
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/302918602

Emergency Flight Planning for an Energy-Constrained Multicopter

Article  in  Journal of Intelligent and Robotic Systems · May 2016

DOI: 10.1007/s10846-016-0370-z

CITATIONS

9
READS

115

3 authors, including:

Some of the authors of this publication are also working on these related projects:

NSF Center for Unmanned Aircraft Systems - University of Michigan View project

An Autonomous Innovator to Enhance Long-Duration Mission Success View project

Ella M Atkins

University of Michigan

272 PUBLICATIONS   6,177 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ella M Atkins on 16 May 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/302918602_Emergency_Flight_Planning_for_an_Energy-Constrained_Multicopter?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/302918602_Emergency_Flight_Planning_for_an_Energy-Constrained_Multicopter?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/NSF-Center-for-Unmanned-Aircraft-Systems-University-of-Michigan?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/An-Autonomous-Innovator-to-Enhance-Long-Duration-Mission-Success?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Michigan?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-2702c04eab951ad3868c50dd346f7868-XXX&enrichSource=Y292ZXJQYWdlOzMwMjkxODYwMjtBUzozNjIxNzAxNjEzNTI3MDRAMTQ2MzM1OTUwMzk5Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


J Intell Robot Syst
DOI 10.1007/s10846-016-0370-z

Emergency Flight Planning for an Energy-Constrained
Multicopter

Alec J. Ten Harmsel · Isaac J. Olson ·
Ella M. Atkins

Received: 22 December 2014 / Accepted: 11 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Small Unmanned Aircraft Systems (UAS)
have diverse commercial applications. Risk mitigation
techniques must be developed to minimize the proba-
bility of harm to persons and property in the vicinity
of the aircraft. This paper presents an emergency flight
planner combining sensor-based and map-based ele-
ments to collectively plan a landing path for a UAS
that experiences an unexpected low energy condition
while flying over a populated area. Focus is placed in
this work on the use of public databases of population
distribution, structure locations, and terrain to create
an efficient-to-access cost map of the data. Safe land-
ing plans are generated with an A* search algorithm
shown to be feasible for real-time use with the cost
map. Simulation-based case studies are presented of
a quadrotor UAS operating within New York City to
illustrate how different cost terms impact optimal path
characteristics.

Keywords Path planning · Cost modeling · Risk
mitigation

A. J. Ten Harmsel (�) · I. J. Olson · E. M. Atkins
Department of Aerospace Engineering, University
of Michigan, 1221 Beal Avenue, Ann Arbor,
MI 48109, USA
e-mail: talec@umich.edu

Ella M. Atkins
e-mail: ematkins@umich.edu

1 Introduction

Small Unmanned Aircraft Systems (UAS) are expec-
ted to experience a period of significant growth as reg-
ulatory policy supports them in the coming years [2,
12, 19, 25]. Many applications such as infrastructure
inspection, law enforcement, and package delivery all
require the UAS to fly over and within populated
areas.

A major challenge for urban UAS flight is to reduce
the risk they pose to surrounding persons and prop-
erty. In the case of an in-flight failure [17], it will be
of the utmost importance that the UAS be capable of
determining and performing actions to reduce or elim-
inate the risk it poses to its surroundings. Additionally,
the vehicle must be able to make emergency manage-
ment decisions onboard as loss of communication link
is generally recognized as one of the most common
failures.

Another commonly-experienced failure is running
low on fuel or battery energy. If an unexpected low
energy condition occurs in an urban area, the UAS
must ensure it does not introduce unacceptable risk to
people or property when it lands. In these areas, the
UAS may be flying directly above people or property,
and may therefore need to maneuver toward a new
location that poses minimum risk to people and prop-
erty before it lands, including flying a path in the air
that minimizes risk in case of total failure leading to a
crash.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-016-0370-z-x&domain=pdf
mailto:talec@umich.edu
mailto:ematkins@umich.edu


J Intell Robot Syst

A meta-level emergency landing planner, shown in
Fig. 1, is proposed to calculate a safe path for a small
UAS that senses unexpectedly low energy reserves
while flying over or within a populated urban environ-
ment. Two emergency planning algorithms, a sensor-
based planner and a map-based planner, are combined
to maximize information used in onboard decision-
making. The sensor-based planner determines the
safest visible touchdown site and final approach route.
The map-based planner uses a pre-computed cost map
to determine the safest transit to a landing site area
that may be beyond sensor range or visibility. The cur-
rent safety of the sensed environment around the UAS
as well as its energy level determine which of the two
planners to use; the map-based planner is only used if
the immediate environment is unsafe and energy lev-
els are high enough to travel to a new, safer landing
location. Once at the new, safer location, the safety
of the environment and energy levels are again used
to determine whether to land immediately with the

sensor-based planner or run the map-based planner
again. This process repeats as needed until a suc-
cessful landing is achieved, resorting to sensor-based
landing in the event of imminent motor shutdown.
Landing due to imminent motor shutdown may occur
in an unsafe area. In this case, the sensor-based plan-
ner, using one of a variety of techniques [1, 11, 23, 24],
is responsible for executing the lowest-risk landing
plan.

The primary contribution of this paper beyond the
architecture summarized above is in map-based plan-
ning. Specifically, this paper proposes a novel method
for processing online databases and fusing their data
into a single cost function appropriate for flight plan-
ning. The map-based planner is separated into two
major modules; an offline cost map generation module
and an online planner. The cost map is generated using
publicly-accessible databases of population, structure,
and terrain data. Weighting factors are used to merge
population, structure, and terrain data to minimize risk

Fig. 1 Emergency landing
planning architecture. Local
area landing viability and
energy level remaining for
transit are preconditions to
the use of the map-based
emergency flight planner

Sufficient 
energy to travel to a 

safer location?

Yes

Yes

No

No

Stop

Land

Sensor-based Planner

Is local area safe?

Start

Execute Plan

Map-based Planner



J Intell Robot Syst

to people, property, and the UAS. From this data, a
cost map generation module chooses optimal landing
sites offline, based on the assigned cost of locations
on the ground, as well as some key building rooftops.
Calculating the cost map offline and loading it onto
the UAS is the key to managing planning complex-
ity, as merging these datasets requires more computing
power than is available on current small UAS. The
planner module loads the cost map and associated pre-
processed landing sites, and uses the well-known A*
algorithm to build optimal landing paths. Using an
estimate of the available flight range from remain-
ing battery capacity, the planner bounds the search
space, reducing the run time. Additionally, the use of
a heuristic based on straight line distance reduces the
amount of the search space that is actually searched
by the planner. The effects of using a heuristic-guided
search, pre-computing the cost map and landing sites,
and writing the planner in a compiled language allow
the planner to be run in real-time on a small UAS.

