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Abstract

Examination of total energy shows that the global limit behavior of a dissipative mechanical
system is essentially equivalent to that of its constituent gradient vector field. The class of
“navigation functions” is introduced and shown to result in “almost global” asymptotic stability
for closed loop mechanical control systems upon which a navigation function has been imposed
as an artificial potential energy. Two examples from the engineering literature — satellite
attitude tracking and robot obstacle avoidance — are provided to demonstrate the utility of
these observations.
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1 Introduction

It has been known for at least a century that the decrease in total energy of a dissipative
mechanical system implies the local convergence of generalized position toward a minimum of
the potential function. Lagrange demonstrated the stability of motion around the equilibrium
state of a conservative system using total emergy in 1788 [26). Asymptotic stability of the
potential field minima resulting from the introduction of dissipative forces to a conservative
system was discussed by Lord Kelvin in 1886 [44]. These ideas were generalized by Lyapunov
in his 1892 doctoral dissertation [28]. The use of total energy for control applications has
been rediscovered many times in the engineering community since Lyapunov’s ideas were first
introduced by Kalman and Bertram [14]. For example, a two decade old paper by Pringle
[36] paper concerns the applications of total energy to satellite control. Credit for first noting
utility of artificial potential energy in robotics applications a decade ago would appear to be
due Khatib [15). Arimoto and colleagues [32, 42] contributed a precise demonstration that
every minimum of the potential field is a local attractor of a dissipative mechanical system by
application of LaSalle’s Invariance Principle. Similar independent work of Van der Schaft [38]
and this author [21] appeared subsequently. Of course, the familiar idea of energy dissipation
and its consequences for local stability behavior is to be found in physics texts as well [1, 8].

In contrast, the extent to which global conclusions about the phase portrait of a mechanical
system may be drawn from analysis of the total energy function appears not to have been
addressed in the previous literature. Yet every mechanical system includes a lifted gradient
vector field arising from its potential energy. Since the global limit set of a nondegenerate
gradient vector field is trivial (consists of a finite number of isolated points) it seems reasonable
to inquire whether such simple limit behavior lifts as well. This paper answers that question
affirmatively and demonstrates the utility of the observation in the design of controllers for
mechanical systems resulting in “almost global” asymptotically stable closed loops.

The mechanical systems form a large and important class of highly nonlinear finite dimen-
sional dynamical plants which include, for example, all rigid link robots and satellites. Generally,
the construction of feedback controllers for nonlinear systems which ensure that global conver-
gence properties hold for the closed loop system is a hopeless task. Indeed, of the large and ever
growing number of investigators who have exploited total energy as a Lyapunov function either
for purposes of robotic manipulation (32, 12, 16, 35) or for satellite attitude control [36, 29, 13},
there seem to be none who systematically have considered the global aspects of the problem.
Here, via elementary arguments {rom the theory of dynamical systems, we show that the limit
properties of a dissipative mechanical system on the phase space reduce to the trivial case of
gradient dynamics on the configuration space. Both, of course, are constrained to respect the
configuration space topology, and the selection of useful classes of gradient systems requires
some care. In the end, ensuring the “strongest” global convergence behavior allowed by the con-
figuration space topology from a reasonably large set of initial phase space states is guaranteed
by the construction of scalar cost functions endowed with certain “navigation properties.”

The paper is organized as follows. The mechanical control system, &, is defined in Section
9 with some care paid to its attendant global geometric features. The dissipative mechanical




2 1 INTRODUCTION

system, A, is shown to result from a state feedback law determined by a gradient system,
T, along with a suitable dissipative vector field. The section ends with a recitation of Lord
Kelvin’s century old result (Theorem 1). Attention shifts to the global limit properties of the
dissipative mechanical system, A, in Section 3. The “navigation function” is introduced as a
central tool of feedback controller design yielding a “congruence” between the limit sets of A and
T (Theorem 2). The section ends with the summary of our earlier result showing that smooth
navigation functions always exist on smooth manifolds with boundary (Theorem 3). Application
of these results to satellite attitude tracking, summarized by Theorem 4, and to robot obstacle
avoidance, summarized by Theorem and Theorem 6, is the concern of Section 4.




2 Dissipative Mechanical Systems

The geometry of classical physics has been extensively studied for decades, and recent years
have witnessed the publication of numerous expository texts containing the background material
required for the present paper. This section reviews the relevant ideas, following very closely
the presentation in the excellent text of Abraham and Marsden (1).

The setting for all the results presented in this paper is a configuration space, J, a compact
Riemannian manifold with boundary. Mechanical systems may be approached from the point of
view of symplectic geometry on the cotangent bundle, o : T*J — J, or Riemannian geometry
on the tangent bundle, 7 : TJ — J : it is the second point of view which will be most useful
in this paper. A Lagrangian dynamical system is defined by the extrema of an integral cost
functional applied to motion on the tangent bundle, T.7. Section 2.1 particularizes this idea to
the instance of a mechanical system when the cost functional is defined in terms of a Riemannian
metric, and there obtains the notion of kinetic energy. Adding a pointwise cost functional to
the original configuration space introduces potential and total energy, discussed in Section 2.2,
The dissipative vector fields are introduced in Section 2.3. Finally, the chief object of present
study, the dissipative mechanical system, is defined in terms of all these ingredients.

2.1 Mechanical Systems

Given a Lagrangian function, A : TJ — R, the Variational Principle of Hamilton [1)], states
that of all the curves, b, between two points, g1,¢2 € J, the one whose tangent curve, ¢ & Tb ,

minimizes
j Aoe,
also satisfies the classical Euler-Lagrange coordinate equations,

%Dé)\ - DA =0, (1)

These coordinate equations define a Lagrangian vector field on the tangent bundle,

Hh:TT - TTJ,

which constitutes a second order equation on J in the sense that Tr f = lp7 [1].

2.1.1 Kinetic Energy as a Riemannian Metric

A particular Riemannian metric results from the choice of a morphism [10, Ch. 4.1), M ¢
M[TT,T*7), from the tangent bundle to the co-tangent bundle which is symmelric positive
definite (i.e. (Mw,v)= (Mv,w)and (Mv,v) > Oforall v,w e TJ assuming that 7(v) = 7(w)).
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We now suppose that a distinguished symmetric positive definite morphism, M, has been chosen
and denote the resulting inner product

A
{(v|w)=(Mv,w).
This metric is understood to arise from the kinetic energy of the mechanical system, ?
1
k:TJ - IR; vH-é(v|v),

defined by the dynamical parameters of rigid bodies as determined by a kinematic relationship.
For example, the author has presented a quick derivation of the Riemannian metric resulting from
the sort of physical system which motivates the paper — the “kinematic chains” encountered in
robotics — in a recent encyclopedia article {23). Examples will be given in Section 4.

2.1.2 The Mechanical Control System

Define a mechanical system to be the Lagrangian dynamical system resulting from a cost

functional A 2 specified by a kinetic energy — an analytic section of the tangent to the
tangent bundle, f; : T7 — TTJ. We now present a formal model expressing the manner in
which control inputs may be applied to this system.

