the square of the error in
z, itself. The next two terms constitute the square of the to-
tal differential of f with the cross-terms neglected; thus these
two terms account for the fact that z; could be in error due to
errors in z; and y;. The weight is chosen to be inversely pro-
portional to the sum of the variance-like terms so that the terms
with less error are weighted more heavily. This is in agreement
with the appearance of the matrix W in the expression for E? in
Section 77.

There is a more rigorous method for taking into account error
in all variables. Let (zi,¥:,2;) be the measured values of variables
whose true values are given by (X;,Yi, Zi). Suppose that the
functional dependence of Z on X,Y is known except the values of
certain parameters. It is seen that the least squares is equivalent
to minimizing 0 (Zi—2i)? = Lim (f( X5, Y;)—z;)? with respect
to parameters occurring in f. However, if there is error in all
variables, the correct thing to do is to minimize

En:(.X'f—ri)2+i()’2—yi)2+Z(Zi—zz')2
=1 =1

1=1

= S (Xima P+ (Yimy P4 D (X Vi) =2 (50)
=1 =1 =1

where the RHS simply constrains z,y,z to obey the functional
relationship z = f(z,y). It turns out that this method of least
squares for fittng a plane is equivalent to the eigenvalue method.
A proof of this claim can be inferred from reference (6] where
S (Xi— )+ D (Zi—2)? = Dl (Xi—2)? + Zik (mXi +
b — z)? is minimized with respect to m and b. In reference (6],
the data is of the form (z;,z;) and z = f(z) = maz +b. The
results can be used to show that this minimization is equivalent
to minimizing Y.%, d? where d; is the distance to ith data point
from the straight line defined by z = mz + b.

2.5 Estimating Error in an Edge
Let there be two planes described by

a;x + by + ciz = d; (51)

where ¢ = 1,2,and each of the quartets
(a1,b1,c1,d1) and (ag, b2, c2, d2)

satisfy conditions 2 and 3. If the two planes are not parallel, that
is, ayaz+b1by+crcg # 0, then they will intersect to form an edge.
Let the three components of the unit direction vector of the edge
be given by (I, m,n), where I? + m? + n? = 1. If n; and n, de-
note unit normals of the planes with components (a1, b1,¢1) and

(az, by, cq), respectively, then {,m and n are given by the unit
normalized components of the cross product n; x nz. Thus,

= (blCQ—Clbg)/k (52)
m = (c1ag — ajcy)/k (53)
n = (arby — brag)/k (54)

where k = /(bicz — €102)? + (craz — azcg)” + (a1bs — braz)? is
the magnitude of n; X ny. If @;,b; and ¢; are obtained from a
least squares fit, then they have uncertainties associated with
them. Using those uncertainties and 32, one can compute stan-
dard deviations for [, m and n:

2 _ Ol 9 AN 5 g 0Ly 5 Oy o
o = (6(11) Ua1+(6a2) 0a2+(abl, Ub1+(8b2) Ub;
al 2.2 ol 2.2 (')3)
R

The formulas for 02, and o2 are obvious by symmetry.

The edge will be completely specified when one point on it is
known. Assuming that the edge is not parallel to the zy-plane,
that is, n # 0, one point on the edge can be taken to be on the
zy-plane with coordinates, say, (ze,ye,0). This point must also
lie on both intersecting planes, which means

a1Te + brye = d; (56)

and
aste + baye = dy (57)

Solving these two simultaneous equations for z. and y., one has

_ d] b2 - dzbl
Te = (l]bz b a2b1 (58)
and d d
_ tiap — aaq
Ye = b1a2 - bgal (59)

Using the uncertainties associated with a;,b;, ¢; and d;, one can
compute variances of z, and z. with the aid of 32:
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dz.
3(12)
0%e g o
;) O

oz,
day
oz,
by

02c o o

2.2
Ud]

o2 = 7y,

Te ‘f]d]
Oz, .

TrenN2 2
Oaz) 0a2+(

+( +(5=)202,

+( +(5=) 0,

(60)

The formula for ai is obvious by symmetry.

3 Least Squares Analysis of Synthetic Data
In this section, synthetic data that lie on a plane are gen-
erated with added Gaussian noise. Using this data, it is shown
that one can combine the traditional least squares analysis and
the eigenvector method to get error estimates of the optimal pa-
rameters.

3.1 Data

Two sets of data lying on a “roof” are obtained. The projec-
tion of the roof on any plane parallel to the 2z plane is shown on
Figure 1. Bach data set consists of two planes each of which is a
function of (z,y). The domain of the roof is also shown in Fig-
ure 1. = for the first plane is given by z = 1+ tan(n/6), and for
the second plane, z = (14 0.15 tan(r/6)) — (z — 0.15) tan(xw/12).
@ and y are each incremented by 0.01. Thus each plane consists
of 256 3-D points. The first data set has a noise of standard de-
viation 0.002 added to each ordinate, and the second has a noise
of standard deviation 0.01 added to each ordinate.

