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Story: Towing Vehicles

• China Southern 328 (Airbus 380), Oct 2, 2018, LAX

3IntroductionHang Ma (hangma@usc.edu)



Story: Towing Vehicles

4Introduction

• China Southern 328 (Airbus 380), Nov 11, 2016, LAX 
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Teams of Intelligent Agents are the Future!
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Autonomous Towing Vehicles

6Introduction

Autonomous engines-off taxiing (joint work with NASA Ames [AAAI PlanHS-16])

• Reduce pollution
• Reduce energy consumption
• Reduce human workload 
• Reduce traffic congestion
• Reduce airport size

R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, T. K. S. Kumar, and S. Koenig. “Planning, Scheduling and Monitoring for Airport Surface 
Operations”. AAAI PlanHS. 2016.
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Teams of Intelligent Agents are the Future!
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Autonomous Warehouse Robots

8IntroductionHang Ma (hangma@usc.edu)
Source: Amazon Robotics

Goods-to-Person Fulfillment
One worker without robots:

• 28,000 steps, 1,500 items/day
One worker with robots:

• 2,500 steps, 3,000 items/day

Shelf

Robot

Station

Bin



How to design intelligent algorithms that make fast and good decisions 
to coordinate these teams of agents?
Fast decisions
• Efficiency

• Fast computation time

Good decisions
• Effectiveness

• High throughput
• Low operating costs

• Robustness
• No collisions between agents
• No deadlocks in the long term

Key Research Question

9IntroductionHang Ma (hangma@usc.edu)



Contribution
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Path Planning
• Theoretical results [AAAI-16]
• Optimal algorithms [ICAPS-18, 

19] [AAAI-19d]
• Suboptimal algorithms [AAAI-

19a] [AAMAS-19b]
• Anytime algorithms [IJCAI-18b]
• Overviews [IJCAI WOMPF-16] [AI 

Matters-17]

Joint Task & Path Planning
• Optimal task and path planning 

[AAMAS-16]
• Tasks with temporal constraints 

[AAMAS-18] [IJCAI-18a]
• Large-sized agents [AAAI-19c]

Plan Execution with System 
Dynamics
• Framework [IEEE IntSys-17]
• Kinematic constraints [ICAPS-16] 

[IROS-16]
• Uncertainty [AAAI-17]
• Video game environments 

[AIIDE-17]
• Partial observability [AAAI-15]

Robust Long-Term Task & Path 
Planning
• Formalization & algorithms 

[AAMAS-17]
• Kinematic constraints [AAAI-

19b]
• Offline scheduling [AAMAS-19a]

Introduction



Content

Path Planning
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Path Planning



Problem: Find collision-free paths that minimize the makespan
Makespan: Earliest time step when all agents have arrived at their goal vertices

Each time step:
• Agent waits or moves to a neighboring vertex

Collisions:
• “Vertex collisions” --- Not allowed

• “Edge collisions” --- Not allowed

Multi-Agent Path Finding (MAPF)

13Path PlanningHang Ma (hangma@usc.edu)



MAPF: Example

14

4-neighbor grid

Path PlanningHang Ma (hangma@usc.edu)



MAPF: Example: Time Step 0
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4-neighbor grid
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MAPF: Example: Time Step 1
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4-neighbor grid
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MAPF: Example: No Path

17

4-neighbor grid
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MAPF: Example
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4-neighbor grid

Path PlanningHang Ma (hangma@usc.edu)



MAPF: Example: Time Step 0
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4-neighbor grid

Path PlanningHang Ma (hangma@usc.edu)



MAPF: Example: Time Step 1
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4-neighbor grid
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MAPF: Example: Time Step 2
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4-neighbor grid

Path PlanningHang Ma (hangma@usc.edu)



MAPF: Example: Time Step 3

22

4-neighbor grid

Path PlanningHang Ma (hangma@usc.edu)



MAPF: Hardness of Approximation [AAAI-16]
Theorem:
MAPF is NP-hard to approximate within any factor less than 4/3 for 
makespan minimization

23Path Planning

H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. “Multi-Agent Path Finding with Payload Transfers and the Package-Exchange Robot-
Routing Problem”. AAAI. 2016.
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MAPF: Proof
Reduction from (≤3, =3)-SAT (NP-complete)