Performance of the emergency landing planner
is evaluated in simulation by obtaining population,
building, and terrain maps for the midtown Manhattan
region of New York City. A series of case studies illus-
trate how the map-based planner can provide a safe
landing capability for a multicopter UAS flying in and
over one of the most densely populated cities in the
United States (US).

This paper is organized as follows: Section 2
reviews related work; Section 3 gives an overview
of the vehicle model; Section 4 describes the envi-
ronment model; Section 5 describes planner cost and
constraint terms; Section 6 details the flight path plan-
ning algorithm; Section 7 presents case studies for
a quadrotor operating in Manhattan; Section 8 gives
conclusions and considerations for future work.

2 Background

Emergency flight planning has been studied for
manned and unmanned aircraft. Model and data-based
planners build landing plans from stored informa-
tion, while sensor-based planners reactively construct
flight plans as the environment is observed. Both have
proven beneficial. Model-based flight planning, for
example, can enable an aircraft that has lost thrust to
glide to a known runway [3, 15] or guide a rotorcraft
to a terminal approach waypoint where a vision-based

system can autonomously land on a marked target [21,
22]. Researchers have also worked to classify land-
ing sites based on data acquired during flight [11].
Such data could be used in real-time should an air-
craft be able to survey a large area prior to landing, or
it could be collected into a large database suitable for
map-based planning as is proposed in this work.

Vision-based landing systems have also been
proven effective as sensor-based landing planners,
even in situations with wind and a moving landing
platform [18]. Optic flow has been proven valuable
as a means of terminal approach guidance [23], while
visual SLAM (simultaneous localization and map-
ping) provides a means to avoid enroute obstacles
even at higher flight speeds [1]. All this work is
complementary to the emergency landing planner pro-
posed in this paper. Manned fixed-wing emergency
landing planners provide motivation for beyond-
the-horizon planning even when near-term landing
is required. Sensor-based guidance is an essential
follow-on to model-based planning to allow a safe ter-
minal approach and landing once the UAV is within
sensor, e.g., visual, range of the landing area. Tech-
niques such as visual SLAM are also essential in
case dynamic or unmapped obstacles are encountered
during transit to the selected landing site.

Path planning through an environment with obsta-
cles is a widely-studied field divided into two basic
categories: search (optimization) using stored mod-
els and data, and reactive planning that updates plans
in response to incoming data. Optimization-based
approaches tend to be more computationally-intensive
as they must compare potentially numerous solution
paths to identify a minimum-cost plan. Alternatively,
reactive planning approaches are difficult to apply
in situations where resources do not allow a vehi-
cle to “turn back” should an over-the-horizon region
prove difficult or unsafe to navigate or use for landing.
As discussed above, we believe a judicious combi-
nation of these two basic approaches is best: apply
an optimal search approach to guide the aircraft to
a site expected to be safe, then apply a sensor-
based planning method for safe terminal approach and
landing. Substantial previous work has focused on
sensor-based emergency landing planning solutions.
Reference [6] describes sensor-based planning using
rapidly exploring random tree (RRT)* [13] and any-
time A* approaches, with plans quickly retrieved from
a pre-computed ensemble. This work is similar in that



J Intell Robot Syst

preprocessing is key to fast planner response but dis-
tinct in that [13] defines plans based on local environ-
ment sensing rather than map databases. Choudhury
et al. [7] propose RRT* for to define a family of alter-
nate emergency landing plans from which the pilot
ultimately selects. As will be described below, our
contributions are focused on database fusion into a
multi-objective cost map appropriate for urban area
emergency flight planning, and in assessing applica-
tion of map-based planning to a Manhattan case study.
We utilize a straightforward A* approach to optimally
search and assess a distance heuristic, a sufficient
strategy that leaves research in establishing specific
tradeoffs between different search strategies for future
work.

3 Vehicle Model

The vehicle model is based on a quadrotor UAS.
It is a combination of a curve-fit energy equation
based on discharge curves of lithium polymer batter-
ies and experimental data taken from the Michigan
Autonomous Aerial Vehicles (MAAV) team, a UAS
student team at the University of Michigan1, and a
simple equation validated with benchtop testing that
translates motor force into approximate current draw
from the onboard battery. Motor force can be approx-
imately related to current draw as all forces except
the force required to lift the vehicle are negligi-
bly small [4]. This model allows the path planner
to consider energy efficiency while planning with-
out adding the significant computational complexity
during the search imposed by optimizing maneu-
vers/accelerations.

3.1 Physical Model

To model quadrotor instantaneous power require-
ments, total motor force and in turn current must
be approximated. The quadrotor UAS velocity model
used in this work is straightforward with total required
force output from the motors computed as the sum
of force to overcome gravity g and to provide the
desired acceleration or change in velocity dv, the dif-
ference between the desired velocity vnext and the

1The first author is a member of the MAAV team and the other
authors are advisors to the MAAV team.

current velocity v over a normalized time period. The
simulated quadrotor travels through each cell in the
discretized cost matrix (described in Section 4) with
a constant velocity and transitions to the next velocity
when moving to the next cell. The required force from
the motors is a function of dv and g as shown below.

dv = vnext − v (1)

f = norm ((dv + g) · m) (2)

This physical model is used as an input to the
energy model, which in turn is an input to the path
planner. For different vehicle configurations, differ-
ent models may be needed to accurately model energy
requirements. In the case of hybrid air vehicles that
can takeoff and land vertically but also aerodynami-
cally lift themselves during forward flight, the flight
planning energy model must also account for the costs
associated with transitioning between forward and
vertical flight configurations.

3.2 Energy Model

It is critical to properly model remaining battery
capacity at each step in the landing path. As seen in
Fig. 2, lithium polymer batteries maintain a fairly con-
stant voltage for the majority of the discharge period
followed by a quick drop-off.

Change in battery energy dB is computed from f

defined in Eq. 2. A function D(f ) provides a simple
translation of force to expected current draw:

dB = D (f ) (3)

Current draw function D was developed from curve
fitting experimental data collected during motor tests
for the MAAV quadrotor which uses Axi Gold 2212
motors, Castle Creations Pheonix 25 electronic speed
controllers and 9 inch propellers with 3 blades. Tests
were conducted when operating at the nominal 3.4 V
per cell. This curve is shown in Fig. 3. To incorporate
energy costs for fixed-wing or hybrid air vehicle con-
figurations, a different current draw function D would
be substituted into the planner.

A low-energy condition requires generation of a
trigger for the planner. Such a trigger could be a
simple voltage threshold. However, a proper trigger
would reflect current draw over the remaining flight
profile which are in turn a function of expected envi-
ronmental conditions (e.g., temperature, wind). If a



J Intell Robot Syst

Fig. 2 Lithium Polymer
Battery Discharge Curves.
Note that discharge ratings
are in terms of the capacity
of the battery ‘C’ so a
battery that has a capacity of
2Ah and discharged at a rate
of 1C will be outputting 2A.
(http://www.droidforums.net/forum/
attachments/smartphone-bat
tery-discussion/50553d13
38473331-degradation-bat
tery-discharge curves
1.jpg)

mission is entirely pre-planned, expected energy lev-
els can be predicted based on current environment
observations. However, the problem of correctly and
consistently generating the low-energy trigger itself
requires a careful algorithm that incorporates volt-
age measurements and power outputs relative to those
expected. The work presented in the paper focuses on
landing planning given a triggered low energy state;

details in robust low energy triggering are therefore
not considered further.

