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� Ine�cient airspace utilization: Currently, the airspace is very rigidly structured andaircraft are forced to travel along predetermined jetways. This is clearly not optimal anddisallows aircraft to y directly to the destination and take advantage of favorable winds.This problem is particularly evident in transoceanic routes which are experiencing the greatestdemand growth (for example, nearly 15% [1] annually across the Paci�c Ocean).� Increased Air Tra�c Control (ATC) workload: Separation among aircraft as wellas vectoring aircraft in order to avoid weather hazards is performed centrally by ATC. Incongested areas, such the regions close to urban airports referred to as TRACONs, controllersfrequently simplify their heavy workload by keeping aircraft in holding patterns outside theTRACON.� Obsolete technology: The computer technology used in most ATC centers is nearly 30years old [2]. Communication is restricted to congested voice communication between theaircraft and ATC. Navigation is performed by ying over �xed VHF Omni-Directional Range(VOR) points.In view of the above problems, the aviation community is working towards an innovative conceptcalled Free Flight [3]. Free Flight allows pilots to choose their own routes, altitude and speed.User preference would be restricted only in congested airspace, or to prevent unauthorized entryof special use airspace (such as military airspace). Free Flight is potentially feasible because ofenabling technologies such as Global Positioning Systems (GPS), datalink communications likeAutomatic Dependence Surveillance-Broadcast (ADS-B) [4, 5], Tra�c Alert and Collision Avoid-ance Systems (TCAS) [6] and powerful on-board computation. In addition, tools such as NASA'sCenter-TRACON Automation System (CTAS) [7] and MITRE's URET [8] will serve as decisionsupport tools for ground controllers in an e�ort to reduce ATC workload and optimize capacity.The above technological advances will also enable the current ATC system to accommodate fu-ture air tra�c growth: sophisticated on-board equipment will allow aircraft to share some of theworkload, such as navigation, weather prediction and aircraft separation, with ground controllers.In order to improve the current standards of safety in an unstructured, Free Flight environment,conict detection and resolution algorithms are vital. Such algorithms would be used either onthe ground by Air Tra�c Control or in the air by the Flight Management System (FMS) of eachaircraft.In the proposed Free Flight airspace, each aircraft is surrounded by two virtual cylinders [4], theprotected zone and the alert zone, shown in Figure 1. A conict or loss of separation betweentwo aircraft occurs whenever the protected zones of the aircraft overlap. The radius and theheight of the en-route protected zone over U.S. airspace is currently 2:5 nautical miles and 2; 000 ft2
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Figure 1: Aircraft Zones(1; 000 ft below 29; 000 ft, 4; 000 ft over oceanic airspace) respectively. The size of the alert zone,currently under debate, depends on various factors including airspeed, altitude, accuracy of sensingequipment, tra�c situation, aircraft performance and average human and system response times.When an aircraft enters the alert zone of another aircraft, the aircraft exchange sensor and intentinformation in order to predict and resolve the conict.Current research endeavors in conict prediction and resolution include [9, 10, 11, 12, 13]. Conictprediction could be spatial, temporal or probabilistic. Spatial and temporal approaches, such as[11, 13], calculate the four dimensional coordinates of a possible conict. Probabilistic approaches,such as [9, 10], assume stochastic uncertainty in the measured information and determine theprobability of collision. The work of [11, 12] formulates conict resolution as an optimal controlproblem whereas [13] treats the problem as a convex optimization problem. The user interfaceof CTAS allows controllers to manually alter aircraft trajectories to resolve conicts in en routeairspace [14]. TCAS [6] provides resolution advisories (ight level changes) to pilots involved in two-aircraft conicts, however these advisories are not formally veri�ed. Conict prediction, resolution,and veri�cation are the most important modules that are in need of augmentation in the currentimplementations of CTAS and TCAS.In [15] a possible future architecture for Air Tra�c Management (ATM) is presented. In ourparadigm, aircraft are allowed to self-optimize in the spirit of Free Flight, communicate state andintent data to each other using an ADS-B datalink for conict prediction, and coordinate witheach other to resolve potential conicts. State and intent data could be uncertain. Coordinationamong the aircraft is in the form of maneuvers which are �nite sequences of ight modes such asheading, altitude and speed changes for each aircraft. These types of maneuvers are routinely usedin current Air Tra�c Control practice since they are easily understandable by pilots as well as easily3