Suppose that the physical system is “actuated” by external forces which are under our
control. In coordinates, the generalized forces, u, affect Lagrangian dynamics according to the
relation d

'aDq)\ - DqA = U. (2)

The generalized forces may be modeled globally as points in the cotangent bundle, o : ™7 —=J.
However there is a formal problem in taking the space of combined inputs-states to be the simple
cross product, T*J x T.J, since a force, u = (@, f) € T5,J, cannot be applied at a phase,
v = (g2, 2) € Ty, J, unless both are vectors over the same configuration — a(u) = ¢ = 7(v) =

gsz € J. ? To resolve this problem it seems most natural to adopt the point of view introduced

by Brockett [3] and model the input-state space as the total space , T & »17 , cbtained by

pulling back T.7 over o, according to the following commutative diagram,

Ty XTI
o*t ] Tl

™y - J

resulting in a vector bundle over the state space via the natural vector bundle map [10, Ch. 4.2]
¥ : T — TJ. This simply means that e € 7 is a valid input-state point if and only if its base,

1Kinetic Energy is formally defined as a scalar valued map on T*J (1], however it will simplify the discussion
and do no technical harm in the present paper to speak of x as a map on TF.

2This problem may be resolved, of course, if 7 is parallelizable: the preduct notion will go through after the
extra step of identifying 77 =~ J xR" and T*J = J % IR™ with the penalty of an extra coordinate transformation
in all future computation.
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u = o*re, and vector component, v = ¥(e), are, in turn, vectors over the same configuration,
g = o(u)=71(v).

Now, following Brockett, we are in a position to define the mechanical control system as a
smooth section of the pullback of 7T through #,

*TTT TTJ
vrrl Tl
T A

as follows. Equation (2) implies that the generalized forces, u € U, affect the Lagrangian vector
field on TTJ through wvertical lift , V, : TpoJ — T.(TJ) [1, Def. 3.7.5], of the vector field
associated with © € T*J by the Riemannian metric, M~1u. Thus, a mechanical control system,
is the section fg : T — ¢*TT.J determined by the ordered pair, consisting of a configuration
space and a choice of kinetic energy,

T 2(J,k), (3)

defined by
fe(ve) 2 ful(v) = Voo M7 u. (4)

Assuming, as we do throughout this paper, that M is analytic, and that 7 is an analytic
manifold, it follows that a mechanical control system (4) falls within the class of linear analytic

control systems.

2.2 Gradient Vector Fields in Mechanical Systems

Consider the class of twice differentiable real valued functions ¢ € C?J,IR] on a compact
Riemannian manifold, J. The co-vector field, dp, is related to the gradient vector field ,
grad ¢ , of ¢ via the Riemannian metric inverse morphism,

grad ¢ = M=1dp.

Thus, a gradient system is determined by the triple consisting of a configuration space, a Rie-
mannian metric, and a scalar valued function, :

T £(J,M,9), (5)

yielding the vector field grad ¢ : J — T.J.

2.2.1 Limit Behavior of Gradient Systems

One calls ¢ a Morse function if its hessian (matrix of second derivatives) is non-singular at
every critical point [10]. Gradient vector fields resulting from Morse functions give rise to flows
with simple limit behavior which may be summarized as follows.
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Proposition 2.1 Let ¢ be a twice continuously differentiable Morse function on a compact
Riemannian manifold, J. Suppose that grad ¢ is transverse and directed away from the interior
of J on any boundary of that set. Then the negative gradient flow has the following properties:

1. J is a positive invariant sel;
2, the positive limit set of J consists of the critical poinis of ¢;

3. there is a dense open set J C T whose limit set consists of the local minima of ¢,

Proof: Since the vector field is directed toward the interior of J on its boundaries by
hypothesis, it follows that this set is positive invariant. The limit set for any trajectory of
a gradient system is an equilibrium state [11], hence, in this case, 2 minimum, maximum,
or saddle of ¢ in the interior of J. It remains to demonstrate the third property.

Since ¢ is Morse, it has only isolated critical points and the number of local maxima and
saddles is countable. Each of these has a stable manifold of lower dimension than J, whose
closure in J is consequently nowhere dense. But the domain of attraction of any maximum
or saddle is contained in its stable manifold. It follows that the domain of attraction of
the minima of ¢, 7, is the complement of the countable union of nowhere dense sets in 7.

a

It is worth commenting on two technical assumptions in the hypothesis of this proposition.
The first, the assumption of compactness, is a relatively harmless measure taken to guarantee
that J is positive invariant with respect to the negative gradient flow. For consider the scalar

function, ¢(q) & ¢°, defined on IR, yielding the the negative gradient dynamics,
g = -3¢

Since this system has finite escape trajectories, it is not true that IR is positive invariant under
the flow. However, there is no possibility of finite escape from a compact set without boundary
(and the tranversality assumption precludes finite escape otherwise) as the proposition requires.
In the case that the configuration space is homeomorphic to Euclidean n-space, 2 “radial un-
boundedness” condition on ¢ {9] will yield equivalent results. However, for most mechanical
systems of interest the configuration space (but, of course, not the phase space) is compact.

The more onerous requirement, that ¢ be a Morse function, guarantees that the limit set of
every motion is a single critical point. For, absent such a restriction, connected limit sets are
known to be possible {34][Example 1.1.3]). Yet isolated critical points might still be degenerate:
a degenerate saddle of ¢ might well include an open set in its domain of attraction. Indeed,
the previous example demonstrates the existence of a dynamical system whose unique isolated
critical point is unstable, yet which has a domain of attraction which is open in the configuration
space, IR. This possibility would invalidate the argument in the previous proof that any open
set has a limit set comprised of minima. The Morse property guarantees that no co-dimension
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one set of saddle connections can separate J. While this condition incurs an undesirable loss
of generality ? the technical problems which result in its relaxation require more attention than
worthwhile in this paper.

2.2.2 Lifting Gradient Vector Fields

Any smooth real valued function, ¢ : 7 — IR may be “pulled back” to 7.7 in a natural fashion
by defining ¢ & @ o r. This defines a new Lagrangian function,
A o
A= K-, (6)

whose Lagrangian vector field, fx—g, can be shown to include a “lift” of the gradient vector field
of

fu-g(2) = fu(z) = Ve (grad ¢ ) o 7(2), (7)
where V is the vertical lift. It is in this sense that we are justified in claiming that mechanical
systems provide a “natural analog computer” for gradient vector fields. In the absence of
dissipative forces, this “integration” occurs, through the conservation of a total energy function,

A -
n=xk+¢, (8)

in which sense ¢ may be regarded as a potential energy function. 4

Proposition 2.2 ( [1] ) The total energy, n is invariant under the flow of the lagrangian vector
feld, that is,
df]f,.c..g, = 0.

2.3 Dissipative Mechanical Systems

We now introduce the chief object of study in this paper, the dissipative mechanical system,

AL (T,n fa), ©)
defined by the vector field, fa : TJ — TTJ,
18 & fuci + fa (10)

where fx—g is the Lagrangian vector field introduced in Section 2.2.2 and f; is a dissipative
vector field to be defined below. The aim here is to show how A arises from the closed loop of
a certain class of feedback controllers for L.

3Redundant degrees of freedom in robotics will result in non-immersive output (kinematic) maps. Thus, the
pullback of a nondegenerate “task specification” vector field in the output space, IR? x SO(3) will necessarily
have degenerate equilibrium states in the configuration space.

41t is interesting to note that the base integral curves of fx—p are the geodesics of the Jacobi metric ,

M, = {(wo — @)M, where M is the original metric, and o is any real value outside the range of ¢ (possibly

restricted to a snitably defined compact positive invariant submanifold of J) [1)[Thm. 3.7.7). However, this point
of view does not seem to lead to any new understanding in the present situation.
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2.3.1 Dissipative Vector Fields and Feedback

The last ingredient we require is the notion of a dissipative vector field: a vector field on
the phase space, fa : TJ — TTJ, which is “vertical” (ie. Tr fa = 0), and acts negatively
on kinetic energy, dify < 0 [1]. Since fy is vertical it follows that there exists a morphism,
Gq € M®[TT,T*J], such that

fa(v) = Vyo M7} 0 Ga(v).
Thus, considering the following analytic section of the total space ¢: 7 — T7,
g(v) 4 G4(v) + dp o T(v), (11)

as a feedback law relating states to inputs, it is clear that the dissipative mechanical system on
the state space, fa, is the closed loop system resulting from the composition

fa=Jfcog

In coordinates, p : T.7 — O, for some convex open subset of IR", A gives rise to the
differential equation

71 =p2
P2 = =M~ Yp1) ([C(p1,p2) + Kalp1, p2)Ip2 + Ks(p1)p1) ,

where C denotes the coriolis forces, X, the damping law, and J{; the spring law.