Example: (𝑋𝑋1 ∨ 𝑋𝑋2∨ 𝑋𝑋3) ∧ (𝑋𝑋1 ∨ 𝑋𝑋2∨ 𝑋𝑋3) ∧ (𝑋𝑋1 ∨ 𝑋𝑋2 ∨ 𝑋𝑋3)

24

𝑋𝑋1 ≡ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋2 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑋𝑋3 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
Path PlanningHang Ma (hangma@usc.edu)



Background: Conflict-Based Search (CBS)
CBS [Sharon et al. 2015]:
• Complete and optimal for MAPF

25

4-neighbor grid

Path Planning

G. Sharon, R. Stern, A. Felner, N. R. Sturtevant. "Conflict-based search for optimal multi-agent pathfinding." Artificial Intelligence 219. pp. 40-66. 
2015

Hang Ma (hangma@usc.edu)



Background: Conflict-Based Search (CBS)

26

Makespan = 2

Makespan = 3 Makespan = 3

Path PlanningHang Ma (hangma@usc.edu)

𝒂𝒂𝟏𝟏 should not occupy 𝒙𝒙 at time 1 𝒂𝒂𝟐𝟐 should not occupy 𝒙𝒙 at time 1



𝒂𝒂𝟏𝟏 should not occupy 𝒙𝒙 at time 1 𝒂𝒂𝟐𝟐 should not occupy 𝒙𝒙 at time 1Makespan = 2

Makespan = 3 Makespan = 3

<Agent 𝒂𝒂𝟐𝟐, Location 𝒙𝒙, Time 1>

Background: Conflict-Based Search (CBS)

27

Makespan = 2

Path PlanningHang Ma (hangma@usc.edu)



Background: Conflict-Based Search (CBS)

28

Makespan = 2

Makespan = 3 Makespan = 3

𝒂𝒂𝟏𝟏 should not occupy 𝒙𝒙 at time 1 𝒂𝒂𝟐𝟐 should not occupy 𝒙𝒙 at time 1

Path PlanningHang Ma (hangma@usc.edu)



CBS-based optimal algorithms:
• CBS-H (heuristic) [ICAPS-18]: Admissible heuristic guidance for high level

• Up to 5 times faster than CBS
• CBS-H+ symmetry breaking [AAAI-19d]: Add multiple constraints at a time

• Up to 3 orders of magnitude faster than CBS on 2D grids
• CBS-H + disjoint node splitting [ICAPS-19]: Better way of expanding nodes

• Up to 2 orders of magnitude faster than CBS

Experiments: 5-minute time limits

Scaling Up MAPF Algorithms

29Path PlanningHang Ma (hangma@usc.edu)

CBS

CBS-H

CBS-H + symmetry breaking

Number of Agents Number of Agents



Anytime bounded-suboptimal algorithms:
• Anytime FOCAL search [IJCAI-18b]

• Complete and bounded-suboptimal

Suboptimal algorithms:
• Prioritized planning + greedy depth-first search version of CBS [AAAI-19a]

• Complete only for a subset of instances
• Almost always return close-to-optimal solutions empirically
• Average runtime on a 481x530 grid: 0.14 seconds for 100 agents, 35.18 seconds for 600 

agents
• Constraint reasoning + rapid random restart [AAMAS-19]

Scaling Up MAPF Algorithms

30Path PlanningHang Ma (hangma@usc.edu)
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Path Planning
• Theoretical results [AAAI-16]
• Optimal algorithms [ICAPS-18, 

19] [AAAI-19d]
• Suboptimal algorithms [AAAI-

19a] [AAMAS-19b]
• Anytime algorithms [IJCAI-18b]
• Overviews [IJCAI WOMPF-16] [AI 

Matters-17]

Joint Task & Path Planning

Joint Task & Path Planning
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Challenges

Joint Task & Path PlanningHang Ma (hangma@usc.edu)

“Agents need to decide where to go next”
• The target (task location) for each agent is not given

• Agents need to be assigned targets
• Synergy among agents with the same capability could be exploited
• …

• Searching over all assignments of targets to agents to find optimal 
solutions results in a large search space (not efficient)

• Assigning targets and planning paths separately is not optimal (not 
effective)