implementable by on-board autopilots which regulate the aircraft to heading and speed setpoints.The main thrust of our conict resolution algorithms is to verify that a maneuver successfullyresolves the conict by computing the set of initial conditions for which the maneuver is safe,where safety means that separation is maintained. In the presence of bounded uncertainty in thestate or intent data, we take a worst-case approach and verify that the worst-case system trajectoryis safe.The ight mode switching occurring in each maneuver is modeled by a �nite state automaton withthe relative aircraft con�guration dynamics residing within each ight mode. A conict resolutionmaneuver is therefore modeled by a �nite state automaton interacting with a set of control systems,resulting in a hybrid control system. The interaction and information exchange of all of the aircraftinvolved in the maneuver results in a multi-agent hybrid control system.There are several approaches to hybrid system modeling, veri�cation, and controller design (see,for example, [16, 17, 18, 19]). The computer science approach is to extend models of �nite stateautomata to timed automata [20], linear hybrid automata [21], and hybrid input/output automata[22]. Linear hybrid automata model or abstract the continuous dynamics by di�erential inclusionsof the form A _x � b and verify properties of the resulting abstracted system [23, 24, 25]. Spec-i�cations are veri�ed for these models using either model checking, which exhaustively check allsystem trajectories, or deductive theorem proving techniques [26], which prove the speci�cation byinduction on all system trajectories. In this framework, controller design has also been developed[27, 28]. Automated computational tools have been developed for both model checking [29, 30], andtheorem proving [31]. Control theoretic approaches to modeling, analysis, and controller design forhybrid systems have extended the theory of dynamical systems to include discrete modes of opera-tion. Modeling approaches include those of [32, 33, 34, 35, 36, 37]. Analysis and design techniquesextend existing control techniques, such as stability theory [33], optimal control [33, 36, 37], andcontrol of discrete event systems [38, 39], to hybrid systems.Our conict resolution algorithms are in the spirit of model checking, but we use control theoretic(deductive) techniques to calculate the reachable region for hybrid systems with general nonlineardynamics. Our method calculates the largest controlled invariant subset of the complement of eachaircraft's protected zone, taking into account the uncertainty of the actions of the other aircraft. Inorder to compute this safe set of initial states, we �rst develop a method to compute the controlledinvariant subsets for continuous systems in the presence of disturbances. A natural framework forthis type of problem is zero-sum noncooperative dynamic game theory [40, 41]. In this framework,uncertain information about neighboring aircraft is treated as a disturbance. For a two-aircraftexample, assuming a saddle solution to the game exists, each aircraft chooses an optimal policyassuming the worst possible disturbance. This is motivated by the work of [42], in which game4



theoretic methods are used to prove safety of a set of maneuvers in Intelligent Vehicle HighwaySystems.Along with the safe set of initial states, we calculate the corresponding safe set of control inputs asa function of the state. Within its safe region of operation, the aircraft may design its trajectoryto optimize over other criteria, such as fuel e�ciency or minimal deviation from route. At theboundary of its safe region, the aircraft must apply the particular control which keeps it out ofits unsafe region. Thus, we are naturally led to a switching control based protocol which is leastrestrictive. A more detailed description of this multiobjective methodology may be found in [43].The resultant hybrid system is safe by design, as we illustrate with two versions of an interestingexample of two aircraft conict resolution in the horizontal plane.The organization of this paper is as follows: In Section 2 our modeling formalism and designmethodology for hybrid systems is described. Section 3 presents the game theoretic approach tocomputing the safe set of initial conditions and control inputs for continuous systems. Section 4describes