(12)

i

2.3.2 Local Limit Behavior

In the presence of dissipative forces, integration of dissipative mechanical system, A, produces
Jocal limit behavior in the phase space, .7 which is analogous to that of the original gradient
system, T, in the configuration space, J. This notion is made precise by the following familiar
resuit.

Theorem 1 ( Lord Kelvin (1888) (44, §345] ) Ifqo is a local minimum of p in J, then
(90,0) is a stable equilibrium state of the dissipative mechanical system, A (9), in TJ. In
particular, 5 (8) is a Lyapunov function for fa, with with Lie derivative

LIA(n) = d“fd-

Since 7 is not a strict Lyapunov function — that is, dx f4 must vanish on the entire zero
section of T.J and the Lie derivative, Ls(n) is negative semi-definite — rigorous conclusions
about asymptotic properties of the flow near (go, 0) require the application of LaSalle’s Invariance
Principle [27] as shown, for example, by Arimoto and colleagues [42).




3 Global Limit Properties of Dissipative Mechanical Systems

The global phase portrait of a regular gradient system, T' (5), is as simple as one could imagine
arising from a nonlinear differential equation. The feedback synthesis procedure introduced (11)
for the class of mechanical control systems, £ (3), results in a closed loop dissipative mechanical
system, A (9), containing a “lift” of a constituent gradient vector field, grad . This Section will
demonstrate that an appropriately chosen potential function, ¢, called a “navigation function,”
induces limit behavior of A on a useful subset of the phase space, T.7, which may be identified
with that of T on the configuration space, J. Thus, at least with regard to steady state behavior,
our synthesis procedure reduces the control designer’s task from the consideration of complex
hamiltonian dynamics to the manipulation of comparatively trivial gradient dynamics.

This Section is organized roughly congruently to Proposition 2.1 which we take as our model
of desired steady state behavior, We first show that fa fails to be transverse on the boundary
of phase space, and find a reasonable substitute for this condition in Section 3.1, We next show
in Section 3.2 that the global limit set of A is 2 lift of that of I into the phase space, This yields
a global version of Lord Kelvin’s result in the form of Proposition 3.6. We finally introduce the
notion of a navigation function in Section 3.3. This restores to A a positive invariant set which
includes all of the (lifted) configuration space and yields convergence properties which are as
strong as the topology of J allows.

3.1 Positive Invariance

To begin with, we must preclude the possibility of finite escape: the transversality of grad ¢ on
8.7 is no longer enough. Intuitively, it is helpful to think of a marble rolling along a hilly terrain
in the earth’s gravitational field through a viscous atmosphere. Tranversality simply implies
that the terrain slopes away from any forbidden region (the boundary of configuration space): a
marble traveling with sufficient kinetic energy could, of course, roll uphill and crash through the
boundary. We first give an example, and then establish a reasonably large subset of the phase
space which is positive invariant under the flow induced by A.

3.1.1 Rolling Uphill

As an example, take J to be the closed real interval, {—¢, 1], with the Euclidean metric as

kinetic energy,x £ 142 and define the potential energy to be £ 142, The gradient vector field,
2 gY ¥ 2

grad ¢ = g, is transverse and exterior directed on 87 = {—¢€,1} as required by Proposition 2.1

as long as € > 0. Now, using the coordinate system,

p= [Php?lT €ETT = ["Q 1] x IR,

choose a damping law G(p) = ép; corresponding to a valid dissipative vector field, fa(v) =
[0, —6v,]", as long as & > 0.
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The associated dissipative mechanical system, A, is expressed in coordinates as as
. 0 1
p=falp) = [ 1 —§ ]p-
Now the boundary of the phase space is the union of the two parallel lines

8(TT) =Tz = ({—¢} x R)U ({1} x IR},

on which fa fails to be transverse at the points [—¢,0},{1,0]. In fact, fa is directed away from
the interior of the phase space — an unfortunate circumstance — on the upper half of the line
through {1,0] and the lower half of the line through [¢,0). Consequently, it may be observed
that the trajectory of fa through every initial condition in a neighborhood of these open half
line segments must escape from T.7 in finite time. Thus, the transversality of the gradient field
on 87 fails to guarantee that a dissipative mechanical system gives rise to a complete dynamical
system on 7.7. This example holds true in general, for exactly the same simple reason, as the
following result demonstrates.

Lemma 3.1 If 87 # ® then TJ contains an open set of points whose trajectories under A
exhibit finite escape.

Proof: It will suffice to show that there is a regular point of fa in 8{7'J) whose forward
trajectory leaves T.7 in finite time — the open set is then contained within the local flow
box {11, Ch. 11.2} around that point.

No point away from the zero section of T.J can be an equilibrium state of fa, so consider
the curve ¢y(£), the forward trajectory of fa through v € 3(TJ). We may assume with
no loss of generality that v is not tangent to 87 — that is v € TpJ — Try3J. Its base
curve, by () 4 r¢(t), has the property that b4(0) € 7. We have b (0) = Tr fa(v) = v
since fa is second order as shown in Section 2. On the other hand, if 5_(t) is the base
curve of the forward trajectory through —v then b_(0) = —v in exactly the same way.
Thus, either the curve b_. or by leaves J after ¢ = 0 from which it follows that either c_

or ¢4 leaves TJ after i = 0.

o

3.1.2 Invariance of the Lowest Boundary Energy Set

It is clear that fa makes the boundary of 7.7 “dangerous” away from the zero section., We now
provide a simple means of characterizing positive invariant subsets of the phase space which
intersect its boundary at most at points in the zero section.
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Proposition 8.2 Let ¢ € C?[J, R} and suppose that
A

b 2 inf ,
1 qleréjso(q)

is a regular value of ¢ (and is understood to be +00 if 3F = ) and that
A,
by > bo = gggeo(q)-
Then for all constants, b € (b, b1, the set of “bounded total energy” states of 1 (8),

£ 2 (ve TT i n(v) < b},

is a positive invariant set of the dissipative mechanical system (9), with non-empty interior,

Proof: Choosing b > bo guarantees that £° has a non-empty interior. For n~1(bo,4) € £ b
is both non-empty ( it contains the set identified with @ # ¢=1(bo,b) in the zero section)
and open (7 is continuous).

To demonstrate the positive invariant property, it suffices to show that 8 C n7Yc], for
dnfa < 0 according to Theorem 1. To see that the boundary ® is contained in the level
set, as claimed, examine its partition,

o8> = (9(T7)n 0€%) U (Tfy nasb) .

The first component is equivalent to 8 (T.7)NE® which, in turn, is equivalent to To7 T NE b,
Now this set is entirely contained in the subset of the zero section of 7.7 identified with
@ 1 [b]N8J. For v € ToyJ implies o 7(v) > by > b since b; is the infimal value of ¢
on J by hypothesis. But 5(v) > @ o 7(v) unless v € x~[0], in which case n(v) = po T(v)
and we have 7(v) € ¢~1[8]. This demonstrates that the first component is equivalent to
OTJ nn~1[b] (and is empty when b < b).