Anonymous MAPF

Non-anonymous MAPF
NP-hard for makespan

minimization
Reducible to integer multi-

commodity flow
Solved with CBS

Anonymous MAPF
Polynomial-time solvable for 

makespan minimization
Reducible to integer single-

commodity flow
Solved with max-flow algorithm

34Hang Ma (hangma@usc.edu) Joint Task & Path Planning



Mix of non-anonymous and anonymous MAPF
Target Assignment and Path Finding (TAPF)

Target Assignment and Path Finding [AAMAS-16]

35Joint Task & Path Planning

H. Ma and S. Koenig. “Optimal Target Assignment and Path Finding for Teams of Agents”. AAMAS. 2016.

Hang Ma (hangma@usc.edu)



Team 0: Agents that move to the storage locations of shelves
Team 1: Agents that move shelves to Packing Station 1
Team 2: Agents that move shelves to Packing Station 2
Team 3: Agents that move shelves to Packing Station 3

36

TAPF: Multiple Teams

Joint Task & Path PlanningHang Ma (hangma@usc.edu)

Packing Station 1

Packing Station 3

Packing Station 4

Packing Station 2



Theorem: 
TAPF (with more than one team) is NP-hard to approximate within any 
factor less than 4/3 for makespan minimization

37

TAPF: Hardness of Approximation [AAAI-16]

Joint Task & Path Planning

H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. “Multi-Agent Path Finding with Payload Transfers and the Package-Exchange Robot-
Routing Problem”. AAAI. 2016.

Hang Ma (hangma@usc.edu)



TAPF: Proof
Reduction from 2/�2/3-SAT (NP-complete)

Example: (𝑋𝑋1 ∨ 𝑋𝑋2) ∧ (𝑋𝑋1 ∨ 𝑋𝑋3) ∧ (𝑋𝑋2 ∨ 𝑋𝑋3) ∧ (𝑋𝑋1 ∨ 𝑋𝑋2 ∨ 𝑋𝑋3)

38

𝑋𝑋1 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑋𝑋2 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑋𝑋3 ≡ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Joint Task & Path PlanningHang Ma (hangma@usc.edu)



How to solve TAPF optimally? Ideas from:

Conflict-Based Search for MAPF (NP-hard)

Max-flow algorithm for anonymous MAPF (P)

Conflict-Based Min-Cost Flow for TAPF (NP-hard)

39

Conflict-Based Min-Cost Flow (CBM) 

Joint Task & Path PlanningHang Ma (hangma@usc.edu)



CBM: Example

40

4-neighbor grid

Joint Task & Path PlanningHang Ma (hangma@usc.edu)



CBS for MAPF:

• Find path for a single agent (A*)
• Look for collisions in paths
If ∃collision: <a1, a2, x, t>
Option 1: constraint <a1, x, t>
Option 2: constraint <a2, x, t>

41

CBM for TAPF:
Team = Meta-agent

• Find paths for a single team (maxflow)
• Look for collisions in paths
If ∃collision: <team1, team2, x, t>
Option 1: constraint <team1, x, t>
Option 2: constraint <team1, x, t>

CBM: Example

Joint Task & Path PlanningHang Ma (hangma@usc.edu)



CBM: Example

42

4-neighbor grid

Joint Task & Path PlanningHang Ma (hangma@usc.edu)



Makespan = 2

CBM: Example

43

Makespan = 3 Makespan = 3

Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1 Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1

Path PlanningHang Ma (hangma@usc.edu)



0 out

1 in

1 out

2 in

2 out

0 out

1 in

1 out

2 in

2 out

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇

team2team1

team1
𝒂𝒂,𝒃𝒃,𝒅𝒅
𝒃𝒃,𝒅𝒅,𝒇𝒇

team2
𝒄𝒄,𝒅𝒅,𝒆𝒆

CBM: Find Paths for Single Teams

44

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇

Joint Task & Path PlanningHang Ma (hangma@usc.edu)



• “Vertex collisions”
--- Not allowed

• “Edge collisions”
--- Not allowed

CBM: Gadgets

45Hang Ma (hangma@usc.edu) Joint Task & Path Planning

t out

a b c

t out

t+1 in

a b

All edges have
capacity one

a b c

a b

t in 0 out

1 in

1 out

2 in

2 out

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇
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CBM: Store Paths and Makespan