safety veri�cation of coordinated maneuvers using the results of Section 3. Section 5presents a brief summary and some issues for further research.2 Hybrid Model and Design MethodologyIn this section, we present a hybrid system model for conict resolution maneuvers, and a methodto verify the safety of, and synthesize control schemes for these maneuvers. The discrete states ofthe hybrid system model the di�erent ight modes that each aircraft steps through while executingthe maneuver. For example, consider the two-aircraft examples of Figure 2. In the �rst, the aircraftavoid each other by transitioning through a sequence of heading changes: \left", \straight", \right",and then back to the original \cruise" mode; in the second the conict is avoided by both aircrafttransitioning to a \circle" mode from a \cruise" mode.Each mode has associated with it the relative aircraft con�guration dynamics. The veri�cationof the safety of each maneuver, with possible variations in the control inputs of each aircraftand changes in the switching times between modes, is complicated and in general not possible tocompute manually. The hybrid model presented in this section provides an organized, formal wayto model and prove the safety of the maneuver.The hybrid model described below is inspired by that of [23] for linear hybrid automata, with thedi�erence that we allow for a nonlinear continuous dynamic model within each discrete state anda general discrete transition relation. 5
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(a) (b)Figure 2: Two di�erent conict resolution maneuvers, with associated modes.Hybrid System ModelA hybrid system H is de�ned to be the tuple H = (Q�M;U �D;�; I; Inv;E; f), in which:� Q�M is the state space, with Q = fq1; q2; : : : ; qmg a �nite set of discrete states, and M ann-manifold; a state of the system is a pair (qi; x) 2 Q �M ;� U �D � Ru�Rd is the product of the input set and disturbance set; the space of acceptablecontrol and disturbance trajectories are denoted by U = fu(�) 2 PC0ju(�) 2 U 8� 2 Rg,D = fd(�) 2 PC0jd(�) 2 D 8� 2 Rg;� � is a �nite set of transition labels;� I � Q�M is the set of initial conditions;� Inv : Q ! 2M is the invariant associated with each discrete state, meaning that the state(q; x) may ow within q only if x 2 Inv(q);� E � Q�M � � � Q�M is the set of discrete jumps with (q; x; �; q0; x0) 2 E meaning thatif the current state is (q; x), the system may instantaneously take a discrete transition � tostate (q0; x0);� f : Q�M �U �D ! TM is a map which associates with each discrete state q 2 Q a controlsystem f(q; x; u; d). For notational convenience we use fq(x; u; d) to denote f(q; x; u; d).Hybrid systems evolve in so-called \dense time" by either continuous ows or discrete transitions.Trajectories of the hybrid system H starting at a state (q; x) evolve according to fq(�) as long as the6



continuous state remains within Inv(q). If the invariance condition is not satis�ed then a discretetransition is forced and the continuous state may be reinitialized. If (q; x; �; q0; x0) 2 E then thediscrete state may jump from q to q0 and the continuous state x is reinitialized to x0 and then owsaccording to fq0(�).Relative Aircraft Con�guration ModelsWe now describe the continuous dynamics within each discrete state q. Because conicts betweenaircraft depend on the relative position and velocity of the agents, the continuous models we useare relative models, describing the motion of each aircraft in the system with respect to the otheraircraft. For example, to study pairwise conict between the trajectories of two aircraft, aircraft 1and aircraft 2, a relative model with its origin centered on aircraft 1 is used. The con�guration ofan individual aircraft is described by an element of the Lie group G of rigid motions in R2 or R3,called SE(2) or SE(3) respectively. In planar situations, in which aircraft are ying at the samealtitude, SE(2) will be used.Following the example described above, let g1 2 G denote the con�guration of aircraft 1, and letg2 2 G denote the con�guration of aircraft 2. The trajectories of both aircraft are kinematicallymodeled as left invariant vector �elds on G. Therefore_g1 = g1X1 (1)_g2 = g2X2 (2)where X1; X2 2 G, the Lie algebra associated with the Lie group G. A coordinate change isperformed to place the identity element of the Lie group G on aircraft 1. Thus, let gr 2 G denotethe relative con�guration of aircraft 2 with respect to aircraft 1. Theng2 = g1gr ) gr = g�11 g2 (3)Di�erentiation yields the dynamics of the relative con�guration,_gr = grX2 �X1gr (4)Note that the vector �eld which describes the evolution of gr is neither left nor right invariant.Consider the Lie group SE(2) and its associated Lie algebra se(2). A coordinate chart for SE(2) isgiven by x; y; � representing the planar position and orientation of a rigid body. In this coordinatechart, the relative con�guration gr is given in homogeneous coordinates bygr = 26664 cos�r � sin �r xrsin�r cos�r yr0 0 1 37775 (5)7