]
It remains to show that TTT NBE® CT.7 ny~1[b]: specifically, notice that any point not in
0
the second set cannot be in the first. This is so, for if ¥ €TT N (6"’ - n“"[b]) then it is
necessarily in the inverse image of some open interval, v € 77} [1(v) — €, 7(v) + €], which is

L
an open set in T.7 NE® since 7 is continuous.
a
With respect to the example of Section 3.1.1, note that & = %52, and by = 0, so that the

positive invariant sets, £° defined by the proposition are simply the closed disks around the
origin of IR? whose radius is less than or equal to €.

5Strictly speaking, the boundary of £®, considered as a point set, has no intersection with the boundary of the
manifold in which it lies, T.7. To avoid the technicalities involved in distinguishing the two different notions of
boundary, we assume that the original space T.7 is collared {10], thus boik 7.7 and £Y are closed subsets within
the open collared set, T7 and the boundary operations are taken in the sense of point set topology 80 that the
two subsets do indeed share a common boundary component as described.




12 3 GLOBAL LIMIT PROPERTIES OF DISSIPATIVE MECHANICAL SYSTEMS

3.2 Limit Behavior

The hypothesis of Proposition 3.2 in some sense strengthens that required for conclusion (1)
of Proposition 2.1: if b; is a regular value and a minimal value on the boundary, then grad ¢
must be transverse to 87 at points near ¢~3(b;). In contrast, once sufficient conditions for
positive invariance have established, a conclusion analogous to (2) for Proposition 2.1 follows
quite easily: the critical points constitute the entire positive limit set, and their local stability
properties are inherited directly from that of p.

3.2.1 The Limit Set Consists of Equilibrium States

In general, Hamiltonian systems will have extremely complicated limit behavior. The addition
of the damping term, fz, makes the global limit behavior of the dissipative mechanical system
A as trivial as that of its gradient model, I'. The formal argument below is adapted from the
discussion of gradient vector fields in [34, Example 1.1.3) . Somewhat surprisingly, the reasoning
there applies to the present situation almost without change.

Proposition 3.3 The positive limit set of any positive invariant subset of TJ under the flow
of a dissipative mechanical system, A, consists of the critical points of ¢ identified with their
image in the zero section of TJ.

Proof: 1t is clear that the equilibrium states of fa correspond exactly to the critical
points of ¢, hence, form a totally isolated set in the zero section of TJ. Now suppose
some initial condition, v, has a limit set which includes a state, vy, whereon fs does
not vanish. It is clear that »; must be a regular point of 1 since the critical points of the
latter correspond exactly to the critical points of ¢ (lifted into the zero section). Therefore,
according to the implicit function theorem, the intersection of 71 [n(v1)] with a sufficiently
small neighborhood of v, is a codimension 1 submanifold of T.7. The computation of # in
Theorem 1 demonstrates that the flow of fa is transverse to this submanifold in a small
enough neighborhood of v;. Yet, since that point is in the limit set of vg, the trajectory
through ve must intersect this submanifold in more than one point (in fact, an infinity of
points). This would contradict the monotone property of 1 on the flow.

a

3.2.2 Local Stability of the Equilibrium States

Lord Kelvin’s result, Theorem 1, demonstrates that the minima of ¢ {suitably identified with
points in the zero section of T.J) are local attractors. To gain a conclusion analogous to (3) in
Proposition 2.1 it must be verified as well that local behavior of the negative gradient flow near
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a critical point other than a minimum is a model for local behavior of the dissipative mechanical
system near the identified equilibrium state. To see this, first observe that the local linearized
vector field at any equilibrium state of the dissipative mechanical system, A (9), is the linear
time invariant dissipative mechanical system determined by the hessian of the potential function
at that point.

Lemma 8.4 Let go be a critical point of ¢. Then the linearized vector field at the equilibrium
state, (go,0), of the dissipative mechanical field, (12), is given in local coordinates as

0 I
(1) (QO,Q)= ~M(go) " K1(90) —M(q0)™" K2(0,0) ] ,

where K, = D*p is the hessian matriz of ¢, K, is the local matriz representation of the
linearized dissipative field, and M is the matriz representation of the kinetic energy metric, as
introduced in (10).

If M is a metric, then M(go) is a positive definite symmetric matrix. Similarly, if fz is strict,
then K,(0,0) has a positive definite symmetric part by assumption. Thus the local stability
properties of equilibria of f are determined by the nature of the Hessian at the identified critical
point of ¢ as the following result indicates: that is, the stability of the origin of a linear time
invariant dissipative mechanical system in IR?" is governed by the stability properties of the
associated gradient system in IR™.

Lemma 3.5 ( Chetaev [4] ) Let M, Ky, Ky be symmetric matrices in R"X" and let M, K
be positive definite. The origin of the linear time invariant system in R?",

z1 0 I z
[ 7 } = [ “MK; -M-1K, ] [2‘.‘2 ] (13)

has one of the following stability properties: (i) asymptotically stable; (ii) stable but not atirac-
tive; (ifi) unstable; if and only if the origin of the linear time invariant system in R7,

£ = -Ky. (14)

has the corresponding property.

Putting these results together yields a global version of Lord Kelvin’s result which compares
favorably in strength to Proposition 2.1: the significant difference is in the stronger boundary
condition required by the present version as motivated by the discusion surrounding Proposi-
tion 3.2.

Proposition 3.6 Let A be a dissipative mechanical system (9). Suppose that

Fa
by = inf
1 qggjso(Q),
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is a regular value of ¢ (and is understood to be infinite if 07 = @) and that
A,
by > by = ;ggw(q}
Then for all constants, c € (bo, by), the set of “bounded total energy” states of n (8),

L {veTT:n<el},

has the following properties with respect to the flow of A:

1. £ is a positive invariant set with non-empty interior;

2. the positive limit set of £ consists of those points in the zero section of T.T N E® identified
with a critical point of p;

8. there is a dense open set in E° whose limit set consists of those points in the zero seclion
of T N EY identified with a local minimum of ¢;

3.3 Navigation Functions

Proposition 3.6 suggests that the major effort in the construction of feedback controllers for
mechanical systems will be spent finding suitable scalar valued functions, ¢. In this section we
address the following loosely posed control problem. Given a mechanical system, & = (J,k)
and a desired configuration, g4 € J (identified, as usual, as a point in the zero section of T\T),
to which we want to bring the system, what is a suitable choice of 7

From the point of view of dynamical systems theory, linear feedback controllers for linear
time invariant plants provide the means by which a desired equilibrium state of the closed loop
system is made to attract the entire state space. The preceding results suggest two important
relative deficiencies in the case of the mechanical control systems, Z. First, no smooth vector
field can have a global attractor unless the state space on which it is defined is homeomorphic to
IR" {2). Thus, as is generally the case in robotics and other applications of mechanical systems
theory, when the configuration space, J, (and, hence, the state space, T.J) is not a homeomorph
of a Euclidean vector space, there can be no hope of global asymptotic stability. Second, when
the configuration space has a boundary, Lemma 3.1 demonstrates that there does not even seem
to be the possibility of avoiding finite escape from the entire phase space (without recourse to
unbounded vector fields which we must discard as unrealizable).

We now offer a definition placing conditions on ¢ that result in what is arguably the “best
possible” convergence behavior: we will ensure that the enirety of J (identified, as usual, with
the zero section of T.7) is contained in a positive invariant subset of the phase space and will
guarantee “almost global” asymptotic stability within that set.