4 Environment Model

The environment is modeled by a three dimensional
discretized cost matrix. This matrix is populated by

Fig. 3 Current drawn by
the battery as a function of
total motor force required
by the vehicle

0

5

10

15

20

25

30

35

40

0 5 10 15 20

Ba
tt

er
y 

Cu
rr

en
t (

A)

Motor Force (n)

Battery Current v. Motor Force

http://www.droidforums.net/forum/attachments/smartphone-battery-discussion/50553d1338473331-degradation-battery-discharge_curves_1.jpg
http://www.droidforums.net/forum/attachments/smartphone-battery-discussion/50553d1338473331-degradation-battery-discharge_curves_1.jpg
http://www.droidforums.net/forum/attachments/smartphone-battery-discussion/50553d1338473331-degradation-battery-discharge_curves_1.jpg
http://www.droidforums.net/forum/attachments/smartphone-battery-discussion/50553d1338473331-degradation-battery-discharge_curves_1.jpg
http://www.droidforums.net/forum/attachments/smartphone-battery-discussion/50553d1338473331-degradation-battery-discharge_curves_1.jpg
http://www.droidforums.net/forum/attachments/smartphone-battery-discussion/50553d1338473331-degradation-battery-discharge_curves_1.jpg


J Intell Robot Syst

processing multiple databases offline, combining the
resulting data, and transforming the data into the cost
matrix. After the data transformations described below
have been performed, the cost can be calculated as
discussed in Section 5.

While a cost matrix may contain data from any
number of sources as long as each data source is
mapped to a cost function, our case study focuses
on three main datasets: population density, structural
data, and terrain information. These datasets are avail-
able from multiple government agencies, and all data
used are released under open licenses permitting a
variety of uses. Satellite imagery of a subsection of
Manhattan, the specific area of New York City (NYC)
used in our simulations, is shown in Fig. 4.

To supplement information loaded into the UAS
before flight, real-time connection to the cloud may
also be possible. If this link is reliable, the cloud could
utilize higher-accuracy vehicle and environment mod-
els to assist with emergency flight planning up to
the limits of available link bandwidth and cloud pro-
cessing availability. However, any connection to the
cloud may be unreliable as the vehicle traverses the
urban environment, and the cloud may not guarantee
meeting real-time planning constraints. In any case,
the cloud may be used to deliver updates to onboard
maps, models, and software while the vehicle is not
flying.

4.1 Databases

Data for the population density of New York City
and the surrounding area were acquired from the 2010

Fig. 4 Satellite image of the area of Manhattan used in case
studies for the path planner (Google maps)

US Census, gathered and maintained by the US Cen-
sus Bureau. The dataset contains fields describing the
population density and the boundaries of the cen-
sus blocks. Census blocks are irregularly shaped and
do not all cover the same amount of geographical
area, but complete coverage of the Manhattan area is
provided. The US Census Bureau does not provide
uncertainty estimates [5, ch. 7].

The NYC Department of City Planning (NYC-
DCP) has released the Primary Land Use Tax-lot
Output (PLUTO) dataset, which contains informa-
tion about every taxable lot in NYC. We incorporate
PLUTO building data into our simulator that can be
easily extended or updated as needed. The following
PLUTO dataset fields are used in this model:

– Number of Floors
– Lot Bounding Box
– Lot Boundary Vector Array

This dataset is contained in an ESRI Shapefile
[10]. The full PLUTO dataset is separated by region,
and the Manhattan region dataset is used in our
simulation. The Shapefile comes with location infor-
mation (e.g. the Bounding Box and Vector Array)
listed in New York State Plane coordinates. The NYC-
DCP also does not provide uncertainty information
with its dataset. The Shapefile is converted to lati-
tude/longitude coordinates for use in our algorithms
by the open-source Geographic Information System
software QGIS.

Elevation and terrain class data are available from
the US Geological Survey (USGS). The 2006 National
Land Cover Database provides information about the
type of terrain for the entire US. The 2009 National
Elevation Dataset provides information about the
slope of the terrain for the entire US. Neither dataset
provides uncertainty information, further supporting
the choice of a deterministic planner that does not
bias solutions based on site-specific data uncertainty
estimates.

4.2 Map Generation

We transform individual data into multiple intermedi-
ate maps that represent the environment in an intuitive
manner. Population data is transformed into a popu-
lation density map, the structural data into a building
height map, and the terrain data into both a map of
terrain slopes and terrain types.



J Intell Robot Syst

4.2.1 Population Map Generation

Using published latitude, longitude, population, and
area values from the population density dataset, a pop-
ulation density map was created using discrete data
points and interpolating a smooth surface between
them. As mentioned above, census blocks are rarely
simple shapes that can be fit to a grid; this interpolated
representation provides an accurate approximation of
the data.

The population density dataset is strictly based on
the permanent residences of people in New York; no
data on population density at various times during the
day is available, hence there is no way to know using
the population density map how populated a particu-
lar area, e.g., Central Park or Times Square, will be
at a given point in time. Naturally, a deployed UAS
should ultimately supplement database information
with real-time sensor data (e.g., cameras) to ensure it
can account for unexpected people and objects near
the emergency landing site. If a connection to the
cloud is available, a UAS could potentially use cell
phone data to compute a live population density map
[9].

4.2.2 Structural Map Generation

Using the fields enumerated above, a height map of
a subsection of Manhattan was created. Initially, the
vector boundary information was read from the Shape-
file. The results of reading the vector information can
be seen in Fig. 5.

This vector boundary data is further transformed by
adding height data also available in the Shapefile. The
only height data available in the Shapefile is the num-
ber of floors, so a height per floor is assumed to be
4m. This height map is shown in Fig. 6. The structural
map is populated solely with building data, producing
a map with some uncertainty, but no data on obstacles
other than buildings is available.

4.2.3 Terrain Map Generation

Elevation data from the terrain dataset was differenti-
ated into a slope map for Manhattan. This slope map
can be used to determine better landing locations for
the vehicle, as areas of higher slope may not support
a safe landing. Of course, Manhattan is a generally
flat area, and, as such, the slope map does not add

Fig. 5 Matlab representation of the Shapefile, showing all
boundaries of all lots within the area of Manhattan used in our
simulation

much to our simulations. However, in any areas with
rugged terrain, knowledge of terrain slopes might be
of significant influence in selecting an optimal landing
location.