Makespan = 2

Unexpanded Nodes



Unexpanded Nodes

47Joint Task & Path PlanningHang Ma (hangma@usc.edu)

CBM: Pop Node and Look for Collisions

Makespan = 2



Expanded Nodes

48Joint Task & Path PlanningHang Ma (hangma@usc.edu)

CBM: Two Options

Makespan = 2
Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1 Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1



0 out

1 in

1 out

2 in

2 out

3 in

3 out

team2team1

0 out

1 in

1 out

2 in

2 out

49

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇 𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇

Joint Task & Path PlanningHang Ma (hangma@usc.edu)

CBM: Option 1: Find New Paths for team1

team1
𝒂𝒂,𝒂𝒂,𝒃𝒃,𝒅𝒅
𝒃𝒃,𝒃𝒃,𝒅𝒅,𝒇𝒇

team2
𝒄𝒄,𝒅𝒅,𝒆𝒆

Constraints
Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not
occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1



Expanded Nodes

50Joint Task & Path PlanningHang Ma (hangma@usc.edu)

CBM: Store Paths and Makespan

Makespan = 2

Makespan = 3
Unexpanded Nodes

Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1 Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1



51Joint Task & Path PlanningHang Ma (hangma@usc.edu)

CBM: Option 2: Find New Paths for team2

team1
𝒂𝒂,𝒃𝒃,𝒅𝒅
𝒃𝒃,𝒅𝒅,𝒇𝒇

team2
𝒄𝒄, 𝒄𝒄,𝒅𝒅,𝒆𝒆

0 out

1 in

1 out

2 in

2 out

3 in

3 out

team2team1

1 in

1 out

2 in

2 out

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇 𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝒇𝒇
0 out

Constraints
Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not
occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1
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CBM: Store Paths and Makespan

Makespan = 2

Makespan = 3 Makespan = 3
Unexpanded Nodes

Expanded Nodes

Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1 Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1
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CBM: Pop Node and Look for Collisions

Makespan = 2

Makespan = 3
Unexpanded Nodes

Makespan = 3

Trick: Break ties to 
favor the node with 
the fewest colliding 
pairs of teams

Expanded Nodes

Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1 Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1
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CBM: Return Paths

Makespan = 2

Makespan = 3
Unexpanded Nodes

Makespan = 3

No collisions!
Bingo!

Expanded Nodes

Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1 Agents in 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 should not occupy 𝒅𝒅 𝐚𝐚𝐚𝐚 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 1



Key ideas:
• Break down to the NP-hard sub-problem for different teams and the P-

solvable sub-problems for agents in every team
• Use CBS for the NP-hard sub-problem
• Use a min-cost max-flow algorithm for the P-solvable sub-problems

Robustness:
• No collisions
• Complete for all TAPF instances

Effectiveness:
• Optimal

55

Summary and Properties of CBM

Joint Task & Path PlanningHang Ma (hangma@usc.edu)

Polynomial time – to choose 
paths that result in few collisions 
with agents from other teams



Setup:
• 30× 30 grids, each with 10% randomly blocked cells, 5-minute time limits
• 10 to 50 agents, 5 agents per team

Results:
• CBM exploits more of the problem structure than a generic solver

56

Experiment: CBM vs ILP

agents runtime (seconds) success
CBM ILP CBM ILP

10 0.34 18.24 100% 100%
20 0.78 62.85 100% 94%
30 1.71 108.75 100% 66%
40 2.95 152.98 100% 14%
50 5.32 161.95 100% 4%

Joint Task & Path PlanningHang Ma (hangma@usc.edu)
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Setup:
• 49× 22 grid, 7 packing stations with incoming and outgoing queues
• 420 agents, 7 “incoming” teams of 30 agents, one “outgoing” team of 210 agents

Results:
• Runtime ≈ 1 minute (averaged over 50 random instances)

Experiment: Scalability: Simulated Warehouse

Joint Task & Path PlanningHang Ma (hangma@usc.edu)

Packing Station 1

Packing Station 6

Packing Station 3

Packing Station 4

Packing Station 5

Packing Station 2

Packing Station 7
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Plan Execution with System Dynamics
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Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Path Planning
• Theoretical results [AAAI-16]
• Optimal algorithms [ICAPS-18, 