Following Hirsch [10, Ch. 6.3), say that a smooth Morse function from a compact manifold,
F,is admissible over the interval [a,b] if 8F = ¢~} U ¢~}[b], and a,b are regular values.
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This implies that each of p~![a],»*[b] is a union of components of 8F, a regular set on which
grad ¢ is transverse. Note that if either level set is empty then the (corresponding) minimum
or maximum value of ¢ is taken only at critical points in the interior of F. Adapting the
terminology of Morse [33), say that ¢ is polar if it has a unique minimum,

Definition 1 Let F C E" be a smooth compact connected mantfold with boundary, and gy E.';' )
be a distinguished point in its interior. A polar Morse function, ¢ € C*[F,[0,1]], which is
admissible over the interval [—¢,1],e € RY, and takes its unique minimum at ¢(qa) = 0, is
called a navigation function .

As a direct consequence of Proposition 3.6 we have the following result.

Theorem 2 Let A = (., 7, fa) be a dissipative mechanical system (9), and suppose that p is a
navigation function for J. Then the entire zero section of TJ is included in the closed subset,
7~1[0,1) C T, which is positive invariant with respect to the flow induced by A (and includes
the entirely of TJ if J has no boundary). Moreover, there is an open dense set in 70,1}
whose limit set is ezactly the desired configuration, g4, at zero velocity.

3.3.1 Existence

When does a compact manifold with boundary admit a navigatior function? In a recent paper
[25] we have been able to answer this question quite unequivocally: we show that smooth
navigation functions exist on any such smooth manifold for any desired interior point, gz. We
now review this result.

Smale proved the generalized “Poincaré’s Conjecture” in higher dimensions roughly three
decades ago. In so doing, he was led to develop a number of results concerning gradient systems
of which the most important to us is the existence of “nice” functions. Suppose M is a smooth
compact n-dimensional manifold whose boundary is the disjoint union of two closed components,
M = V; U V. Smale calls a smooth Morse function, ¢ € C®[M,IR], nice if (V1) = —3,
¢(V2) = n+1, and at a critical point p of ¢, ¢(p) = index p. He obtains a number of important
results with this construction, including a generalization of the somewhat earlier result of Morse
which demonstrates that every smooth manifold with no boundary admits a smooth polar non-
degenerate function (33]. For our purposes, this result is important if it can be extended to the
general case with boundary.

The desired extension obtains by applying the notion of “cancellation” of adjacent (in index)
critical points that Morse and Smale developed in the course of their independent investigations.
A (reasonably) sel{-contained exegesis upon these techniques is provided by Milnor [30}, whose
version may be rendered as follows. Suppose that ¢ is a smooth Morse function on M with
two distinct interior critical points, p; and ps, with indices A;, Az, respectively, possessing the
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properties Ay # A and (p1) # ¢(p2). These two points may be cancelled if there exists another
smooth Morse function, @', on M, which agrees with ¢ everywhere away from a neighborhood
of p~1[(p1)] and ¢~ [@(p2)] in M, yet which has two fewer critical points — one less critical
point of index A;; one less critical point of index Ag. It turns out that pairs of index 0 and
index 1 critical points may be cancelled if the “lower boundary” has the right homology type
[30, Thm. 8.1). Moreover, there are always “enough” index 1 critical points to cancel all the
minima if the manifold is connected: a proof may be found in [25] and was suggested to us by

W. Massey. The application of these results in the present setting was suggested by M. Hirsch.

Theorem 3 ([25]) For every smooth compact connected manifold with boundary, M, and any
point, zo e,/\?z(, there ezists & C* navigation function.

3.3.2 Construction

Although questions of existence presumably have independent mathematical interest, the en-
gineer is only concerned to know of a negative outcome: in the present case, since we are
guaranteed that what we seek is available, attention shifts to the question of construction. Here,
we are led to impose some additional constraints.

We have already observed in Section 2.1.2 that the mechanical control system, X (3), falls
within the class of linear analytic systems. Since A results from the application of feedback, g
(11), to fz, as described in Section 2.3, it seemts only natural to demand that g be analytic
as well. This, of course, implies that ¢ be not merely smooth, but analytic as well. Moreover,
in their pioneering solution to the geometric robot navigation problem, Schwartz and Sharir
[39] have argued persuasively that the class of real algebraic functions on real semi-algebraic
varieties provides a practicable notion of “effective computation.” We will adopt this point of
view and insist that our constructions remain within the class of real algebraic functions: that
is to say, the level set of a navigation function must be real semi-algebraic. Thus, the standard
appeal to smooth functions “patched together” through a partition of unity will not avail. We
are confronted, instead, with the harder task of building analytic algebraic navigation functions.
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4 Applications of Total Energy as a Lyapunov Function

This section presents two engineering applications of the preceding results. In both cases the
configuration space fails to be a homeomorph of R", so that global asymptotic stability is
impossible: we display analytic algebraic navigation functions resulting in closed loop dynamics
which are dissipative mechanical systems whose limit behavior accomplishes the specified task.
In the first case, the problem of satellite attitude tracking discussed in Section 4.1 (and taken
from the longer treatment of [18]), the configuration space is a Lie group — the entirety of
SO(3). Since the boundary is empty, convergence is guaranteed from almost every initial phase.
To the best of the author’s knowledge, Theorem 4 represents the first feedback controller for
a fully actuated satellite which is well defined on the entirety of SO(3) and which achieves
asymptotically exact attitude tracking around an arbitrary reference trajectory with probability
one. In the second case, the problem of robot obstacle avoidance discussed in Section 4.2 (and
taken from our ealier publications {25, 37)), the configuration space is a a subset of IR™ (a
Lie group as well) but this time it is bounded by a finite number of disjoint spheres. Here,
the construction of navigation functions results in a robot which is guaranteed to approach a
desired destination point in a cluttered space without hitting any of the clutter from every zero
velocity initial condition excepting a set of zero measure. Again, to the best of the author’s
knowledge, Theorem 6 represents the first feedback controller which solves the global robot
obstacle avoidance problem on nontrivial spaces of arbitary dimension.

4.1 Satellite Attitude Tracking

Now consider the application of the previous results to a classical control problem — asymp-
totically exact tracking — in a non-classical setting — the group of spatial rotations, S0(3).
Suppose there is a single rigid body actuated by three independent gas jets operating outside of
the earth’s gravitational field: the only forces operating on the body are the controlled inputs
from the actuators which are capable of delivering any desired force in the “wrench space” of
the body, TS0(3). Both the position and the velocity of the body are available from sensors.
It is desired to force the body to track an arbitrary but entirely known reference trajectory.
Since the system is completely actuated, there is perfect state information, and all derivatives
of the reference trajectory are known, the velocity tracking problem is trivial. Namely, all non-
linearities due to the kinetic energy may be exactly cancelled, leaving a completely decoupled
linear time invariant system. This procedure may be recognized as a trivial implementation of
the global exact linearization techniques which have become so popular in the nonlinear control
literature.

Consider, instead, the problem of attitude tracking. Namely, given a desired motion, D €
C?[IR, SO(3)], construct a time invatiant controller which causes the actual attitude to asymp-
totically approach D(¢) from any initial configuration, A € SO(3). So different is this from the
trivial linear problem to which velocity tracking reduces that it is unsolvable as posed in that
context. For, consider the particular case that D(t) = D* is some constant point. We seek
a controller which makes that point (at zero angular velocity) a global attractor of the closed
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loop dynamics. Now, as was mentioned above, the domain of attraction of an attracting point
is homeomorphic to some Euclidean vector space [2]. But the state space of our mechanical
system — the tangent bundle over the rotation group — is clearly not homeomorphic to any
Euclidean vector space. Thus, it would be impossible for our closed loop system to bring all
initial conditions to the desired attitude. Evidently, the control system arising from a single
rigid body is not globally linearizable by any technique since its state space is not a vector
space. Our problem statement must be refined.