Choosing the best landing location also requires
knowledge of the terrain type; landing on soft grass
may be better for the safety of the UAS than land-
ing on pavement. The terrain class data from the
USGS gives information on what type of terrain exists
at a given latitude/longitude location. Some exam-
ple terrain classes are water, open development, low
development, barren, forested, high development, and
wetlands. There are 13 classes in all. A terrain types
map is created from this data, where each type is
represented by a distinct integer.

5 Costs and Constraints

The map-based planner is optimal and constrained.
Constraints and costs are discussed below. The UAS
planner takes two cost terms - the movement cost
CM and the environment cost CE - and sums them to
provide the total cost function C, as shown in Eq. 4.

C = CM + CE (4)



J Intell Robot Syst

Fig. 6 Height map created
from the Shapefile. Dark
blue represents no
buildings; light blue to
yellow to red depict
increasing building heights

5.1 Constraints

There are multiple constraints our planner must satisfy
to plan safe landing paths. The planner must not gener-
ate a path that requires more than the available stored
energy. Additionally, the planner must not plan a path
that goes through a building. In this work the planner
is also constrained to never generate a path over very
high population areas or areas with exceptionally bad
terrain.

To simplify constraint processing in this work,
environmental constraints are represented by a cost
of 1.0 in each map cell. As will be described fur-
ther below, the A* planner will not explore cells
with a cost of 1.0. The constraint on population den-
sity is defined as a population density higher than
one person inside of the UAS safety radius r . This
safety radius is the distance that a person should be
away from a vehicle while landing in order to be
safe. The safety radius does not relate to the reso-
lution of the planner; it solely affects map genera-
tion. For our simulated UAS, we chose 2m as our
safety radius based on experience with conducting
over 1000 logged indoor flight tests with the MAAV
quadrotor UAS. The MAAV vehicle has a maximum
in-flight radius of 0.3m; since a multi-rotor is capa-
ble of vertical landing, a 2m safety radius provides
the necessary clearance. This results in a maximum

population density of 0.0795 persons/m2, as shown in
Eq. 5.

1

πr2
= 1

4π
= 0.0795 persons/m2 (5)

The terrain constraint works analogously to the
population density constraint. If a UAS was flying
in an area with mountainous or otherwise poten-
tially dangerous terrain, types representing danger-
ous terrain would correspond with a cost of 1.0.
Specifics of terrain costs are not discussed further
here as terrain costs for the urban environment of
Manhattan are dominated by man-made structure
costs and constraints, and structure data is readily
available.

5.2 Movement Costs

The simple model of UAS movement costs was
described in Section 3, and the equation for finding the
required battery current from the physical maneuvers
of the UAS is provided in Eq. 3. The equation for dB

as well as the amount of energy available, B0, where
the low energy condition is triggered for this work,
together define Eq. 6, a cost function for total battery
energy drawn over a single maneuver. A maneuver is



J Intell Robot Syst

a change from velocity v to vnext occurring over a
normalized time interval.

CA(v, vnext ) = dB/B0 (6)

The acceleration costs are then used to create the
overall path, or movement, cost CM by summing
along a potential path to be taken by the vehicle. This
calculation considers a potential path or landing flight
plan P with number of cells n, finds the accelerations
necessary to move to each location, and generates CM

as a sum of acceleration costs as shown in Eq. 7.

CM(P ) =
n−1∑

i=2

CA(Pi − Pi−1, Pi+1 − Pi) (7)

CM represents the fraction of the currently avail-
able energy that would be used during the simulated
path traversal. A cost of 1.0 or greater represents a path
that could not be traversed; if no solution is identified
by the map-based planner that satisfies this constraint
the sensor-based planner would be activated to land
immediately.

5.3 Environment Costs

Minimizing damage, first to people, second to prop-
erty, and third to the UAS, is the objective of the
environment cost function CE . There are three sub-
functions that are weighted and summed to form the
environment cost: Cp, the population cost to protect
people; Cs , the property repulsion cost to protect phys-
ical property; and Ct , the terrain cost to protect the
UAS. Each of these sub-functions transforms their
respective two dimensional maps into three dimen-
sional cost maps.

Depending on the environment and needs of the
UAS, the weighting factors for each particular cost
may be adjusted as necessary. Note that since all terms
are normalized the weighting terms will directly indi-
cate the relative values of the different cost terms. The
environment cost at location L is defined as:

CE(L) = [
wp wt ws

]
⎡

⎣
Cp(L)

Ct (L)

Cs(L)

⎤

⎦ (8)

The three dimensional population cost map Cp was
created by normalizing the population density map
with the result of Eq. 5, 0.0795. As the population
density map is two dimensional, population cost is

assumed the same at all altitudes. A 2-D population
cost map is shown in Fig. 7.

The three dimensional structure cost map Cs was
created by using the height map to create a three
dimensional occupancy grid [8] and adding repul-
sion cost around the structures, which inflates the
cost in the cells surrounding structure-occupied cells.
Because the cells near structures have a higher cost
than those slightly farther away, the vehicle will tend
to keep a wider safety margin from structures while
maintaining a reasonably short path length.

To create the repulsion cost, cost term CR is applied
to each cell in the occupancy grid. CR searches the
space around the current cell c, calculating a distance-
based decaying cost for each cell in the search space,
and applies the maximum of these distance-based
costs to the current cell c. Repulsion cost decreases
linearly with increase in distance, using a vector s of
cells in the search space. The formula for the repulsion
cost function CR is given by:

w = max (norm (s − c)) (9)

CR(c) = max

(
1 − Cs(s) · norm(s − c)

w

)
(10)

The number of cells in s can be adjusted, as s

is computed by defining a repulsion field width and
adding all cells within this width as defined by c to s.
CR is applied to every cell in the structural occupancy
grid [8], resulting in the final structural cost map Cs .
An example two dimensional repulsion field is shown
in Fig. 8. The actual repulsion fields generated in our
case study are three dimensional, creating regions of
higher cost both along the sides of known structures
as well as above them.

The three dimensional terrain cost map Ct was cre-
ated by combining two different terrain sub-cost maps
and extending their sums into three dimensions in the
same manner as the population cost map.

The first terrain sub-cost term, the terrain slope cost
map, was generated by normalizing the slope map to
45◦, a large value for Manhattan but applicable for
most terrain given that a quadrotor could not land on a
surface with greater slope. The second terrain sub-cost
term, the terrain class cost map, transforms different
types of terrain into costs. Water was given higher
cost than land, and more developed land has higher
cost than less developed land. The costs for each type
were assigned arbitrarily but intelligently. Water was



J Intell Robot Syst

Fig. 7 Generated
population cost map. Notice
multiple areas in Manhattan
have a population density of
1, and thus cannot be flown
over or in by the UAS

given a higher cost to protect the UAS, encouraging a
land-based sites to preserve the vehicle.