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Figure 3: The relative con�guration, showing the protected zone and outward pointing normal.where xr; yr represent the relative position of aircraft 2 with respect to aircraft 1 and �r is therelative orientation. In local coordinates, the coordinate transformation (3) is expressed as24 xryr 35 = R(��1)24 x2 � x1y2 � y1 35 = 24 cos(��1) � sin(��1)sin(��1) cos(��1) 3524 x2 � x1y2 � y1 35 (6)�r = �2 � �1 (7)with xi,yi,�i parameterizing the absolute position and orientation of aircraft i. The Lie algebraelements X1; X2 2 se(2) are represented as matrices in R3�3 of the formX1 = 26664 0 �!1 v1!1 0 00 0 0 37775 X2 = 26664 0 �!2 v2!2 0 00 0 0 37775 (8)where vi; !i represent the linear and angular velocities. Inserting equations (5) and (8) in equation(4) results in the SE(2) relative con�guration dynamics in local coordinates_xr = �v1 + v2 cos�r + !1yr_yr = v2 sin�r � !1xr (9)_�r = !2 � !1Similar results for SE(3) may be found in [44]. Thus for each discrete state q, the dynamics_x = fq(x; u; d) is described by (9), with x = (xr; yr; �r)T . The linear (or angular) velocity ofaircraft 1 is the control input u, and the uncertain linear (or angular) velocity of aircraft 2 isconsidered to be the disturbance d. 8



Design and Veri�cation MethodologyIn the remainder of this paper we derive a method to generate the unsafe region of the state spaceQ�M , which is the subset of initial states I for which, regardless of the control input, there existsa trajectory of H from this subset to an illegal region of the state space.Given a subset K � Q�M , we de�ne the predecessor of K under continuous ows asPret(K) = f(q; x) 2 Q�M j 9(q0; x0) 2 K such that q0 = q and9d(�) 2 D; 8u(�) 2 U ; and x(�) 2 Inv(q); 8� 2 [t; 0]; satisfyingx(t) = x; x(0) = x0; and _x(�) = fq(x(�); u(�); d(�))g (10)Similarly, the predecessor of K under discrete transitions � 2 � is de�ned to bePre�(K) = f(q; x) 2 Q�M j 9(q0; x0) 2 K and (q; x; �; q0; x0) 2 Eg (11)The predecessor under continuous ows or discrete transitions is de�ned asPre(K) =  [�2�Pre�(K)! [ Pre�1(K) (12)The unsafe region of the state space will be computed by recursively applying this Pre(K) operator:Pre2(K) = Pre(Pre(K))...Pren(K) = Pre(Pren�1(K))... (13)A �xed point of this iteration, if it exists, is denoted Pre�(K), ie. Pre�(K) = Pre(Pre�(K)).For two aircraft conicts, we de�ne the illegal region to be the relative protected zone, or the 5-mileradius cylinder around aircraft 1, denoted T with boundary @T , illustrated in Figure 3. In Section3, a methodology is developed to compute Pret(T ), using level sets of an appropriate Hamilton-Jacobi-Isaacs partial di�erential equation. This computation is subsequently used in Section 4 toverify the conict resolution maneuver.3 The Hamilton-Jacobi-Isaacs Approach for Continuous SystemsConsider the dynamics of the aircraft in one discrete state q 2 Q (for notational simplicity we dropthe subscript q in this section): _x = f(x; u; d) x(t) = x (14)9



where x 2 Rn describes the relative con�guration of aircraft 2 with respect to aircraft 1, u 2 U � Ruis the control input which models the actions of aircraft 1, and d 2 D � Rd is the disturbance inputwhich models the actions of aircraft 2. We assume that the system starts at state x at initial timet. Both U and D are known sets, but whereas the control input u may be chosen by the designer,the disturbance d is unknown, and models the uncertainty of the actions of aircraft 2.The goal is to maintain safe operation of the system (14), meaning that the system trajectories donot enter T , the \Target set". We assume that there exists a di�erentiable function l(x) so thatT = fx 2 Rn j l(x) � 0g and @T = fx 2 Rn j l(x) = 0g.3.1 The Value Function and the Hamilton-Jacobi-Isaacs EquationThis section describes the computation of the unsafe subset of the state space, denoted Pret(T ) �M , which is the subset of initial states of (14) from which there exists a disturbance action d(�)such that the resulting trajectory of (14) enters T in at most t seconds. Due to the uncertaintyin the actions of aircraft 2, the safest possible strategy of aircraft 1 is to y a trajectory whichguarantees that the minimum allowable separation with aircraft 2 is maintained, regardless of theactions of aircraft 2. We formulate this problem as a two-person, zero-sum dynamical game, andcalculate the \losing" states for aircraft 1.Consider the system (14) over the time interval [t; 0], where t < 