19] [AAAI-19d]
• Suboptimal algorithms [AAAI-

19a] [AAMAS-19b]
• Anytime algorithms [IJCAI-18b]
• Overviews [IJCAI WOMPF-16] [AI 

Matters-17]

Joint Task & Path Planning
• Optimal task and path planning 

[AAMAS-16]
• Tasks with temporal constraints 

[AAMAS-18] [IJCAI-18a]
• Large-sized agents [AAAI-19c]

Plan Execution with System 
Dynamics
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Challenges

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

“Agents should be able to execute the plan”
• Planning uses models that are not completely accurate

• Robots are not completely synchronized
• Robots do not move exactly at the nominal speed
• Robots have unmodeled kinematic constraints
• …

• Plan execution will therefore likely deviate from the plan (require 
robustness)

• Replanning whenever plan execution deviates from the plan is 
intractable since it is NP-hard to find good plans  (require efficiency)



61

MAPF-POST: Kinematic Constraints [ICAPS-16]

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

MAPF-POST:  Makes use of a simple temporal network (STN) to post-
process the output of a MAPF/TAPF solver

• Take into account edge lengths
• Take into account velocity limits (for both robots and edges)
• Guarantee a safety distance among robots
• Avoid replanning in many cases

Solved by linear programming or shortest path algorithms

Polynomial time

W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and S. Koenig. “Multi-Agent Path Finding with Kinematic Constraints”. ICAPS. 2016.
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MAPF-POST: Example

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Agent 1  A → B → C → D   (fast)

Agent 2  B → C → F → C    (slow)

node = event that an agent arrives at a location
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MAPF-POST: Example

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Type 1 edge = order in which the same agent arrives at locations

Agent 1  A → B → C → D   (fast)

Agent 2  B → C → F → C    (slow)
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MAPF-POST: Example

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Type 2 edge = order in which two different agents arrive at the same location

Agent 1  A → B → C → D   (fast)

Agent 2  B → C → F → C    (slow)
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MAPF-POST: Example

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

time bounds = kinematic constraints
safety_distance/𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

Agent 1  A → B → C → D   (fast)

Agent 2  B → C → F → C    (slow)
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Plan Generation and Execution Framework [IEEE 
IntSys-17]

Plan Execution with System Dynamics

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 

Hang Ma (hangma@usc.edu)
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 



69

Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes

• Calculate speeds for the robots from the earliest arrival times

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes

• Calculate speeds for the robots from the earliest arrival times
• Move robots along their paths in the plan with these speeds

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes

• Calculate speeds for the robots from the earliest arrival times
• Move robots along their paths in the plan with these speeds
• If plan execution deviates from the plan, then

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes

• Calculate speeds for the robots from the earliest arrival times
• Move robots along their paths in the plan with these speeds
• If plan execution deviates from the plan, then

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes

• Calculate speeds for the robots from the earliest arrival times
• Move robots along their paths in the plan with these speeds
• If plan execution deviates from the plan, then

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 
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Plan Generation and Execution Framework

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)

Main loop
• Run CBS/CBM to find a MAPF/TAPF plan (slow)
• Construct a simple temporal network for the plan
• Determine the earliest arrival times in the nodes
• If they do not exist, then 
• Calculate speeds for the robots from the earliest arrival times
• Move robots along their paths in the plan with these speeds
• If plan execution deviates from the plan, then

H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Overview: A Hierarchical Framework for Plan Generation and 
Execution in Multi-Robot Systems”. IEEE Intelligent Systems 32(6). 2017. 



TAPF: Demo on Real Robots [IROS-16]
Setup:

• 4x3 grid, 1m2 cells
• 8 robots, 2 teams, 4 robots per team

TAPF solver: CBM
Post-processing procedure: MAPF-POST
Architecture: ROS with decentralized execution

• Robot controller with state [x,y,Θ] (attempts to meet deadline)
• PID controller (corrects for heading error and drift)

Robots: iRobot Create2 robots
Test environment: VICON MX Motion Capture System

76Plan Execution with System Dynamics

W. Hönig, T. K. S. Kumar, H. Ma, N. Ayanian, and S. Koenig. “Formation Change for Robot Groups in Occluded Environments”. IROS. 2016.