Since SO(3) is a compact odd dimensional manifold without boundary, its Euler character-
istic is zero [10}. It follows from the Theorem of Hopf [31] that any nondegenerate vector field
on §O(3) with an attracting equilibrium state has at least one other singularity which, if it is
the only additional equilibrium state, must be totally unstable. Excepting the complement of
some open dense set — in this case, the repelling point — trajectories of such a vector field
are guaranteed to asymptotically approach the attracting point. Thus, although topological ob-
structions preclude a globally asymptotically stable system, a practically equivalent formulation
which respects the underlying topology of the problem may be attainable. Say that a dynamical
system is almost globally asymptotically stable if all trajectories starting in some open dense
subset of the state space tend asymptotically to a specified stable equilibrium state. This we
take as the criterion of convergence for our tracking algorithms on SO(3): it is the best possible
result. Moreover, Theorem 2 assures us that we may achieve this result by recourse to feedback
of the form (11) if we find a navigation function for $0(3). That is the task we now undertake.

4.1.1 The Mechanical Control System on S0O(3)

The configuration space of a rigid body is the group of rigid transformations, SO(3) X R3 If
we are concerned only with the attitude of a rigid body, then it suffices to treat SO(3) alone,
which we now identitfy with a subset of IR?,

50(3) & {R € R™®: RTR = T and |R| = 1}.
This Lie group has as its Lie algebra the set of skew symmetric matrices,

s0(3) = skew(3) £ {J e R : J + T = o},

which is isomorphic to IR? according to the linear bijection

un H —t3  Ua
J: Wy -3 Wa 0 ~- Wi
wa -g Wy ]

The vector space of three by three matrices is the direct sum,

IR3*3 = sym(3) @ skew(3),
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of the symmetric and skew-symmetric matrices. Thus, we may define a unique “pseudo-inverse”
for J whose domain is extended to all of IR3*3 by projection onto the linear subspace, skew(3).

JHA) 2 T4 - AT).

The maps J-! and J! have distinct domains, and must not be confused. On the other hand,
we will be sloppy and not distinguish between the version of the linear map J whose range is
skew(3) and the version whose range is R**?.

The natural inner product on the vector space R3*3 is

al
(Bi|Bz)E 500 {m:RT}.
Direct computation reveals that J is an isometry between IR3 with its Euclidean norm, ||w||? =
wTw, and skew(3) with the norm corresponding to this inner product. Note, as well, that sym(3)
is the orthogonal complement of skew(3) with respect to this inner product. Finally, the norm
associated with ( - | - ) defines a metric on the group SO(3),

A .
p(R1,Re) E € o ( By~ Ry | Ry - Ra ),
after composition with a suitable comparison function (18], ©

E € Koo [[0’ 77]1[0";]] X 2(1 - COSX)'

On any Lie group, we may take the differential of left (or right) inverse transiation and this
is the canonical means of identifying left (or right) invariant vector fields with the Lie algebra.
Thus,

TrSO(3) = {RI(w) € R¥® 1w € R*},

is identified once and for all with so(3) = skew(3) ~ IR®, and we may take the tangent bundle

to be the cross product
TSO(3) = SO0(3) x R®.

As sketched in Section 2.1, a mechanical control system arises from the choice of a kinetic
energy. If M € sym*(3), a positive definite symmetric matrix, is the moment of inertia matrix
of the rigid body then the kinetic energy at a phase, v = (R,r) € TSO(3), is

K(v)= (v |v) 2 (J(R|I(r)RM).

This leads to a mechanical control system, T, whose internal dynamics may be expressed in
body coordinates as

& RJ(r)
fe(w) = M=1[u—-J(r)Mr] |’

8The comparison functions, the group K(Zy, Z2), of monotone increasing C" diffeomorphisms between two real
intervals appears extensively in the engineering stability literature [9]. Some properties are reviewed in {18, 24].
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For the present application, we have assumed the & priori designation of a desired “reference
trajectory”, vg : IR = TJ, which is “second order.” That is to say, if v4(t) = (D,d)(t), then
D = DJ{(d). Now if v = (4,4a) denotes the actual trajectory of the rigid body, we will find it
useful to consider the “error coordinate system” obtained via left translation by vy,

ve = (E,€) £ Ly = (DT4,a — ATDd),
preserving the second order property, E(t) = EJ(e(t))-

4.1.2 A Navigation Function on SO(3)

We are now ready to search for a potential function on SO(3) whose lift into the physical
Lagrangian system of the actuated rigid body will define almost globally asymptotically stable
error dynamics. According to Theorem 2, we need merely ensure that ¢ is a navigation function.
Since the configuration space has an empty boundary, this amounts to finding a Morse function
with a unique minimum on SO(3).

In a very nice report, Meyer [29] attempted to generalize PD techniques to the global control
of spacecraft attitude. His point of view is very close to the spirit of this paper, and, in some
sense, this application might be seen as a continuation and extension of that earlier work. Meyer
chose for his potential law on SO(3) the distance from a reference point measured by the natural
metric, p, itself, This will not suffice for the present purposes since, the gradient of the distance
function is necessarily undefined on its “cut locus” (the set of points whose minimal geodesic to
a reference point is not unique) — an embedding of real projective two-space in SO(3) in the
present case. Intuitively, this is clear since pis a composition with the trace function on skew(3).
The latter is unfortunately not a Morse function since it has a critical point at every symmetric
rotation: the symmetric rotations — an embedding of real projective two-space, IRIP?, in SO(3)
[7) — comprise a connected set; the critical points are not isolated. Instead we will use a
4modified trace” function according to the following result of Marsden and collaborators.

Lemma 4.1 ( Chillingworth, Marsden, and Wan [6) ) If P € sym(3) has distinct eigen-
values, 7, %2, 73, and

(m1 + m2)(my + w3)(7w3 + m2) # 0,

then there are ezactly four rotations, R € SO(3) at which PR € sym(3). These are ezactly the
critical points of
(P}{R)= tr {PR}

with Morse indez specified by the number of positive eigenvalues of

tr {RP}I - PR

We are thus led to define as a navigation function on SO(3)

W) E L ir (PU-R) = (PII-E), (15)
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where the factor involving 7’ £ 7o + w3 — 7y is added to keep the image in the interval [0, 1]
(assuming that 7y < 72 < m3). If P € sym¥(3), a positive definite symmetric matrix, which
we now further assume, then the eigenvalue assumptions of the previous Lemma are assured.
Since dy is a scalar multiple of Marsden’s modified trace, ¢ is also a Morse » function with four
critical points specified in the same fashion. Moreover, ¢ takes its values on IR, vanishing only
at B = I. Thus, ¢ is indeed a navigation function. In fact, it is the best we can find since
any Morse function on SO(3) must have at least four critical points according to the Lusternik-
Schnirelmann theorem [41, p. 92]. Moreover, it is certainly algebraic so that its differential
one-form — the critical ingredient of the feedback law, g (11} — may be readily computed [18]
as

dp =2 JYPR).

According to Proposition 2.1 together with Lemma 4.1 the negative flow of the gradient
vector field resulting from the kinetic energy metric,

grad ¢ =2 M~ 1JY(PR),

takes all points of SO(3) to one of four symmetric rotations — the identity, and the three
orientations which are “180° away” along the z,y, z axes — and all points excepting a nowhere
dense set to the identity.