0. The value function of the gameis de�ned by: J(x; u(�); d(�); t) : Rn� U �D �R�! R (15)such that J(x; u(�); d(�); t) = l(x(0)). This value function may be interpreted as the cost of atrajectory x(�) which starts at x at time t � 0, evolves according to (14) with input (u(�); d(�)), andends at the �nal state x(0). Note that the value function depends only on the �nal state: there isno running cost, or Lagrangian. This encodes the fact that we are only interested in whether ornot the system trajectory ends in T and are not concerned with intermediate states. The game iswon by aircraft 1 if the terminal state x(0) is either outside T or on @T (i.e. J(x; 0) � 0), and iswon by aircraft 2 otherwise.Given J(x; u(�); d(�); t), we �rst characterize the unsafe portion of @T , de�ned as those states x 2 @Tfor which there exists some disturbance d 2 D such that for all inputs u 2 U the vector �eld pointsinto T ; the safe portion of @T consists of the states x 2 @T for which there is some input u 2 Usuch that for all disturbances d 2 D, the vector �eld points outward from T . De�ne the outwardpointing normal to T as � = Dl(x), thenSafe portion of @T fx 2 @T : 9u8d �T f(x; u; d)� 0gUnsafe portion of @T fx 2 @T : 8u9d �T f(x; u; d)< 0g (16)10



Thus, the optimal control u� and the worst disturbance d� are given by:u� = argmaxu2U mind2D J(x; u(�); d(�); t) (17)d� = argmind2Dmaxu2U J(x; u(�); d(�); t) (18)The game is said to have a saddle solution (u�; d�) if the resulting optimal cost does not dependon the order in which the maximization and minimization is performed:J�(x; t) = maxu2U mind2D J(x; u(�); d(�); t) = mind2D maxu2U J(x; u(�); d(�); t) (19)The concept of a saddle solution is key to our computation of the safe regions of operation of theaircraft, since a solution of (14) with u = u� and d = d� represents an optimal trajectory for eachplayer under the assumption that the other player plays its optimal strategy.Aircraft 1 maintains safety at time t by operating outside of Pret(T ):Pret(T ) = fx 2 Inv(q) j 9d(�) 2 D; J(x; u(�); d(�); �)< 0; 8u(�) 2 U ; 8� 2 [t; 0]g (20)= fx 2M j 9d(�) 2 D; J(x; u�(�); d(�); �)< 0; 8� 2 [t; 0]g\Inv(q) (21)Let @Pret(T ) denote the boundary of Pret(T ). To calculate the unsafe set of states for all t 2(�1; 0], we construct the Hamilton-Jacobi-Isaacs partial di�erential equation for this system andattempt to calculate its steady state solution. De�ne the Hamiltonian H(x; p; u; d) = pTf(x; u; d)where p 2 T �Rn is the costate. The optimal Hamiltonian is given by:H�(x; p) = maxu2U mind2DH(x; p; u; d) = H(x; p; u�; d�) (22)and satis�es Hamilton's equations (provided H�(x; p) is smooth in x and p):_x = @H�@p (x; p)_p = �@H�@x (x; p) (23)with the boundary conditions p(0) = Dl(x(0)) and x(t) = x. If J�(x; t) is a smooth function of xand t, then J�(x; t) satis�es the Hamilton-Jacobi-Isaacs equation:� @J�(x; t)@t = H�(x; @J�(x; t)@x ) (24)with boundary condition J�(x; 0) = l(x). It is di�cult to guarantee that the PDE (24) has smoothsolutions for all t � 0, due to the occurrence of \shocks", ie. discontinuities in J as a function ofx. If there are no shocks in the solution of (24), we characterize the setPre�1(T ) = fx 2 Inv(q) j J�(x; �) < 0; 8� 2 (�1; 0]g (25)by solving the modi�ed Hamilton-Jacobi-Isaacs equation:� @J�(x; t)@t = minf0; H�(x; @J�(x; t)@x )g (26)11



with boundary condition J�(x; 0) = l(x). The \min" is added to the right hand side of equation(26) to ensure that states which are once unsafe cannot become safe. In practical applications,since one is concerned only with aircraft in the alert zone, the calculation of equation (25) may beapproximated by computing Pret(T ), for su�ciently large t, such as t = 20 minutes.The set Pre�1(T ) de�nes the least restrictive control scheme for safety. If aircraft 2 is outsidePre�1(T ), any control input may be safely applied by aircraft 1, whereas on the boundary, the onlyinput which may be safely applied to ensure safety is u�. The safe set of control inputs associatedwith each state at time t isUs(x; t) = fu 2 U j J(x; u(�); d�(�); t) � 0g (27)Additional system requirements, such as optimal fuel trajectories and passenger comfort, can nowbe incorporated by optimizing secondary and tertiary criteria within the constraints of set (27),following the multiobjective design methodology of [43].We now apply this general framework to the planar SE(2) relative model (9) in local coordinates(xr; yr; �r), with the control actions either the angular or linear velocities.3.2 Angular Velocities as Control ActionsConsider the case in which the linear velocities of both aircraft are �xed, v1; v2 2 R, and the controlinputs of the aircraft are the angular velocities, u = !1 and d = !2:_xr = �v1 + v2 cos�r + uyr_yr = v2 sin �r � uxr_�r = d� u (28)with state variables xr; yr 2 R, �r 2 [��; �), and control and disturbance inputs u 2 U = [!1; !1] �R, d 2 D = [!2; !2] � R. Without loss of generality (we scale the coe�cients of u and d if this isnot met), assume that !i = �1 and !i = 1, for i = 1; 2.The target set T is the protected zone in the relative frame:T = f(xr; yr) 2 R2; �r 2 [��; �) j x2r + y2r � 52g (29)which is a 5-mile-radius cylindrical block in the (xr; yr; �r) space. Thus the function l(x) may bede�ned as l(x) = x2r + y2r � 52 (30)The optimal Hamiltonian isH�(x; p) = maxu2U mind2D[�p1v1 + p1v2 cos�r + p2v2 sin�r + (p1yr � p2xr � p3)u+ p3d] (31)12