Hang Ma (hangma@usc.edu)
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2x

Demo on Real Robots

Plan Execution with System DynamicsHang Ma (hangma@usc.edu)
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Contribution
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Increasing Model Expressivity
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Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)

Path Planning
• Theoretical results [AAAI-16]
• Optimal algorithms [ICAPS-18, 

19] [AAAI-19d]
• Suboptimal algorithms [AAAI-

19a] [AAMAS-19b]
• Anytime algorithms [IJCAI-18b]
• Overviews [IJCAI WOMPF-16] [AI 

Matters-17]

Joint Task & Path Planning
• Optimal task and path planning 

[AAMAS-16]
• Tasks with temporal constraints 

[AAMAS-18] [IJCAI-18a]
• Large-sized agents [AAAI-19c]

Plan Execution with System 
Dynamics
• Framework [IEEE IntSys-17]
• Kinematic constraints [ICAPS-16] 

[IROS-16]
• Uncertainty [AAAI-17]
• Video game environments 

[AIIDE-17]
• Partial observability [AAAI-15]

Robust Long-Term Task & Path 
Planning
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Challenges

Hang Ma (hangma@usc.edu)

“Agents need to be retasked”
• Agents need to be assigned new tasks after finishing their current 

ones
• Agents need to decide which task to execute next
• Agents can block each other from executing new tasks
• …

• Assigning tasks and planning paths for the agents iteratively can lead 
to deadlocks (require robustness)

• Tasks can appear at any time and decisions should be made during 
execution in real-time (require efficiency)

Robust Long-Term Task & Path Planning



Multi-Agent Pickup and Delivery (MAPD) is a “lifelong” generalization 
of the “one-shot” task- and path- planning problems:

• A task can enter the system at any time.
• Agents have to constantly attend to a stream of new tasks.

Multi-Agent Pickup and Delivery [AAMAS-17]

81Robust Long-Term Task & Path Planning

H. Ma, J. Li, T. K. S. Kumar, and S. Koenig. “Lifelong Multi-Agent Path Finding for Online Pickup and Delivery Tasks”. AAMAS. 2017.

Hang Ma (hangma@usc.edu)

Pickup locationDelivery location



• agent1, agent2
• Can be assigned to any 

unexecuted task

Free agent Occupied agent

• agent1
• Must finish executing its current 

task

82

MAPD: Task Assignment

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)

1

2 2

1



Not every MAPD instance is solvable

83

MAPD: Solvability

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



Task parking 
locations

All pickup and delivery locations of 
tasks 

Might not be safe 
to park forever

Non-task parking 
locations Designated safe parking locations Safe to park 

forever

A MAPD instance is well-formed iff
1. # tasks is finite
2. # non-task parking locations ≥ # agents
3. For any two parking locations, there exists a path between them 

that traverses no other parking locations

84

MAPD: Well-Formed Conditions

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



1. Decoupled algorithms
• Approach

• Assign tasks greedily
• Simple version: do not allow task transfers between free agents
• Complex version: allow task transfers from one free agent to another

• Good scalability
• Extendable to a fully distributed setting

2. Centralized algorithms
• Approach

• Use the Hungarian algorithm to assign tasks globally
• Use CBS in an inner loop to plan paths

• Good solution quality

85

MAPD Algorithms

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



Key ideas:
• Assign tasks in an outer loop
• Plan paths in an inner loop
• Use parking locations to buffer

Robustness:
• No collisions
• Long-term robustness: All (finitely many) tasks are executed in a finite time
• Complete for all well-formed instances

Effectiveness:
• Not optimal
• Trade off between better solutions and faster runtime (empirically)

86

Summary and Properties of MAPD Algorithms

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



Setup:
• 21 × 35 grid
• 500 tasks, 10 to 50 agents

Results:
• Effectiveness (service time, throughput, makespan)

• CENTRALIZED > DECOUPLED with task transfers > DECOUPLED
• Efficiency (runtime per timestep)

• DECOUPLED ≈ 10 milliseconds
• DECOUPLED with task transfers ≈ 200 milliseconds
• CENTRALIZED ≈ 4,000 milliseconds

