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This paper develops a computational framework to facilitate autonomous decision-
making under uncertainty for safe operation for drone-like vehicles. The proposed frame-
work is based on identifying and predicting the occurrence of various risk-factors that
affect the safe operation of such vehicles, and estimating the likelihood of occurrence of
these risk-factors. This analysis is then used to select trajectories for the operation of
the vehicle. Feasible trajectories are classified into four different categories: “nominal and
safe”, “off-nominal but safe”, “unsafe and abort the mission”, and “unsafe and ditch the
vehicle”. An important challenge in the operation of drones is that there are several sources
of uncertainty that affect their operation; these sources of uncertainty arise from wind con-
ditions, imprecise future power-demands, inexact future trajectories, etc. Therefore, it is
important to develop a decision-making framework that can incorporate all these sources
of uncertainty and make decisions that are robust to the presence of such uncertainty.
Potential risk-factors such as dynamic obstacles, battery drain, etc. are identified and the
likelihood of occurrence of these risk-factors are predicted preemptively and proactively in
order to facilitate risk-informed safety-assured decision-making.

I. Introduction

Research in the topic of unmanned aerial vehicles and systems has steadily increased in the past ten
to fifteen years. The Federal Aviation Administration (FAA) and the National Aeronautics and Space
Administration (NASA) have shown significant interest not only in the development of technologies for
unmanned aerial vehicles but also in the development of unmanned traffic management systems.

With the anticipated advent of unmanned aerial traffic and substantial increase in manned air traffic, the
overall safety of the United States National Airspace System needs to analyzed carefully. Unmanned aerial
vehicles will have access to civilian air space only when the safety of the airspace, government/public/private
property, and to an extent, the vehicle itself can be guaranteed.

The development of unmanned vehicles requires the simultaneous development of several technologies
for sensing and data logging,1–5 fault tolerant flight control,6–8 simultaneous localization and mapping
(SLAM),9–12 obstacle detection and avoidance,13,14 optimal power management,15–17 path planning and
trajectory design,18–21 autonomous decision-making,22,23 etc. Researchers around the world have been fo-
cusing on the development of each of these techonlogies as well as the overall system-level integration for the
development and design24 of the entire vehicle.

In particular, the low-altitude flight of drone-like unmanned aerial vehicles — specifically quadcoptors
and octocopters — in urban environments25 is of specific interest. It is also important to understand that
large corporations such as Google (Google Wing) and Amazon (Prime Air) are also interested in this issue.
According to Koperdaker,25 the near-term goal (1-5 years) is to safely enable low-altitude airspace and UAS
operations while the long-term goal (10-15 years) is to safely enable massive increases in airspace density
and UAS operations.
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These goals are particularly challenging because there is a significant amount of uncertainty and numerous
factors that are constantly and dynamically evolving in low-altitude urban environments. As a result,
developing a methodology for safe, autonomous decision-making still remains an unsolved problem.

The goal of this paper is to develop a computational framework that can aid autonomous, probabilistic
decision-making for unmanned aerial vehicles, particularly in urban environments where several factors are
uncertain and dynamically evolving. The presence of uncertainty implies that it is necessary to systematically
quantify such uncertainty, estimate its effect on the unmanned aerial vehicle (UAV), identify risk-factors (such
as obstacle collision, untimely battery drain, etc.), compute the likelihoods of occurrence of such risk-factors,
estimate the risk associated with various trajectories in a dynamic manner (risk associated with an event is
typically estimated as a combination of the likelihood of that particular event and the cost associated with
the event), and facilitate decision-making in terms of path planning and trajectory selection.

The key features and benefits of the proposed computational framework are as follows:

1. The proposed computational framework is preemptive and proactive in nature. Given a trajectory, this
approach forecasts the future behaviour of the UAV, identifies potential risk-factors, and dynamically
computes the likelihood of each risk-factor continuously as a function of future time. As a result, the
framework can predict the likelihood of a risk-factor continuously as a function of future time, and
therefore, can identify the future time at which there may be a potential risk-factor with a likelihood
greater than a critical value.

2. The proposed framework systematically identifies the various sources of uncertainty, quantifies each
uncertainty individually, estimates the overall effect of these uncertainties on the operation of the UAV,
and accurately calculates the likelihood of future risk-factors in order to guide decision-making under
uncertainty.