De�ning the switching functions s1(t) and s2(t), ass1(t) = p1(t)yr(t)� p2(t)xr(t)� p3(t)s2(t) = p3(t) (32)the saddle solution u�; d� exists when s1 6= 0 and s2 6= 0 and are calculated asu� = sgn(s1)d� = �sgn(s2) (33)The equations for _p are obtained through (23) and are_p1 = u�p2_p2 = �u�p1_p3 = p1v2 sin �r � p2v2 cos�r (34)with p(0) = (xr; yr; 0)T = �, the outward pointing normal to @T at any point (xr; yr; �r) on @T .The safe and unsafe portions of @T are calculated using equations (16) with � = (xr; yr; 0)T . Thus,those (xr; yr; �r) on @T for which� v1xr + v2(xr cos�r + yr sin�r) < 0 (35)constitute the unsafe portion, and those (xr; yr; �r) on @T for which� v1xr + v2(xr cos�r + yr sin�r) = 0 (36)are the �nal state conditions for the boundary of the unsafe set Pret(T ). To solve for p(t) andx(t) along this boundary for t < 0, we must �rst determine u�(0) and d�(0). Equations (33) arenot de�ned at t = 0, since s1 = s2 = 0 on @T , giving rise to \abnormal extremals" (meaning thatthe optimal Hamiltonian loses dependence on u and d at these points. Analogously to [41] (p.442-443), we use an indirect method to calculate u�(0) and d�(0): at any point (xr; yr; �r) on @T ,the derivatives of the switching functions s1 and s2 are_s1 = yrv1 (37)_s2 = xrv2 sin�r � yrv2 cos�r (38)For points (xr; yr; �r) 2 @T such that �r 2 (0; �) it is straightforward to show that _s1 > 0 and_s2 > 0, meaning that for values of t slightly less than 0, s1 < 0 and s2 < 0. Thus for this range ofpoints along @T , u�(0) = �1 and d�(0) = 1. These values for u� and d� remain valid for t < 0 aslong as s1(t) < 0 and s2(t) < 0. When s1(t) = 0 and s2(t) = 0, the saddle solution switches and thecomputation of the boundary continues with the new values of u� and d�, thus introducing \kinks"into the boundary. These points correspond to loss of smoothness in the Hamilton-Jacobi-Isaacs13
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Figure 4: The Target set T = f(xr; yr); �r 2 (0; �) j x2r + y2r � 52g (cylinder) and the boundary ofthe set Pret(T ) (enclosed by the boundary) for t < 0 until the �rst switch in either s1(t) or s2(t).The second picture is a top view of the �rst.equation discussed above. Figure 4 displays the resulting boundary of the unsafe set Pret(T ), fort < 0 until the �rst time that either s1(t) or s2(t) switches.The automaton illustrating the least restrictive control scheme for safety is shown in Figure 5. Thecomputation of the boundary of Pre�1(T ) is in general di�cult. For certain ranges of U and D,the surfaces shown in Figure 4 intersect, and at the intersection, it is not clear that u� is the uniquesafe input.3.3 Linear Velocities as Control ActionsNow consider the case in which the angular velocities of the two aircraft are zero, and the controlinputs are the linear velocities of the aircraft: u = v1, d = v2, and model (9) reduces to:_xr = �u+ d cos�r_yr = d sin�r (39)_�r = 0The input and disturbance lie in closed subsets of the positive real line u 2 U = [v1; v1] � R+,d 2 D = [v2; v2] � R+.The Target set T and function l(x) are de�ned as in the previous example. In this example, it isstraightforward to calculate the saddle solution (u�; d�) directly, by integrating equations (39) for14
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piecewise constant u and d, and substituting the solutions into the cost function (15). To do thiswe �rst de�ne the switching functions s1 and s2 ass1(t) = xrs2(t) = xr cos�r + yr sin �r (40)Proposition 1 [Saddle Solution for Linear Velocity Controls] The global saddle solution (u�; d�)to the game described by system (39) for the cost J(x; u(�); d(�); t) given by equation (15) isu� = 8<: v1 if sgn(s1) > 0v1 if sgn(s1) < 0 (41)d� = 8<: v2 if sgn(s2) > 0v2 if sgn(s2) < 0 (42)Proof: In Appendix. 