3.2 Estimating Parameters and Uncertaii:ties

Since each variable has error, one cannot use the usual
least squares method to find the parameters of two planes mak-
ing up the roof. The method that treats errors in all variables in
a syminetric way is the eigenvector method. This method is used
to find the parameters a,b,c and d of the planes. The results are
stated in Table 1.

How does one compute the uncertainties an a,b,c and d? As
emphasized before, the eigenvector method is not easily amenable
to finding uncertainties. So a new method is proposed here that
combines the eigenvector method and the weighted least squares
method of Section 2.4 to find the parameter uncertainties. In Sec-
tion 2.4, cach e? is weighted by w;. However, w; as given by 36
is impossible to calculate for real data because the A’s, which
arc exact errors of ordinates, are always unavailable. Therefore,
here w? is set equal to ;1;- where d; is the distance of each point
from the plane found by the eigenvector fit. Using these weights,
one can proceed through the weighted least squares to obtain p, ¢
and r and 03,03 and o?. The latter set is calculated using 43
through 45. So the question of how to estimate k arises. k is
estimated this way. Note that k satisfies this equation approxi-
mately: w; = ;k-; ;ky, where ¢ = 0.002 and 0.01 for the data
sets 1 and 2, reslpectively. Therefore, the following approximate
equation is used to calculate k&

2 n X
el il Wi
n

(61)

2 2

Onceo},of and o? are known, %;, g;, §§ and %52» can be calculated
using 46 through 49. These values, calculated using a,b,c and d
of the eigenvector fit, are also listed in Table 1 below the corre-
sponding parameter values. The values for b are not listed. They
are huge because the calculated b is = 0, and its exact value is 0.
As expected, the data set with more noise yields larger relative

uncertainties. The uncertainty entries for a appear rather large.
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It could be due to the asymmetric way z,y and z are treated in
the least squares fit. This is not clear, however. Note that if a
parameter is large, its uncertainty is small. In this table, values
of d,a,b and ¢ obtained using 22 through 25 are listed in paren-
theses for comparison against those obtained by the eigenvector
method. The eigenvector method is somewhat superior.

3.3 An Edge Calculation

Using the formulas of Section 2.5, the direction and the zz-
intercept of the “roof edge” can be found. The results are sum-
marized in Table 2. The relative variances (variance/square of
parameter value) are written below the corresponding parameter
values. It should be noted that relative uncertainties of [ and n
components of this particular edge are not meaningful because
calculated ! and m are approximately 0, and the true values ex-
actly equal 0. These entries tend to be quite large, and are not
given in the table.

4 Concluding Remarks and Summary

Error analysis should assume a prominent role as vision sys-
tems become more sophisticated and data acquisition becomes
more accurate. Already, total error of an estimated surface,
which equals the quantity E? evaluated when p equals P, has
been used for matching purposes by some workers [5].

This paper attempts to provide a methodology for perform-
ing error analysis on data obtained from a plane. It claims that
least squares analysis can properly be used to analyze such data
regardless of its error distribution. Using matrix algebra, it de-
rives equations for computing the parameters that characterize
the best fit plane. It also shows how the error in data percolates
upward to manifest itself as uncertainties in derived parameters
such as the parameters of the best fit planes, and of the edges
formed by intersection of these planes. It also shows how one can
optimally combine two or more estimates of a set of parameters
of a surface into a single set. It presents all the equations nec-
essary to compute the above quantities, and illustrates their use
by examples.
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Figure 1: The domain, and the projection of the roof on the zz-plane.
Table 1: Parameters of the “roof”: true and estimated values
from the eigenvector and least squares fits. E = exact, D1 =
data set 1 and D2 = data set 2.
Std. Plane 1 Plane 2
dev. a b ¢ d a b ¢ d
L 0.000 -0.5000 0.0000 0.8660 0.8660 0.2588 0.0000 0.9659 1.0884
DI 0.002 -0.4998 0.0017 0.8662 0.8667 0.2597 0.0013 0.9657 1.0890
0.210 0.004 0.004 0.002 0.000 0.000
(-0.5021) (-0.0042) (0.8649) (0.8643) (0.2599) (0.0026) (0.9656) (1.0892)
D2 0.01 -0.4996 0.0103 0.8662 0.8688 0.2588 0.0095 0.9659 1.0921
0.481 0.006 0.006 0.044 0.000 0.000
(-0.4389) (0.0802) (0.8949) (0.9047) (0‘2458) (0.0175) (0.9692)  (1.0944)

Table 2: Parameters of the “roof edge”: true values and esti-
mated values along with relative uncertainties.

Std. dev.
of error l m n Te Ze
)03 0.000 0.0000 1.0000 0.0000 0.15 1.0866
D1 0.002 0.0007 0.9999 -0.0011 0.1503 1.0873
0.000 0.177 0.000
D2 0.01 0.0024 0.9999 -0.0075 0.1511 1.0902
0.000 0.219 0.000
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