The terrain cost map is the weighted sum of these
two terrain sub-cost maps, with weights of 0.2 given
to the terrain slope cost map and 0.8 given to the ter-
rain type cost map. The terrain cost map is shown in
Fig. 9.

6 Planner

Using environment cost map CE and the calculated
path cost CM , the planner must generate emergency
landing paths that minimize risk to the environment as
well as energy usage by minimizing the total cost C

provided in Eq. 4.

Fig. 8 Cost map with
repulsion fields for four
distinct buildings. Buildings
are represented with a cost
of 1.0 (red), with decreasing
cost as a function of
distance from all buildings
decreasing to a baseline
cost of 0.2 to allow for
optimization on path length



J Intell Robot Syst

Fig. 9 Terrain cost map
prioritizes areas that are flat,
undeveloped, and not water,
such as near the Hudson
riverbank and Central Park

6.1 Planning Algorithm

A traditional A* search algorithm [16] is used to find
the lowest cost emergency landing paths. The A* algo-
rithm is an extension of Dijkstra’s search algorithm
that uses a heuristic to reduce the search space and
provides an optimal path between start and end nodes
given an admissible heuristic. The heuristic function
is admissible if it never overestimates the remain-
ing path cost during the search. The heuristic used in
our A* implementation estimates cost to goal loca-
tions based on a calculated minimum cost per cell
and estimated number of cells between the currently
considered cell c and the closest potential landing
location. A list of potential landing sites is generated
by pre-processing the environment cost map. Candi-
date sites have environment cost less than a specified
value Cgoal . Also added to the list of candidate land-
ing sites is a list of latitude/longitude locations of
rooftops suitable for landing.2 The minimum cost per
cell is Cgoal ; all cells traveled by the UAS must
cost more that Cgoal , or the UAS would consider
them a landing location. This heuristic is theoretically
admissible in all situations, and therefore allows the
emergency path planner to provide the lowest cost
path.

2Presence of a rooftop site in our map implies the building
owner has authorized rooftop emergency landings.

The single-layer A* planner defined in this work
is well suited to multirotor flight planning because
range is limited and there are no significant constraints
on translational motion. Because the movement cost
described in Section 5.2 appropriately penalizes accel-
eration, the A* approach will produce a feasible
solution without incurring the complexity and conver-
gence issues associated with optimal control [14] over
a full dynamics model. Although not needed for this
work, a path smoothing algorithm could be applied to
the segmented A* solution to produce a trajectory with
smooth accelerations.

Flight plan range and segment length together
define search-space complexity because A* search-
space depth is determined by total number of flight
plan segments. For long-range plans, hierarchical
search-space construction and definition of an optimal
cell decomposition map will be essential to man-
age complexity. [26] However, the energy-constrained
multicopter considered in this work seeks a nearby
landing site which in turn supports a manageable A*
search-space size.

Navigation in urban canyons, such those modeled
in our New York City case study, may occur in a GPS-
denied environment. Our planning algorithm assumes
a sensor suite that accounts for loss of GPS in a
manner that can provide robust navigation within and
above the urban canyon environment. A recent survey
of available urban navigation techniques [20] confirms



J Intell Robot Syst

that it is reasonable to assume a sensor suite that is
reliable in GPS-denied environments. In particular,
statistics from Table A1 of Ref. [20] demonstrate that
systems based on a combination of vision and IMU
can offer comparable performance to GPS-based sys-
tems, particularly in a small UAS sufficiently robust
to safely fly in and over densely populated areas such
as Manhattan.

A* search begins from the current quadrotor state
and terminates when it finds a path to an emer-
gency landing location. In order to satisfy the energy
constraint, the search space is bounded by an overes-
timate of the remaining flight range of the UAS and
the generated path is checked afterward to ensure it
can be flown with the energy remaining. Maintain-
ing separate path costs on a per cell basis during
the search requires as much memory as holding the
environment cost map; it is much more memory effi-
cient and only slightly less CPU efficient to check
path cost after a path is found rather than during the
search. Environment constraints are enforced during
the search; if a cell or node in the environment cost
map has a cost of 1, it is pruned from the search-
space.

The planner has been implemented in C++. Since
the environment cost map is discretized, cells are ref-
erenced by integer in a linear array. Integer math is
both fast and precise, and this allows the storing of
parents, necessary for path extraction after a landing
location has been determined. The planner stores the
environment cost map in an array of floating point
numbers. In the interest of speed at the expense of
memory, a pre-allocated array of integers with the
same number of elements as the environment cost map
is used to store the parents. A priority queue, initially
with 1

8 the number of elements as the environment cost
map, is used to store the costs of visited cells. The pre-
allocation of these arrays, while potentially requiring
more memory than necessary, serves to eliminate or
drastically reduce the delays of dynamically increas-
ing the size of an array when more space is needed.
As a large environment cost map may take 500MB of
memory or more3, reallocating arrays that may neces-
sarily grow near this size takes a considerable amount
of time.

3The 1501x1501x96 matrix from our case studies requires
825MB of memory

6.2 Computational Complexity

Due to offline pre-calculation of the entire three
dimensional cost map, the only computational activ-
ity of significance at runtime is search. A* reduces
the complexity of Dijkstra’s, or uniform cost, search
given an effective heuristic but adds the complexity
introduced due to computing the heuristic function at
each search node. The complexity of Dijkstra’s algo-
rithm is O(n2), where n is the number of cells in
the three dimensional cost map. The complexity of
A*, which maintains a priority queue of cells to be
explored, is O(O(h)·n log2(n)), where h is the heuris-
tic function. The complexity of searching the space
drops from O(n2) to O(n log(n)) as Dijkstra’s algo-
rithm does not use a priority queue to sort potential
nodes to visit while A* search does use a priority
queue.

The heuristic function, as described above, calcu-
lates an estimate of the cost between the currently
considered cell and the closest goal cell. The array
of goals cells is iterated through linearly and the
lowest estimate is returned, yielding a complexity of
O(g · n log2(n)), where g is the number of goal loca-
tions. For each cell explored, g goal locations are
considered. Since the A* algorithm results in at most
O(n log2(n)) cells being explored and the heuristic
checks g goal locations, the final complexity is O(g ·
n log2(n)).

Although the complexity of our A* implementa-
tion may not reduce the complexity of Dijkstra’s if
g · log2(n) approaches n, in practice the heuristic
bounds the search space by up to nearly an order of
magnitude, as shown in the results from the case study.

7 Case Study

For our case study, we used an area of Man-
hattan bounded by (40.773oN, 73.990oW) and
(40.800oN, 73.954oW), which forms a 3 km by 3
km square. The cost map was formed in this region
with 2m x 2m x 2m cubes, extending vertically 192m
above ground level.