3. The proposed framework is modular and can incorporate different types of risk-factors that affect the
safety of the UAV; the framework can identify prospective risk-factors in advance based on sensor data
and provides a fundamental platform for information fusion where all the data from sensors can be
combined with available models in order to guide decision-making.

The rest of this paper is organized is follows. Section II describes the overall approach for probabilistic
decision-making under uncertainty, and Section III discusses the methodology for computing the likelihoods
of risk-factors as a function of future time. Section IV presents the application of the proposed decision-
making methodology to a UAV, and finally, Section V concludes the paper, with a brief summary and
suggestions for future research work.

II. Decision-Making Under Uncertainty

A. Goal of Decision-Making: Trajectory Selection

An ideal decision-making algorithm should autonomously work in conjunction with the path planner (that
generates trajectories) to identify whether a given trajectory is safe or not. In order to achieve this goal,
the decision-making algorithm leverages information available from various sources as shown in Fig. 1, and
identifies safe trajectories for real-time flight.

As seen from Fig. 1,26 a trajectory is classified as follows:

1. Safe

(a) Nominally safe: The likelihoods of risk-factors are extremely low

(b) Off-nominal but safe: The likelihood of risk-factors are higher than the nominal scenario, but still
low enough to be considered safe

2. Unsafe: The likelihood of risk-factors are considerably high.

The limits for likelihood demarcating (1) the nominally safe scenario and the off-nominally safe scenario;
and (2) the safe and unsafe scenarios need to be assigned based on computing the costs/risk associated with
each risk-factor.

If a trajectory is unsafe, then it is necessary to identify whether it is possible to generate a trajectory
that can:
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Figure 1: Goal of Decision-Making: Identify Safe Trajectory

1. Abort the mission and return the UAV safely to a landing site; (or)

2. Abort the mission and ditch the UAV without any loss of private and/or public property.

These four different types of trajectories, i.e., nominally safe, off-nominal but safe, abort and return
to base, and abort and ditch, are identified in Fig. 1. Note that the scope of this paper is limited to
identifying whether a given trajectory is safe or not; further classification and aspects of decision-making
will be considered in future work.

B. Risk-Factors

While there are different types of risk-factors that are associated with flights in urban environments, they
can be broadly classfied into two categories, as shown in Fig. 2.26
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Figure 2: Risk-Factors in Low-Altitude Urban Environment Flight

As seen from Fig. 2, risk-factors may arise simply out of uncertainties (inherent variability, lack of infor-
mation, etc. due to GPS Denied, degraded sensors, dynamic obstacles, etc.) or due to vehicular performance
constraints (such as rapidly draining battery, lack of control, etc.) The decision-making system needs to
assess all risk-factors as far as possible, assimilate information from the sensors, and select trajectories. Note
that the decision-making is both risk-informed (since it calculates the likelihood of risk-factors along with
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the associated risk) and safety-assured (selects only those trajectories that are considered “safe”, i.e., the
likelihood of a risk-factor is far below a critical limit and hence the operation is considered safe).

C. Decision-Making through Information Fusion

Given a trajectory, and a risk-factor, how should the determine whether the trajectory is safe? Modern
reliability analysis27 defines safety using the so-called limit state function, i.e., a curve of demarcation
between a predefined “safe region” and an “unsafe region”.

In simple scenarios, the idea of the limit state can be viewed in terms of capabilities (C) and requirements
(R). When capabilities of a system are more than its requirements, then the system is said to be safe;
otherwise, the system is considered to be unsafe. The limit state is then represented by the equation that
implies capabilities are equal to requirements C −R = 0.

In more realistic scenarios, the limit state can be represented as a generic function G(X) = 0, where X
represents the vector of quantities that affect the limit state. In the context of this paper, X may potentially
include (depending on the risk-factor under consideration) wind information, obstacle information, vehicular
information (including motion, dynamics, and properties), energy information, and trajectory information,
as shown in Fig. 3. Without loss of generality, the region represented by the curve G(X) > 0 can be assumed
to be the safe region, and the region represented by the curve G(X) < 0 can be assumed to the be the unsafe
region.