2As can be seen from equation (41), u� depends on the position of aircraft 2 relative to aircraft 1.If aircraft 2 is ahead of aircraft 1 in the relative axis frame, then u� is at its lower limit, if aircraft2 is behind aircraft 1 in the relative axis frame then u� is at its upper limit. If aircraft 2 is headingtowards aircraft 1, then d� is at its upper limit, if aircraft 2 is heading away from aircraft 1, d� isat its lower limit. The bang-bang nature of the saddle solution allows us to abstract the systembehavior by the hybrid automaton shown in Figure 6, which describes the least restrictive controlscheme for safety. The unsafe sets of states are illustrated in Figure 7 for various values of �r, andspeed ranges as illustrated.4 Veri�cation of Conict Resolution ManeuversIn this section we apply the Pret(T ) calculation of Section 3 to calculate the unsafe set of initialconditions for a conict resolution maneuver. We illustrate the methodology on a maneuver whoseform is chosen to be a �nite sequence of heading changes resulting in a trapezoidal deviation fromthe desired path. Consider the conict scenario and resolution maneuver shown in Figure 2 (a).The protocol may be linguistically expressed as follows:1. Cruise until aircraft are �1 miles apart;2. Make a heading change of �� and y until a lateral displacement of at least dmiles is achievedfor both aircraft;3. Make a heading change to original heading and y until the aircraft are �2 miles apart;16
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4. Make a heading change of ��� and y until a lateral displacement of d miles is achieved forboth aircraft;5. Make a heading change to original heading and cruise.The maneuver is modeled as the hybrid automaton H shown in Figure 8. The state space of H isQ�R2�S1 where Q = fCRUISE;LEFT; STRAIGHT;RIGHTg and models the di�erent ightmodes in the maneuver, and (xr; yr; �r) 2 R2�S1 are the continuous variables which evolve withineach discrete location according to the relative con�guration dynamics (9). The initial conditionof the automaton is I = CRUISE � f(xr; yr) 2 R2 j 52 � x2r + y2r � r2ag (43)where ra is the radius of the alert zone. Thus the aircraft are assumed to be initially cruising andtheir protected zones do not intersect. The safety speci�cation for H is that the state does notenter T , de�ned asT = fCRUISE; LEFT;STRAIGHT;RIGHTg� fx2r + y2r � 52g (44)Due to uncertainties in the velocity of the other aircraft, the worst case scenario is assumed for v2and therefore the dynamics evolve according to the saddle solution (42). This introduces additionalswitching surfaces within each discrete state.The automaton of Figure 8 starts in the CRUISE mode and ows in that state until the inter-aircraft distance is less than �1 miles, at which point both aircraft make a heading change of��. Discrete heading changes have the e�ect of resetting the state by a rotation matrix since thecoordinate frame depends on the orientation of the aircraft (6,7). In mode LEFT , both aircraftmake a nominal lateral displacement of at least d. This is achieved using a timer variable t asshown. Both aircraft then return to their original heading and cruise until their relative distance isgreater than �2 miles. Once this is achieved, the reverse maneuver is performed in order return tothe original cruise path and heading. The heading changes of both aircraft are assumed to occursimultaneously.For this example, the velocities of the aircraft are chosen to be the same as in the second exampleof Section 3: v1 2 [2; 4], v2 = [1; 5] and �r = �=2. The radius of the relative protected zone is 5miles while the alert zone has a radius of 25 miles1. Instead of �xing values for the parameters d,�1, �2, and ��, we initially leave the �rst three unrestricted, and let �� 2 f�45�; 45�g. Theirvalues will be determined in order to minimize the unsafe set of initial states of the maneuver.1The velocities and sizes of the zones are scaled in order to produce visualizable �gures19
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Figure 11: Conict Resolution for three aircraft: the Roundabout maneuverFigure 9 displays the union of each Pre�1(T ) calculated within the alert zone for each discretestate (CRUISE; LEFT;STRAIGHT;RIGHT ), in the absence of invariants for each discretestate since the parameters d, �1, and �2 are unconstrained. The set labeled CRUISE (respec-tively LEFT; STRAIGHT;RIGHT ) displays the set of states which could ow into T under theCRUISE mode (respectively LEFT; STRAIGHT;RIGHT modes). Pre�1(T ) in the LEFT andRIGHT modes are rotations of this set in the CRUISE mode by ���, corresponding to aircraft1 at the origin of the relative frame rotating by ��. The intersection of the sets Pre�1(T ) in this�gure represents those states which are unsafe under all modes, since outside of this intersectionthe aircraft may always switch modes to enter a safe region, by choosing appropriate values for theparameters d, �1, �2. Figure 10 displays the minimal unsafe set as a subset of the Pre�1(T ) in theCRUISE maneuver (shown as the shaded