Manhattan is an ideal location for this case study.
Relatively high average population density in com-
parison to the rest of the US means that population
density can present a significant problem to path plan-
ning. The wealth of publicly available information



J Intell Robot Syst

Table 1 Test matrix of
latitude, longitude, and
height positions with
accompanying street
locations and identifiers

ID Latitude/Longitude Street location h0

1 40.77754N, 73.97805W Columbus between 72nd, 73rd 120

2 40.79913N, 73.96830W Broadway and 103rd 40

3 40.78277N, 73.98234W West End between 76th, 77th 80

4 40.77399N, 73.97860W 68th near Central Park 16

5 40.77399N, 73.97860W 68th near Central Park 40

about both the terrain and the structures for NYC cre-
ates a feature-rich cost map, providing a search that
balances multiple safety factors.

7.1 Test Matrix

The results presented from our case study consist of 5
starting locations. Each starting location consists of an
ID, a coordinate and height position, and the relative
street location. Table 1 contains the starting locations,
with initial height as h0.

This test matrix represents various locations of the
Upper West Side of Manhattan. Various rooftops were
added as viable landing locations4, based on a man-
ual search using Google EarthTM. The manual search
determined the viability of a rooftop by characterizing
the emptiness and slope of potential rooftops.

7.2 Results

The results of running simulations over the test matrix
are presented in Table 2 below. For each location, iso-
metric and top views showing cost and solution path
is presented. Some locations showcase the differences
in paths depending on starting height; others display
flight in urban canyons, landing on rooftops, or fly-
ing over buildings for a more direct route. Table 2
presents results with accompanying time statistics: ts ,
the plan creation time in seconds; tx , the plan exe-
cution time (assuming 2m/s cruise speed) in seconds;
and ts/(ts + tx), the ratio of plan creation time to total
time.

The data presented in Table 2, interestingly, shows
a lack of correlation between ts and tx . Although a
longer plan should take more time to create, the size
of the search space is the largest factor in plan creation
time. Locations 4 and 5 both have a longer path length

4The authors again assume building owner permission has been
granted to land on the indicated rooftops.

and, according to Table 3, both have longer travel dis-
tances as well. One would expect the search space for
locations 4 and 5 to be larger than the search space for
location 3. However, location 4 is in an urban canyon,
and location 5 is just above an urban canyon; accord-
ingly, the constraints of the buildings have eliminated
a large fraction of the search space.

With this reasoning, location 1, with an altitude
of 120m, should have a building-free and, therefore,
large search space. This is the case; however, as noted
in Table 3, location 1 has the smallest absolute dis-
tance from starting location to ending location and
therefore a smaller search space than locations 3, 4,
or 5. Additionally, location 2 has the smallest search
space due to buildings and the direction that it needs
to travel.

Note the path length in Table 3 is exactly twice the
time ts in Table 2. This is due to assuming a cruising
speed of 2m/s with cells of 2m on each side; each cell
requires one second to traverse, so the plan execution
time is the same as the path length in cells, but half its
physical length.

Another relationship apparent in this data is the
nearly linear relationship between the percentage of
space searched and ts . This relationship is not per-
fectly represented in the time data due to the way

Table 2 Case study time statistics

ID ts tx ts/(ts + tx)

1 3.03 91 0.048128

2 1.34 84 0.024385

3 10.9 127 0.11744

4 4.10 136 0.037509

5 4.67 156 0.039409

Relatively low computation times allow for potential online
implementation for small UAS. Low ratio of search time to exe-
cution time shows energy spent due to hovering during search
is negligible in most cases. ts is the average over 20 runs



J Intell Robot Syst

Table 3 Case study path statistics

ID Path length (m) % Space searched % Energy used

1 182 0.68566 0.209

2 168 0.40920 0.192

3 254 0.68011 0.291

4 272 0.19371 0.312

5 312 0.19518 0.358

Energy use is linearly related to the length of the pathThe plan
creation time is linearly related to the percentage of the search-
space expanded

memory is allocated in the search algorithm. As more
cells in the search space are searched, they are added
to an array that expands lazily by doubling its size
when required. As more cells are added, memory
allocation requires more and more time.

A relatively high percentage of the space is
searched for this example, indicating the heuristic is
not efficiently directing the search to an optimal solu-
tion. In this case, all the starting locations have at least
two disparate but acceptable landing locations that are
considered by the heuristic, resulting in a greater por-
tion of searched space than choosing a single landing
location on which to concentrate. However, choos-
ing a single landing location brings problems of its
own; a potential location directly behind a building
may be closer in terms of absolute distance and there-
fore preferred by the heuristic, but a location near one
of the rear corners of the building could actually be
closer in terms of the simulated UAS flight capabil-
ity and should therefore not be given high heuristic
cost.

7.2.1 Navigating Urban Canyons

When flying between parallel rows of buildings, the
UAS only increases altitude if beneficial. When start-
ing at location 4, the UAS plans a path to land in
Central Park, shown in Fig. 10.

Since extra height is not necessary - the landing
location is on the ground of Central Park - the planned
path altitude stays below the building heights, not
increasing altitude and wasting energy.

The path is much closer to the buildings on the
south side of 68th street - this is to achieve lower
path cost. The cost, as seen in Fig. 11 decreases lin-
early parallel to the street. Accordingly, the path runs

parallel to the street as closely as possible, only stray-
ing over a building once as the repulsion cost in
previous examples was too high for the UAV to fly
over buildings.

Starting from the same location with an altitude of
40 meters results in a slightly different path, shown in
Fig. 12.

Unlike the 16 m altitude case, starting at 40 m
allows the UAS to fly directly into a lower cost area
before directly descending to the chosen landing loca-
tion. This case also illustrates the planner’s preference
to select straight paths as changing direction requires
more energy than continuing straight. In addition, the
planner also maintains the same altitude for over half
of the path; the last third of the path is spent in a
gradual descent until the vehicle is over the landing
location.

At both starting altitudes, altitude is maintained
until the UAS is over the landing location; this both
prevents danger to any people in the vicinity of the
UAS and represents the lowest energy path as well. It
represents the lowest energy path due to the discretiza-
tion of the three dimensional cost map; assuming a
continuous cost map, the lowest energy path would of
course be the straight line from the west edge of Cen-
tral Park to the landing location. However, a ”straight
line” path through the discretized map results in a
jagged path with many direction changes, resulting in
a higher energy expenditure than the path returned by
the planner.

7.2.2 Maintaining Safety with respect to People
when Operating at High Altitude

When planning at high altitudes, the planner respects
the population density information present in the cost
map even though it may be operating over 100 meters
of altitude. This can be seen in the following two
case studies, both of which demonstrate a low energy
condition occurring at altitude and landing on an
appropriate rooftop nearby.

A low energy condition triggered at location 3
causes the planner to produce the flight plan shown in
Figs. 13 and 14. This flight plan includes a descent to
land on a rooftop.