Trajectory	Informa/on	 T 

Iden/fy	a	trajectory	Wind	Informa/on	

Obstacle	Info	

Mo/on	Informa/on	

Failure	Informa/on	

Energy	Informa/on	

W 

O 

M 

E 

UAS	Dynamics	and	
Proper/es	

V 

Probabilis/c	Risk	Es/mate	of	
“Safely”	Abor/ng	vs.	Ditching	

Risk:	Likelihood	+	Cost	

Abort	
Ditch	

P(Safe),	P(Off-Nominal	Safe),	P(Unsafe)	

Decision-Making	and	Trajectory	

Informa/on	Fusion	

G <	0 

Safe	

Nominal	performance	
level	for	opera/on	

Off-Nominal	
Safe	

UnSafe	

Requirements	(R)	 Capabili/es	(C)	

C – R = G (W,O,M,E,D,V,T) 
Probabilis/c	Integra/on	

Figure 3: Framework for Decision-Making

As mentioned earlier in Section I, it is likely that elements contained in the vector X are all uncertain
quantities and hence, these are represented as probability distributions in Fig. 3. It is therefore necessary
to compute the probability (P (G) < 0), and this probability corresponds to the likelihood of the risk-factor
under consideration. It is important to compute this likelihood continuously as a function of future time
(starting with the time of prediction) until the end of the trajectory under consideration. This computation
is discussed in detail in the following section.
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III. Framework for Prediction: Likelihood of Risk-Factor

Consider a given trajectory and a generic time of prediction tP at which it is necessary to calculate the
likelihood of a particular risk-factor continuously as a function of future time (∀ t > tP ).

In order to achieve this goal, it is necessary to model the evolution of the UAV continuously as a function
of time along with the evolution of external factors related to the risk-factor. For instance, in the case of a
collision against a dynamic obstacle, it may be necessary to model the evolution of the position of the UAV
continuously as a function of time (based on the planned trajectory), and the anticipated position of the
dynamic obstacle (which is typically uncertain if the trajectory of the obstacle is unknown and can only be
approximately quantified based on its position and velocity as estimated by the sensors on the UAV).

A. Modeling the Evolution of State With Respect to the Risk-Factor

Consider the state space model which is used to continuously predict the state of the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state equation, and t is the continuous time variable. Note
that the above state vector is not necessarily equal to the aerodynamic state of the UAV (measured in terms
of position, attitude, etc.); instead, this state vector is directly related to the risk-factor under consideration.
If collision against a dynamic obstacle is a risk-factor, then this state vector contains the position of the UAV.
On the other hand, if battery-charge draining is a risk-factor, then this state vector contains the charge of
the battery of the UAV. Note that all the quantities in Eq. 1 are uncertain in nature and need to be treated
probabilistically.28

The state vector at time tP , i.e., x(t) (and the parameters θ(t), if they are unknown) is (are) esti-
mated using output data collected until tP . Let y(t) ∈ Rny , n(t) ∈ Rnn , and h denote the output vector,
measurement noise vector, and output equation respectively. Then,

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

Typically, filtering approaches such as Kalman filtering, particle filtering, etc. may be used for such state
estimation.29

Having estimated the state at time tP , Eq. (1) is used to predict the future states of the compo-
nent/system. This differential equation can be discretized and used to predict x(t) for all t > tP .

B. Modeling the Risk-Factor

Risk-Factors can be expressed in terms of a binary constraint function cH(x(t),θ(t),u(t)) = 1 that maps
a given point in the joint state-parameter space given the current inputs, (x(t),θ(t),u(t)), to the Boolean
domain B , [0, 1]. Without loss of generality, cH(x(t),θ(t),u(t)) can be written as cH(t); cH(t) = 1 implies
that the risk-factor is encountered at time t whereas cH(t) = 0 implies that the risk-factor is not encountered
at time t.

At any generic time of prediction tP , note that the constraint function cH(t) associated with each risk-
factor is a function of t. Therefore, the approach needs to forecast all available information until future time
t in order to predict the occurrence of the risk-factor. Thus, it needs all information (states, parameters,
and inputs in Eq. 1) between time tP and t.

C. Likelihood of Risk-Factor and Prediction of Time of Occurrence

Typically, there are two quantities of interest, in the context of risk-factor prediction:

1. Time of Occurrence: At any time of prediction tP , it is useful to know the future time at which the
risk-factor will be encountered. Let TH(tP ) denote this quantity. This information can be helpful in
determining the amount of time remaining so that corrective action may be taken. However, due to
the uncertainties involved, this quantity is a probability distribution.
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2. Likelihood of Occurrence of the Risk-Factor as a function of time: At any time of prediction tP , it is
also useful to know the likelihood of the occurence of risk-factor as a function of future time. This
likelihood is denoted as PH

t (tP ); note that this is a trajectory as a function of future time t and changes
with the time of prediction tP .