87

Experiment: Comparison

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



Setup:
• 81 × 81 grid
• 1000 tasks, 100 to 500 agents

Results:
• Runtime per timestep

• 100 agents: ≈ 0.09 seconds
• 500 agents: ≈ 6 seconds

88

agents 100 200 300 400 500

service time 463.25 330.19 301.97 289.08 284.24

runtime (milliseconds) 90.83 538.22 1,854.44 3,881.11 6,121.06

Experiment: Scalability of DECOUPLED

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



MAPD: Offline Task Scheduling [AAMAS-19a]

89

Asymmetric TSP with dynamic edge weights

Chronologically ordered task sequences, 
one for each agent

Meta-heuristic TSP solver

M. Liu, H. Ma, J. Li, and S. Koenig. “Task and Path Planning for Multi-Agent Pickup and Delivery”. AAMAS. 2019.

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)

Improved CENTRALIZED:
• Tasks execution order scheduling

• Reduce makespan by up to 46%
• Joint task and path planning for free agents (via min-cost max flow)

• Up to 10 times faster

Agent

Tasks in 
order

TSP tour



MAPD: Kinematic Constraints [AAAI-19b]
Improved DECOUPLED: Novel data structure for storing paths

• Allow for efficient operations in an online setting
• Consider kinematic constraints directly during planning

90

𝑹𝑹

𝒗𝒗𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒗𝒗𝒓𝒓𝒓𝒓𝒓𝒓

H. Ma, W. Hönig, T. K. S. Kumar, N. Ayanian, and S. Koenig. “Lifelong Path Planning with Kinematic Constraints for Multi-Agent Pickup and 
Delivery”. AAAI. 2019.

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)



MAPD: Kinematic Constraints
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8x

Setup:
• 2000 tasks, 250 agents

Results:
• Makespan ≈ 30 minutes, total runtime < 10 seconds
• More efficient and effective than discrete MAPD algorithms + MAPF-POST

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)
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Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)

Path Planning
• Theoretical results [AAAI-16]
• Optimal algorithms [ICAPS-18, 

19] [AAAI-19d]
• Suboptimal algorithms [AAAI-

19a] [AAMAS-19b]
• Anytime algorithms [IJCAI-18b]
• Overviews [IJCAI WOMPF-16] [AI 

Matters-17]

Joint Task & Path Planning
• Optimal task and path planning 

[AAMAS-16]
• Tasks with temporal constraints 

[AAMAS-18] [IJCAI-18a]
• Large-sized agents [AAAI-19c]

Plan Execution with System 
Dynamics
• Framework [IEEE IntSys-17]
• Kinematic constraints [ICAPS-16] 

[IROS-16]
• Uncertainty [AAAI-17]
• Video game environments 

[AIIDE-17]
• Partial observability [AAAI-15]

Robust Long-Term Task & Path 
Planning
• Formalization & algorithms 

[AAMAS-17]
• Kinematic constraints [AAAI-

19b]
• Offline scheduling [AAMAS-19a]
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Future Directions
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An algorithmic framework for coordinating long-term task- and motion-
level operations for teams of agents

Robust Long-Term Task & Path Planning

Summary

94

Path Planning“Agents should not collide with each other”

Joint Task & Path Planning“Agents need to decide where to go next”

“Agents should be able to execute the plan” Plan Execution with System Dynamics

Hang Ma (hangma@usc.edu)

“Agents need to be retasked”

Future Directions



Research Questions
• How to design intelligent algorithms that make fast and good

decisions to coordinate teams of agents?
• Coordination of task- and motion- level operations: A fundamental building 

block for multi-agent systems

95Future DirectionsHang Ma (hangma@usc.edu)



Larger Teams of Agents are the Future!

96Future DirectionsHang Ma (hangma@usc.edu)

US Unmanned Aircraft System (UAS) Management System (NASA, 
Federal Aviation Administration, etc.)

• 1 year delayed = more than $10 billion dollars loss

Last-Mile Delivery: 2kg package in 10km radius
• Drones: 0.1 dollars
• Ground transportation: 2-8 dollars

Source: Dronelife

Expected drone production (U.S.) in 
2021:

• 29,000,000 consumer drones
• 805,000 commercial drones



Research Questions
• How to design intelligent algorithms that make fast and good

decisions to coordinate teams of agents?
• Task- and motion- level coordination: A fundamental building block for multi-

agent systems

• How to coordinate teams that consist of a mega-scale number of 
agents?