Figure 13 shows the isometric view of the gener-
ated path, with a starting point near the tops of all the
buildings around it and ending on a rooftop. While this
figure shows the path, it does not adequately highlight



J Intell Robot Syst

Fig. 10 Isometric view of the planned path through an urban canyon to land in Central Park, with an initial UAS altitude of 16 meters

another behavior of the planner, which is better shown
in Fig. 14.

Figure 14 demonstrates the planner favors safety
over energy efficiency. Since the cost map was gen-

Fig. 11 Top view of the planned path through an urban canyon to land in Central Park, with an initial UAS altitude of 16 meters. The
path is closer to the south side of 68th street than the north side



J Intell Robot Syst

Fig. 12 Top view of the planned path above an urban canyon to land in Central Park, with an initial UAS altitude of 40 meters

erated with equal weighting to structural, population,
and terrain costs, the maximum possible cost in an
area without a structure is 0.66, represented by a

yellow color. The landing location is in a large pool
of yellow; the planner avoids much of the popula-
tion and terrain cost, only planning a path over higher

Fig. 13 Isometric view showing the generated plan from location 3 to the roof of a building



J Intell Robot Syst

Fig. 14 Top view showing the generated plan from location 3 to a rooftop. Note that low cost is emphasized over energy efficiency

risk areas when it becomes too inefficient to avoid
them.

The path from the planner after a low energy con-
dition triggered at location 1 is shown in Figs. 15 and
16. Unlike the previously shown emergency landing
path, this path features an ascent to land on a building
with a height greater than UAS altitude when the low
energy condition is triggered.

As can be seen in Fig. 15, the simulated UAS is in
a large open space at an altitude of 120 meters when
the low energy condition is triggered. The UAS slowly
gains altitude as it approaches the building rooftop
landing site. Due to the repulsors extending vertically
from the building, the plan proceeds horizontally 6
meters above the roof; any people who happen to be
on the roof are protected so long as the subsequent
sensor-guided terminal approach to landing occurs
properly.

As in Figs. 14, 16 demonstrates that the planner
respects safety over energy efficiency until it is too
inefficient to avoid these higher risk regions. Even
though the entirety of the currently considered plan is
above various buildings and never above a street, it is
still considered safer by the authors - and by extension,
the planner - to travel over a building with a lower

population density than one with a higher population
density.

7.2.3 Flight Over Buildings

While the planner makes efforts to take safety into
account over pure energy efficiency, occasionally the
safety added by a longer route is too inefficient to
be mathematically justified in the planning algorithm.
Consider the path shown in Figs. 17 and 18. The low
energy condition is triggered when near a building at
location 2.

Figure 17 depicts the simple flight plan: increase
altitude, proceed over the building to directly above
the landing location, and descend. Due to the repulsors
extending vertically from the building the simulated
UAS passes over, it remains 6 meters above the roof at
all times.

The top view presented in Fig. 18 is especially
interesting. In other case studies the planner has pro-
ceeded through low cost zones instead of preferring a
direct path; here the planner goes through a slightly
higher cost area at to conserve energy by preferring a
straight path, not a longer path around the building it flies
over.



J Intell Robot Syst

Fig. 15 Isometric view showing generated path. The UAS gains altitude to land on the roof of a building

Fig. 16 Top view showing generated path. Even at an altitude greater than 100m, the UAS flies over the lowest-population areas
possible



J Intell Robot Syst

Fig. 17 Isometric view showing generated path. The simulated UAS gains altitude, flies over the building, and lands on a roof on the
other side

Fig. 18 Top view showing
generated path. While the
planner considers safety,
energy efficiency is not
neglected, which is reflected
in the straight path chosen



J Intell Robot Syst

8 Conclusions and Future Work

This paper has presented a new method for emer-
gency landing planning when a UAS unexpectedly
encounters a low-energy situation. While a number
of previous researchers have investigated emergency
landing based on sensor feedback this work proposes
a novel combination of sensor-based planning for ter-
minal approach combined with a map-based planner
to enable identification of a trajectory that extends
beyond sensor range limited both by distance and
environment occlusion. The primary contributions of
this work are therefore in its incorporation of pop-
ulation, structure, and terrain data into the landing
planner, devising a cost function and heuristic capable
of balancing objectives during planning, and imple-
menting the database and planner in a manner that
can enable real-time execution. Simulations illustrate
the efficacy of the map-based planner, and runtime
statistics indicate the processed database and planning
algorithm are feasible to store and execute onboard a
small UAS. Database preprocessing transfers the bulk
of the processing overhead out of the runtime map-
based planner, greatly reducing the amount of required
onboard computation.

A number of future improvements to the pro-
posed path planner will produce a more robust sys-
tem. Improvement to the UAS model will improve
planning fidelity, and incorporating map data into
alternative planning algorithms may further improve
efficiency. Ultimately, the planner must handle cases
where no viable landing site is within range of
the vehicle, more comprehensively trading off risks
associated with a non-ideal landing location with
the probability of not having enough energy to
reach the ground before losing power. New infor-
mation could also be added to the cost function,
e.g., expected traffic density information based on
time-of-day and day-of-the-week, to prevent the
UAS from designating the middle of a busy inter-
section or a crowded park as an acceptable landing zone.

Acknowledgments This research was supported in part by
NASA contract NNX11AO78A. Special thanks to the MAAV
team for sharing flight data from their quadrotor.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

References

1. Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F.,
Mondragón, I.F., Martı́nez, C., Olivares, M.: Visual 3-d slam
from uavs. J. Intell. Robot. Syst. 55(4–5), 299–321 (2009)

2. Atkins, E.M.: Risk Identification and Management for
Safe Uas Operation. In: IEEE International Symposium
on Systems and Control in Aeronautics and Astronautics
(ISSCAA) (2010)

3. Atkins, E.M., Portillo, I.A., Strube, M.J.: Emergency flight
planning applied to total loss of thrust. J. Aircr. 43(4),
1205–1216 (2006)

4. Bouktir, Y., Haddad, M., Chettibi, T.: Trajectory Planning
for a Quadrotor Helicopter. In: Mediterranean Conference
On Control & Automation, 2008. MED’08. IEEE (2008)

5. Bureau, U.S.C.: 2010 Census summary file 1 United States
United States census bureau (2012)

6. Choudhury, S., Arora, S., Student, M., Scherer, S.: The
Planner Ensemble and Trajectory Executive: a High Perfor-
mance Motion Planning System with Guaranteed Safety.
In: AHS Forum 70. AHS (2014)

7. Choudhury, S., Scherer, S., Singh, S.: Rrt*-Ar: Sampling-
Based Alternate Routes Planning with Applications to
Autonomous Emergency Landing of a Helicopter. In: 2013
IEEE International Conference On Robotics and Automa-
tion (ICRA), pp. 3947–3952. IEEE (2013)