set). For values of d, �1, �2, chosen so that the switchesbetween modes occurs on the boundary of this minimal set, the iterative computation (13) reachesa �xed point Pre�(T ) after three iterations.The type of maneuver that may be veri�ed with this technique can be much more general thanthat described here: in [45] we construct various parameter-dependent maneuvers for two, three,and four aircraft by using arti�cial potential �eld methods from robotic path planning to producethe maneuvers. For three aircraft coming into conict this approach produces the Roundaboutmaneuver, shown in Figure 11.5 ConclusionsIn this paper, we have presented a methodology for generating provably safe conict resolutionmaneuvers for two aircraft. The method is based on calculating reachable sets for hybrid systems22



with nonlinear dynamics within each discrete state. The approach allows for uncertainty in theintent of one of the aircraft, and calculates the least restrictive control scheme for the other aircraft,based on the worst case uncertainty. This calculation is then used to determine, for a givenmaneuver with possible variation in its parameters, the minimal unsafe operating region for eachaircraft.Important research issues that we are currently addressing are the computation of numerical so-lutions to the Hamilton-Jacobi-Isaacs partial di�erential equation and the e�cient representationand manipulation of Pre�(T ). The computation of the solution to the Hamilton-Jacobi-Isaacs PDEwhen J�(x; t) is not a smooth function of x and t is possible, a survey paper [46] presents e�cientcomputation schemes. In addition, we are extending the veri�cation methodology to include liftand drag aerodynamic forces in the dynamics of the aircraft. Some preliminary results in this con-text have been presented in [25], [43]. Finally, we are investigating probabilistic veri�cation, whichcalculates the probability of a system trajectory entering an unsafe region.6 AppendixProof of Proposition 1: Starting at time t (free) and integrating to the �nal time 0, the solutionto equations (39) has �r(t) = �r(0) andxr(0) = xr(t)� R 0t u(�)d� + cos�r R 0t d(�)d�yr(0) = yr(t) + sin �r R 0t d(�)d� (45)Substituting equations (45) into the cost index (15), (30), and ignoring the constant 52 results inJ(x; u(�); d(�); t) = x2r(0) + y2r (0)= x2r(t) + y2r (t)� xr(t) Z 0t u(�)d� � xr(0) Z 0t u(�)d�+ Z 0t d(�)d� [xr(t) cos�r + yr(t) sin�r] + Z 0t d(�)d� [xr(0) cos�r + yr(0) sin�r]De�ne the switching functions s1(t); s2(t) as in equations (40). Consider the case in which, 8t � 0,sgn(s1(t)) > 0; sgn(s2(t)) > 0We will show that in this case the saddle solution is u� = v1 and d� = v2. Note that we assumethat in the interval [t; 0], both s1(t) and s2(t) do not change sign. If t is such that the switchingfunctions do change sign on this interval, then the interval must be broken into two intervals, andthe saddle solution calculated separately for each interval.Let d = d� and vary u, ie. let u = v1 + �v1, where �v1 � 0. ThenJ(x; u(�); d�(�); t) = x2r(t) + y2r (t)� xr(t)v1(0� t)� xr(0)v1(0� t)23



�xr(t) Z 0t �v1(�)d� � xr(0) Z 0t �v1(�)d�+v2(0� t)[xr(t) cos�r + yr(t) sin�r] + v2(0� t)[xr(0) cos�r + yr(0) sin�r]� x2r(t) + y2r (t)� xr(t)v1(0� t)� xr(0)v1(0� t)+v2(0� t)[xr(t) cos�r + yr(t) sin�r] + v2(0� t)[xr(0) cos�r + yr(0) sin�r]= J(x; u�(�); d�(�); t) (46)Similarly, let u = u� and vary d, ie. let d = v2 + �v2, where �v2 � 0. ThenJ(x; u�(�); d(�); t) = x2r(t) + y2r (t)� xr(t)v1(0� t)� xr(0)v1(0� t)+v2(0� t)[xr(t) cos�r + yr(t) sin�r] + v2(0� t)[xr(0) cos�r + yr(0) sin�r]+ Z 0t �v2(�)d� [xr(t) cos�r + yr(t) sin�r]+ Z 0t �v2(�)d� [xr(0) cos�r + yr(0) sin�r]� x2r(t) + y2r (t)� xr(t)v1(0� t)� xr(0)v1(0� t)+v2(0� t)[xr(t) cos�r + yr(t) sin�r] + v2(0� t)[xr(0) cos�r + yr(0) sin�r]= J(x; u�(�); d�(�); t) (47)Summarizing, we have shown above that in this case,J(x; u(�); d�(�); t) � J(x; u�(�); d�(�); t) � J(x; u�(�); d(�); t) (48)Therefore, u� = v1, d� = v2 is a saddle solution in this case. The three other cases can be shownin a similar manner. 2References[1] Honeywell Inc. Markets Report. Technical Report NASA Contract NAS2-114279, Final Reportfor AATT Contract, 1996.[2] T. S. Perry. In search of the future of air tra�c control. IEEE Spectrum, 34(8):18{35, 1997.[3] Radio Technical Commission for Aeronautics. Final report of RTCA Task Force 3: Free ightimplementation. Technical report, RTCA, Washington DC, October 1995.[4] Honeywell Inc. Technology and Procedures Report. Technical Report NASA NAS2-114279,Final Report for AATT Contract, 1996.[5] Honeywell Inc. Concepts and Air Transportation Systems Report. Technical Report NASAContract NAS2-114279, Final Report for AATT Contract, 1996.24
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