97Future DirectionsHang Ma (hangma@usc.edu)



Research Directions & Collaboration
• Larger teams:

• Mining historical data and learning
• GPU/cloud computing
• Mixed/virtual reality

98Future Directions

Source: USC ACT Lab

Hang Ma (hangma@usc.edu)



Smarter Teams of Agents are the Future!

99Future DirectionsHang Ma (hangma@usc.edu)

Smart Cities, Buildings, Homes, etc. (agents in other forms)
• Smart transportation

• Route planning
• Parking space assignment
• Intersection management
• Ride sharing (package transfers)
• …

• Smart homes
• Smart device scheduling
• Smart grid optimization
• …

• Other sustainability and security                                                                                
domains

• …

Source: IoT Agenda



Research Questions
• How to design intelligent algorithms that make fast and good

decisions to coordinate teams of agents?
• Task- and motion- level coordination: A fundamental building block for multi-

agent systems

• How to coordinate teams that consist of a mega-scale number of 
agents?

• How to build and coordinate teams of smarter agents that can better 
collaborate with and assist humans?

100Future DirectionsHang Ma (hangma@usc.edu)



Research Directions & Collaboration
• Larger teams:

• Mining historical data and learning
• GPU/cloud computing
• Mixed/virtual reality

101Future Directions

Source: USC ACT Lab

Source: Digital Trends

Source: ARC Web

• Smarter teams:
• Human-centered design
• Data-driven techniques
• Coordinating self-interest agents
• Smart manufacturing
• Smart traffic control, smart building 

construction
• Ethics and fairness of algorithms

Hang Ma (hangma@usc.edu)



Automated Planning,
Heuristic Search,

Probabilistic
Reasoning

Game Theory,
Mechanism Design

Optimization, Constraint & 
Spatio-Temporal Reasoning

Graph Theory,
Computational

Complexity

Research Directions

102

Operations 
Research

Machine 
Learning, 

Data Mining

Coordinating 
Agent Teams

Theory

Robotics

AI
Algorithms

Economic
Paradigm

Transfer,
Reinforcement

Learning

System Dynamics & Robustness,
Robot Control, Plan Execution ……

Future DirectionsHang Ma (hangma@usc.edu)



Communication,
Cyber Security

GPUs, TPUs,
Clouds

Research Directions

103

Computer 
Networks

Coordinating 
Agent Teams

Distributed 
Computing & 

HPC

Human 
Computer/ 

Robot 
Interaction

Artificial 
Intelligence

Virtual/Mixed Reality,
Human in the Loop

Future DirectionsHang Ma (hangma@usc.edu)



Traffic Regulation,
Building Structure,

Just-in-Time Manufacturing

Communication,
Cyber Security

GPUs, TPUs,
Clouds

Research Directions

104

Computer 
Networks

Social 
Science

Coordinating 
Agent Teams

Distributed 
Computing & 

HPC

Human 
Computer/ 

Robot 
Interaction

Artificial 
Intelligence

Civil/ 
Mechanical 
Engineering

Ethics, 
Fairness

Virtual/Mixed Reality,
Human in the Loop ……

Future DirectionsHang Ma (hangma@usc.edu)



Collaborators: Teams of Intelligent People 

105

Sven Koenig T. K. Satish Kumar

Nora Ayanian Craig ToveyWolfgang Hönig

Jiaoyang Li

AI Team

Robotics Team

Ariel Felner

Peter StuckeyDaniel Harabor

OR TeamTheory Team

Liron Cohen

and many more…

Hang Ma (hangma@usc.edu)



Thank You!
Hang Ma (hangma@usc.edu)
More information:
http://www-scf.usc.edu/~hangma/
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http://www-scf.usc.edu/%7Ehangma/


• Anonymous
• Can be assigned to any 

unexecuted task

Free agent Occupied agent

• Non-anonymous
• Must finish executing its current 

task

107

MAPD: Task Assignment

Robust Long-Term Task & Path PlanningHang Ma (hangma@usc.edu)
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