4.1.3 Inverse Dynamics

In the linear time invariant setting, inverse dynamics amounts to the use of a precompensator
to make the errors between the plant state and reference derivatives satisfy an asymptotically
stable linear time invariant dynamical system. Entirely analogously in this setting, we will use
the navigation function presented above to achieve an “almost global” asymptotically stable
dynamical error system via the feedback law, g (11), applied to the error coordinates, v.. We
then pre-filter the reference signal, (D, d)(t), so that the error dynamics fall within the class of
dissipative mechanical systems, fa, and apply Theorem 2 directly.

For example, in one degree of freedom, J = IR, a point with unit mass gives rise to a kinetic
energy metric given by the identification map, M =1, between the tangent and cotangent space
over each configuration. If an arbitrary bidirectional force, u, can be imposed upon the point
mass then our mechanical control system is the familiar double integrator,

fz(vu)% [ 2 ] .

Any Hook’s Law spring potential, ¢ & 1K1¢?, (where K1 € R*) in conjunction with a Rayleigh

damper, Gq4(q,§) & K¢, (where K2 € IRt as well) defines a globally asymptotically stable
closed loop system on TJ = RZ,

A 0 1
Jalo) = [ ~K, —K; ] “




22 4 APPLICATIONS OF TOTAL ENERGY AS A LYAPUNOV FUNCTION

resulting from the feedback law
D s
9(q,9) = K2+ Kigq

given by (11). Given a particular reference trajectory, vg = (r, ), and an error coordinate system
again defined via left translation (identical, of course, to right translation since IR? is an Abelian
Lie group)
Y . .
Ve = (ege) = Lvdv = (q —Fyq— 1‘),

we may now servo on the error, g(ve) = Kaé + Kie and pre-filtering through the inverse of the
closed loop plant,

u? g(ve) + ¥ — K1r — Kot
This results in globally asymptotically stable error dynamics,
v'e = f A(”e)’
on T.7. We now implement a nonlinear version of this scheme in the present setting.

In place of the familiar Hooks’s Law potential, we will substitute the navigation function, ¢
(15). Taking an arbitrary positive definite symmetric matrix, K2 € Sp(3), we will use Rayleigh

damping, G4(R,1) =Y ,r, for the sake of simplicity. The feedback law (11) applied to the error
coordinates is now computed as

g(E,e) = Kqe +2JY(PE).

Note that T
¢ =a—E%-[EJ(a- E'd)| d

=i — ETd + J(a)ETd.

Thus, if we apply error feedback and build an appropriate pre-filter for the reference, vy = (D,d),
u 2 M (Ed- J(a)ETd) (16)

+J{(@)METd + J(ETd)Me + g(ve)

the closed loop angular aceleration will be given as
i@ = ETd — J(a)ETd - M~ [J(e)Me + Kze + grad ¢ (E)],

or, in the “error coordinate system” of phase space, TSO(3) = SO(3) x R3,

E = EJ(e)
¢ = —M-1{J(e)Me+ Koe + grad ¢ (E)]. (17)

Equation (17) is a dissipative mechanical system, A based upon the navigation function
(15). Theorem 2 applies directly using information about the critical points of ¢ supplied in
Lemma 4.1.
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Theorem 4 All trajectories of (17) tend toward one of the four eritical points of . A dense
open set of initial conditions has its limit set ot the desired point, (E,e)=(1,0).

The satellite asymptotically attains the desired attitude trajectory, D(t), except from a set
of initial conditions of zero measure in the phase space.

4.2 Robot Navigation

Consider the following problem in robotics. A kinematic chain — a sequence of mutually con-
strained actuated rigid bodies — is allowed to movein a cluttered workspace. Contained within
the joint space — an analytic manifold which forms the configuration space of the kinematic
chain — is the free space, F — the set of all configurations which do not involve intersection
with any of the “obstacles” cluttering the workspace. Given any interior “destination point,”

qd E.% , to which it is desired to move the robot, find a curve in F from an arbitrary initial point
to the desired destination.

The purely geometric problem of constructing a path between two points in a space ob-
structed by sets with arbitrary polynomial boundary (given perfect information) has already
been completely solved [40]. Moreover, a much more efficient solution has recently been of-
fered for this class of problems as well {?]. The motivation for the present direction of inquiry
(beyond its apparent academic interest) is the desire to incorporate explicitly aspects of the
control problem — the construction of feedback compensators for a well characterized class of
dynamical systems in the presence of well characterized constraints — in the planning phase
of robot navigation problems. That is, the geometrical “find path” problem is generalized to
the search for a family of paths in F (the one—parameter group of the gradient flow), which
provides a feedback control law for the physical robot as well. It is clear from Theorem 2 that
the construction of a navigation function on the freespace provides a solution to this problem.

4.2.1 The Mechanical Control System

The configuration space of a rigid robot with n moving joints is generally taken to lie within
the cross product of a torus and a cartesian space J C Tn-k x IR¥, where k is number of
“sliding joints” and n — k is the number of “revolute joints” [23, 6], its boundary generally
arising from physical limits on the range of motion of each joint. There is a “kinematic map,”
k; : J — IR® x SO(3), which expresses the physical location and orientation of a distinguished
frame of reference in the ith constituent rigid body of the robot robot as a function of the
position in configuration space — k; is a polynomial in transcendental functions of the generalized
coordinates of 7. The “workspace,” W, lies within the n-fold cross product of this Euclidean
group with itself, and represents the placements of the robot which do not intersect physical
obstacles. The freespace, F C J results after removing from J those configurations which
involve any self-interesection or intersection with the obstacles.




24 4 APPLICATIONS OF TOTAL ENERGY AS A LYAPUNOV FUNCTION

The kinetic energy is determined by summing up the contribution of each of the robot’s
constituent rigid bodies. Let {M;},, n be the moment of inertia matrices of these constituent
rigid bodies. In the appropriate local coordinates at some point ¢ € J, the kinetic energy
morphism, is given by [23]

M(g) 2 S 1Dk (@) M (DK (a),

i=1

so that given any phase, v = (g,2),

K(00) = 32TM()2 2 5(v] v).

Perhaps the most difficult aspect of the “generalized piano mover’s problem” [40] is a precise
determination of the freespace, F, from information about the robot’s consituent rigid bodies
and the obstacles in the world, We will presume that this information has been furnished in the
form of an implicit representation for each obstacle boundary. In particular, we will consider
progressively more complicated versions of the freespace, and present analytic algebraic naviga-
tion functions for arbitrary destinations. These constructions solve the piano mover’s “findpath”
problem (for almost every initial configuration) via the resulting gradient, T' on F according to
Proposition 2.1. Moreover, they solve the piano mover’s “find controller” problem (for almost
every initial configuration in the bounded energy set, &Y C TF according to Theorem 2.

4.2.2 Navigation Functions on Euclidean Sphere Worlds

A “Euclidean sphere world” is a compact connected subset of E® whose boundary is the disjoint
union of a finite number, say M + 1, of (n — 1)-spheres. We suppose that perfect information
about this space has been furnished in the form of M +1 center points {g:}M, and radii {pi},
for each of the bounding spheres. In our previous work [25], we have shown how to use this
information to build a navigation function on the particular sphere world, M, considered as a
simple freespace.