First, at any tP , the time of occurrence of a risk-factor (that is, the future time at which the risk-factor
will be encountered) can be written as:

TH(tP ) , inf{t ∈ R : t ≥ tP ∧ cH(t) = 1}. (3)

It can be easily seen that TH(tP ) depends on the state at time of prediction, future inputs/parameters,
etc., which are uncertain in nature; in order to calculate the probability distribution of TH(tP ), it is nec-
essary to systematically propagate the aforementioned uncertain quantities and quantify their effect on the
probability distribution of TH(tP ). Second, PH

t (tP ), i.e., the likelihood of the risk-factor at future time t
(predicted at time tP ) can be expressed as P (cH(t) = 1).

The computation of both the probability distribution of TH(tP ) and the probability P (cH(t) = 1) can be
accomplished using Monte Carlo sampling-based techniques, analytical techniques based on first-order and
second-order reliability methods, or hybrid methods involving machine learning approaches.28,30

The next section explains the application of these methods to the operation of a small unmanned aerial
vehicle, by focusing on two risk-factors: battery discharging and collision prediction. For each risk-factor,
the likelihood of occurrence of risk-factor is computed using constituent models.

IV. Illustration: Application to a Small UAV

Consider a small octocopter, operating in an urban environment. This vehicle is powered by lithium-
polymer batteries and has a flying time of around 15 minutes. Such a duration is ideal for missions such as
package delivery, inspection (including taking pictures), or even for monitoring the surrounding environment.
While different possible trajectories can be generated in order to complete the mission at hand, it is important
for the decision-making algorithms to select trajectories that satisfy the various vehicular constraints and
ensure safe operation of the UAV.

There are several possible risk-factors such as battery discharging, collision against obstacles, extreme
wind conditions, presence of system-level faults, loss of control, etc., that affect the flight of the octocopter.
Two risk-factors have been selected for illustration in this section; it is straightforward to extend the proposed
approach to any risk-factor by selecting appropriate models for the risk-factor and identifying mathematical
conditions that define the occurrence of such risk-factor.

A. Risk-Factor Example: Battery Discharging

The octocopter under consideration is powered by a Lithium Polymer battery that is discharging continuously
as a function of time. Based on the planned trajectory, it is necessary to predict future power requirements
and estimate if there is sufficient charge remaining to execute the planned trajectory.

The flowchart for decision-making in terms of battery discharging is indicated in Fig. 4. The fundamental
idea is to continuously evaluate at every time-instant of prediction whether a given trajectory will completely
discharge the battery before the end of the trajectory. If discharging is complete prior to the end of the
planned trajectory, then the trajectory needs to be rejected right away (being proactive and preemptive)
at the time-instant of prediction rather than waiting for the discharging to actually happen. This is ac-
complished by computing the probability that “the battery would have fully discharged” as a continuous
function of future time, and this analysis is repeated at every time-instant of prediction. Such a continuous
function for a practical operational scenario is indicated in Fig. 5.

As seen from Fig. 5, the probability is initially close to zero, and then steadily increases as the battery
is gradually discharging. At a future time of approximately 800 seconds, this probability rises above 80%.
Hence, it would be “risky” to approve any trajectory that lasts longer than 800 seconds.

B. Risk-Factor Example: Collision Against Dynamic Obstacles

Dynamic obstacles cannot be planned for, during the trajectory generation stage since they cannot be
anticipated in advance; they need to be detected and accounted for during flight. The decision-making
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Figure 5: Probability that the Battery is Fully Discharged at Future Time

algorithm needs to approve or reject trajectories that would lead to an eventual collision between the UAV
and such obstacles.

When dynamic obstacles are present in the environment, collision against such obstacles is inherently a
risk-factor; therefore, a mathematical condition that determines the occurrence of such a risk-factor can be
expressed as “when the separation distance between the UAV and the obstacle is less than an acceptable
threshold”. The flowchart for decision-making in terms of collision prediction is indicated in Fig. 6.