8. Collins, T., Collins, J., Ryan, C.: Occupancy Grid Mapping:
an Empirical Evaluation. In: Mediterranean Conference On
Control & Automation, 2007. MED’07, pp. 1–6. IEEE (2007)

9. Di Donato, P., Atkins, E.: Exploring Non-Aviation Informa-
tion Sources for Aircraft Emergency Landing Planning. In:
AIAA Scitech Forum and Exposition (2016)

10. Environmental Systems Research, Inc., http://www.esri.
com/library/whitepapers/pdfs/shapefile.pdf: ESRI Shape-
file Technical Description

11. Fitzgerald, D., Walker, R., Campbell, D.: Classification
of Candidate Landing Sites for Uav Forced Landings. In:
AIAA Guidance, Navigation, and Control Conference and
Exhibit (2005)

12. Hayhurst, K., Maddalon, J., Miner, P., DeWalt, M.,
McCormick, F.: Unmanned Aircraft Hazards and Their
Implications for Regulation. In: IEEE/AIAA 25Th Digital
Avionics Systems Conference (2006)

13. Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., Teller,
S.: Anytime Motion Planning Using the Rrt*. In: 2011
IEEE International Conference On Robotics and Automa-
tion (ICRA), pp. 1478–1483. IEEE (2011)

14. Kirk, D.E.: Optimal control theory: an introduction Courier
Corporation (2012)

15. Meuleau, N., Plaunt, C., Smith, D.: Emergency Landing
Planning for Damaged Aircraft. In: ICAPS Workshop on
Planning and Scheduling Applications (2008)

16. Norvig, P., Russel, S.: Artificial intelligence: a modern
approach englewood cliffs (2005)

17. Olson, I., Atkins, E.: Qualitative Failure Analysis for a
Small Quadrotor Unmanned Aircraft System. In: Guidance,
Navigation, and Control Conference (2013)

18. Richardson, T.S., Jones, C.G., Likhoded, A., Sparks, E.,
Jordan, A., Cowling, I., Willcox, S.: Automated vision-based
recovery of a rotary wing unmanned aerial vehicle onto a
moving platform. J. Field Robot. 30(5), 667–684 (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf


J Intell Robot Syst

19. Ro, K., Oh, J.S., Dong, L.: Lessons Learned: Application
of Small Uav for Urban Highway Traffic Monitoring. In:
AIAA Aerospace Sciences Meeting (2007)

20. Rufa, J., Atkins, E.: Unmanned aircraft system nav-
igation in the urban environment: A systems analy-
sis. Journal of Aerospace Information Systems (2016).
doi:10.2514/1.I010280 (available online)

21. Saripalli, S., Montgomery, J.F., Sukhatme, G.: Visually
guided landing of an unmanned aerial vehicle. IEEE Trans.
Robot. Autom. 19(3), 371–380 (2003)

22. Sharp, C.S., Shakernia, O., Sastry, S.S.: A Vision System
for Landing an Unmanned Aerial Vehicle. In: 2001
IEEE International Conference On Robotics and Automation,
Proceedings 2001 ICRA, vol. 2, pp. 1720–1727. IEEE (2001)

23. Thurrowgood, S., Moore, R.J., Soccol, D., Knight, M.,
Srinivasan, M.V.: A biologically inspired, vision-based
guidance system for automatic landing of a fixed-wing
aircraft. J. Field Robot. 31(4), 699–727 (2014)

24. Warren, M., Mejias, L., Yang, X., Arain, B., Gonzalez,
F., Upcroft, B.: Enabling aircraft emergency landing using
active visual site detection. Field Serv. Robot. 9, 9–11 (2013)

25. Watts, A., Ambrosia, V., Hinkley, E.: Unmanned aircraft
systems in remote sensing and scientific research: Clas-
sification and considerations of use. Remote Sens. 4(6),
1671–1692 (2012)

26. Zhu, D., Latombe, J.C.: New heuristic algorithms for
efficient hierarchical path planning. IEEE Trans. Robot.
Autom. 7(1), 9–20 (1991)

Alec Ten Harmsel was introduced to multi-copters by the
Michigan Autonomous Aerial Vehicles team as an undergradu-
ate at the University of Michigan. He started doing research on
emergency path planning and landing shortly after joining the
team and enjoys working on other planning-related problems,
such as navigating with computer vision. After finishing under-
graduate education, he plans on working for Goldman Sachs,
programming low-latency networked applications.

Ella Atkins Dr. Ella Atkins is an Associate Professor in the
Department of Aerospace Engineering at the University of
Michigan, where she is director of the Autonomous Aerospace
Systems (A2SYS) Lab. Dr. Atkins research focuses on task
and motion planning, guidance, and control to support increas-
ingly autonomous cyber-physical Aerospace systems with focus
on small UAS (unmanned aircraft system) and aviation safety
applications. Dr. Atkins is author of over 150 refereed jour-
nal and conference publications and has served long-term as
an associate editor of the AIAA Journal of Aerospace Informa-
tion Systems (JAIS). She has served on numerous review boards
and panels, including the 2013 NRC committee to develop a
research agenda for autonomy in civil aviation. Dr. Atkins is
past-chair of the AIAA Intelligent Systems Technical Commit-
tee, AIAA Associate Fellow, IEEE senior member, small public
airport owner/operator (Shamrock Field, Brooklyn, MI), and
private pilot. She served on the National Academys Aeronau-
tics and Space Engineering Board (ASEB) (2011-2016) and was
a member of the IDA Defense Science Studies Group (2012-
2013). She currently serves on the steering committee and as
Graduate Program Chair to the new University of Michigan
Robotics Program.

Isaac Olson Isaac is a recent graduate of the University
of Michigan with a Master’s degree in Aerospace Engineer-
ing. He was introduced to multirotor UAS by the Michigan
Autonomous Aerial Vehicles team as an undergraduate and has
been working in flight controls and emergency path planning
since. He currently works at SkySpecs, an Ann Arbor startup
working to bring UAS to the structural inspection industry in a
safe and effective manner.

View publication statsView publication stats

http://dx.doi.org/10.2514/1.I010280
https://www.researchgate.net/publication/302918602

	Emergency Flight Planning for an Energy-Constrained Multicopter
	Abstract
	Introduction
	Background
	Vehicle Model
	Physical Model
	Energy Model

	Environment Model
	Databases
	Map Generation
	Population Map Generation
	Structural Map Generation
	Terrain Map Generation


	Costs and Constraints
	Constraints
	Movement Costs
	Environment Costs

	Planner
	Planning Algorithm
	Computational Complexity

	Case Study
	Test Matrix
	Results
	Navigating Urban Canyons
	Maintaining Safety with respect to People when Operating at High Altitude
	Flight Over Buildings


	Conclusions and Future Work*-1.5pt
	Acknowledgments
	Open Access
	References