The proposed navigation function, ¢ : M — [0,1], is a composition of three functions:

Py -

¢ = 04000
The function @ is polar, almost everywhere Morse and analytic, it attains a uniform height on
&M by blowing up there. Its image is “squashed” by the diffcomorphism, o, of {0, cc) into [0, 1),

where
z

1+2’
resulting in a polar, admissible, and analytic function which is non-degenerate on M except at
one point — the destination. This last flaw is repaired by o4.

o(z) £

We distinguish between “good” and “bad” subsets of M. When a point belongs to the “good”
set, we expect the negative gradient lines to lead to it (here it is just {gs}). The “bad” subset
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includes all the boundary points of the free space, and we expect the cost at such a point to be
high. Let ¥ and 8 denote analytic real valued maps whose zero-levels, i.e. 4~1(0), -0}, are
respectively, the “good” and “bad” sets. We define ¢ to be,

£
where 7 : M — [0,00) is
A A
vy 29k kelN; oy = flo- gl

and §: M — [0,00) is,
B £ mlopi,

where A A

Bo = ph—lal® 5 B = lla-gl*—p} j=1...M
Due to the parameter k in ¢, the destination point is a degenerate critical point. To counteract
this effect, the “distortion” a4 ¢ [0,1] — [0, 1],

od(z) £ (2). keNN,

is introduced, to change g4 to a non—degenerate critical point.

Theorem b ( [25]) If the free space, M, is a Euclidean sphere world then there exists a positive
integer N such that for every k > N, for any finite number of obstacles, and for any destination
point in the interior of M,

™\
‘P=0’d°0°95=(?;"_i_—ﬁ , (18)

is a navigation function on M.

In the proof of this theorem (which comprises the central contribution of {25]) a constructive
formula for N is given with the “schematic” form,

N= N , do . aM ,
©H, ’(qd[ﬂo}’ [PM

where O, is the ith obstacle. The functions N; are given explicitly in an appendix of [25}].

4,2.3 Navigation Functions Induced by Diffeomorphism

The Euclidean sphere world, of course, corresponds to a rather simplistic view of freespace.
Fortunately, the navigation properties defined in Section 3.3 are invariant diffeomorphism, as
the following result makes clear.
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Proposition 4.2 ( [25]) ) Let: M — [0,1] be a navigation function on M,and h: F—- M
be a diffeomorphism. Then

ne

¢ = poh,

is a navigation function on F.

This result suggests that we might consider the Euclidean sphere world as a a “model space” used
to induce navigation functions on more interesting “real spaces” in its analytic diffeomorphism
class. The problem of constructing a navigation function on a member of this class reduces to
the construction of an analytic diffeomorphism from this space onto its model.

Our constructive results to date encompass the class of “star worlds.” A star shaped set
is a diffeomorph of a Euclidean n-disk, D" possessed of a distinguished interior center point
from which all rays intersect its boundary in a unique point. A star world is a compact
connected subset of E* whose boundary is the disjoint union of a finite number of star shaped
set boundaries. We now suppose the availability of an implicit representation for each boundary

component, {ﬁj}?f__e, where §; € C¥[F,R} and

M
aF ¢ | 650,

j=0

as well as the obstacle center points, {q,-};-iﬁ. Further geometric information required in the
construction to follow is detailed in the chief reference for this work [37]. A suitable Euclidean
sphere world model, M, is explicitly constructed from this data. That is, we determine (p;, pj),
the center and radius of a model j** sphere, according to the center and minimum “radius”
(the minimal distance from g; to the j th obstacle) of the j** star shaped obstacle. This in turn

determines the model space “obstacle functions”, {ﬁ,} as well as the navigation function on
M, p, as described above.

A transformation, h : M — F, may now be constructed in terms of the given star world
and the derived model_ sphere world geometrical parameters as follows. Denote the “;t* omitted
product”, 1M 3; as §;. The “jth analytic switch”, o; € C¥[F,IR],

s & 74P Yaf;b
[+ A = O —= — r =
(where ) is a positive constant) attains the value one on the 7t boundary and the value zero
on every other boundary component of F. The “jth star get deforming factor”, v; € C¥[F,R],

o & 145850
vil0) = P

scales the ray starting at the center point of the jth obstacle, ¢;, through its unique intersection
with that obstacle’s boundary in such a way that ¢ is mapped to the corresponding point on the
jt* model obstacle — a suitable sphere. The overall effect is that the complicated star shaped
obstacle is is “deformed along the rays” originating at its center point onto the corresponding
sphere in model space.
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Definition 2 The star world transformation, hy, is a member of the one-parameter family of
analytic maps from an open neighborhood, ¥ C E*, containing F, into E*, defined by

M
A
ha(e) 2 S oi(e: M) [vi(9) - (a— )+ pi T+ oul@ M) (g - ) +pa], (19)
=0
where a; is the j*% analytic switch, o4 is defined by
A M
o = 1~ 0j, (20)
=0

and v; is the j® star set deforming factor.

The “switches”, make & look like the j*# deforming factor in the vicinity of the 7th obstacle,
and like the identity map away from all the obstacle boundaries. With some further geometric
computation we are able to prove the foliowing.

Theorem 6 ( [37) ) For any valid star world, F, there ezists a suitable model sphere world
M, and a positive constant A, such that if A > A, then

hy:F = M,

is an analytic diffeomorphism,

Thus, if ¢ is a navigation function on M, the construction of h) automatically induces a navi-
gation function on F via composition, = ¢ o hy, according to Proposition 4.2.

This family of transformations, mapping any star world onto the corresponding sphere world,
induces navigation functions on a much larger class than the original sphere worlds, thus ad-
vancing our program of research toward the goal of developing “geometric expressiveness” rich
enough for navigation amidst real world obstacles.
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5 Conclusion

In recent years there has been a general resurgence of interest in the solution of abstract goals
which are expressed by means of a constrained optimization problem. Extending well beyond the
increasing body of robotics research (32, 16, 85), this point of view informs the recent activity in
neural network research [43], and simulated annealing methods of VLSI design [17], as well. The
appeal of cost functions, of course, is that they lead to gradient vector fields: the optimization
problem is “solved by integrating” the gradient dynamics on a “network” of digital computers.
Gradient vector fields, in contrast to most other classes of nonlinear dynamical systems, are
known to possess simple limit sets — the extrema of the cost function. The central result of this
paper, Theorem 2, shows that the dynamics arising from the natural motion of appropriately
compensated mechanical systems are capable of “integrating out” the limit set of a gradient
system as well. Thus the mechanical plant may itself be used as a “second order” analog
computer to solve problems encoded via cost functions.

Although Theorem 1 has been known for more than a century and the present extension,
Theorem 2, involves the most elementary application of qualitative dynamical systems theory,
this work represents (to the best of the author’s knowledge) the first systematic use of of total
energy for synthesizing desirable global properties in closed loop mechanical control systems. In
particular, the notion of navigation functions and demonstration, Theorem 3, that they exist
on any reasonable configuration space is entirely new. Their utility is demonstrated by the new
global results for satellite attitude tracking summarized in Theorem 4, and for our incipient
program of research in robot osbtacle avoidance, summarized by Theorem 5 and Theorem 6.

There are at least two important failings of the theory presented here. The first arises from
the “flawed” nature of total energy, 1, when considered as a Lyapunov function: its derivative
along the motions of a dissipative mechanical system, A, vanishes on the entire zero section of
the phase space, T.J. Recent work [24] has resulted in a family of modified total energy functions
whose derivatives vanish only on the equilibrium states of A: thus the full power of Lyapunov
theory as a tool for studying robustness [20], convergence rates [22], and adaptive capabilities
[19] of dissipative mechanical systems is now available. More problematic, Lyapunov analysis,
itself, reveals little concerning transient properties of dynamical systems beyond (often crude)
convergence rate estimates. While the phase portrait of a gradient system, T, is closely related to
the level curves of the defining scalar map, ¢, it is not at all clear how to “tune” the dissipative
field, fa, to obtain analogous behavior from the dissipative mechanical system, A. Preliminary
results on a theory of “damping” for A have been presented in {19]): more comprehensive research
addressing this question is presently in progress.
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