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Semi-Markov processes

gomi-Markov processes are generalizations of Markoy processes
intervals between transitions have arhitrary distributions rather than exponential d:c.
wributions. To be specific, there is an embedded Markoy chain, {X, ponential dis
finite or countably infinite state space, and a sequence {/, - » > 1} of holding intervals
between state transitions. The epochs at which state transitions occur are then g1ven, ;nr
n>1,as Sy = ) ,,—1 Un- The process starts at time 0 with Sy defined to ';f;: 0. The
semi-Markov process 1s then the continuous-time process {X(f): ¢ > 0} where, for each
n > 0, X(t) = X, for ¢ in the interval §, < X, < S, ;. Initially, Xy = i where i is any
given element of the state space.

The holding intervals {U,; n > 1} are non-negative rvs that depend only on the
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current state X,,_; and the next state X,,. More precisely, given X,,_; = j and X,, = k,
say, the interval U, i1s independent of {U,,; m < n} and independent of {X,,,; m < n— 1)
The conditional CDF for such an interval U, i1s denoted by Gjx(u), i.e.,

Pr{Up < u | Xu—1 = j, Xn = k} = Gja(u). (7.87)

The dependencies between the rvs {X,; » > 0} and {U,; n > 1} are illustrated in
Figure 7.17.
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Un, conditional on the current state X,,_ 1 and next state X, is independent of all other states and
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Markov processes with countable-state spaces

The conditional mean of U, conditional on X,_1 = J, Xn = k, 1s denoted U IR0, 1.
UG, k) =E|Un | Xn—1 =J,Xn = k| = /uz_o[l — Gjk(u)]du. (7.88)

A semi-Markov process evolves in essentially the same way as a Ma.rkov process. Giyen,
an initial state, Xo = i at time 0, a new state X1 = j is selected according to the embe g
chain with probability P;;. Then Uy = S is selected using the distribution C 7ii(u). Mexq
a new state X» = k is chosen according to the probablhty Pjr; then, given X| — i and
X> = k, the interval Uj is selected with CDFE Gir(u). Successive state transitions and
transition times are chosen 1n the same way.
The steady-state behavior of semi-Markov processes can be analyzed in virtually the
same way as that of Markov processes. We outline this in what follows, and often omit

proofs where they are the same as the corresponding proot tor Markov processes. First,
since the holding intervals, U, are rvs, the transition epochs, S, = )~ . U,, are alsc
rvs. The following lemma then follows in the same way as Lemma 7.2.3 for Markov

processes.

Lemma 7.8.1 Let M;(t) be the number of transitions in a semi-Markov process in the
interval (0, ] for some given initial state Xo = i. Then lim;_, o, M;(t) = oo WPI.

In what follows, we assume that the embedded Markov chain is irreducible and positive
recurrent. We want to find the limiting fraction of time that the process spends 1n any
given state, say j. We will find that this limit exists WP1, and will find that it depends

only.on 1:he steady-state probabilities of the embedded Markov chain and on the expected
holding interval in each state. This i< given by

B PiE(U, X = X, = £] =
k

where U(j, k) is given in (7.88).
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