Note that the algorithm uses information regarding the current position of the obstacle to estimate the
velocity and the trajectory of the obstacle. If more information were available to compute the trajectory of
the obstacle (for instance, if the obstacle were another UAV, then the trajectory of that other UAV could
be fully known, where unmanned air/drone traffic is coordinated), such information would be more useful in
practical scenarios. Based on whether the planned trajectory of the UAV would come into close proximity
with the obstacle in the future, the decision-making algorithm approves or rejects the trajectory. This is
accomplished by computing the probability that “separation distance between the UAV and a dynamic
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Figure 6: Decision-Making: Collision Against Dynamic Obtacles

obstacle is less than a predetermined critical minimum” as a continuous function of future time, and this
analysis is repeated at every time-instant of prediction. Such a continuous function for a practical operational
scenario is indicated in Fig. 7.
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Figure 7: Probability that Separation Distance is Less Than An Acceptable Minimum

As seen from Fig. 7, the probability is initially close to zero, and then increases as the UAV is nearing
the obstacle. At a future time of approximately 520 seconds, this probability rises above 80%. Hence, this
approach gives a measure of the amount of time available (approximately, 100 seconds in this case) to alter
the ongoing trajectory in order to avert an impending collision. (The decrease in the probability happens
here because the UAV’s intended trajectory moves away from the obstacle’s estimated trajectory but later,
the UAV turns and as a result, comes closer to the obstacle again leading to an increase in the probability.)
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V. Conclusion

This paper presented a computational framework for decision-making under uncertainty, to facilitate the
autonomous, safe operation of small drone-like unmanned aerial vehicles. This predictive framework was
based on the identification of risk-factors that affect the safe operation of such vehicles, and predicts the
occurrence of events related to such risk-factors during the operation of the vehicle. By analyzing various
risk-factors, the framework classified possible trajectories into four categories: “nominal and safe”, “off-
nominal but safe”, “unsafe and abort the mission”, and “unsafe and ditch the vehicle”. This facilitated the
optimal selection of trajectories that can achieve the mission objectives while guaranteeing minimum safety
during operation. In order to achieve this goal, the likelihood of occurrence of risk-factors was systematically
computed and predicted during the course of operation; the proposed framework was preemptive because it
can predict the likelihood of a risk-factor continuously as a function of future operational time, and therefore,
identify the future time at which a potential risk-factor may be encountered. Such computation of likelihood
also required a systematic integration of the various sources of uncertainty that affect the operation of
these unmanned aerial vehicles; this inclusion of uncertainty is particularly important when the focus is
on preemptively predicting the future operation (future operations are significantly affected by uncertainty
regarding the future conditions) and making changes to a predetermined trajectory.

While this paper presented a computational framework for decision-making, there are several directions
for future research work. It is necessary to develop methods to select trajectories for aborting the mission
or ditching the octocopter when safe trajectories or not possible. It is also necessary to account for faults
that may occur in the system and incorporate diagnostic information into the decision-making procedure.
It is necessary to include multiple risk-factors into the proposed framework and expand the computation
of likelihoods; it is also important to incorporate risk measures into the proposed framework. While the
present version of implementation focuses on simply predicting when future risk-factors will be encountered,
ongoing research is focusing on seamlessly integrating this framework into the trajectory selection/generation
procedure. Finally, it is important to transform the proposed framework into onboard technology that can
be mounted as hardware used on unmaned aerial vehicles, to guide onboard autonomous, safe, operational
decision-making.

Acknowledgment

This work was supported by the NASA Ames SAFE50 Center Innovation Fund (CIF) project and the UAS
Traffic Management (UTM) Sub-project, under the NASAs Safe Autonomous Systems Operations (SASO)
Project. This research was also partly funded by a NASA-DHS inter-agency agreement. This support is
gratefully acknowledged. The authors also thank all members of the SAFE50 team for engaging in many
hours of discussions on various topics discussed in this paper.

References

1Berni, J. A., Zarco-Tejada, P. J., Suárez, L., and Fereres, E., “Thermal and narrowband multispectral remote sensing
for vegetation monitoring from an unmanned aerial vehicle,” Geoscience and Remote Sensing, IEEE Transactions on, Vol. 47,
No. 3, 2009, pp. 722–738.

2Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., and Sukhatme, G., “Autonomous deployment and repair
of a sensor network using an unmanned aerial vehicle,” Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, Vol. 4, IEEE, 2004, pp. 3602–3608.

3Everaerts, J. et al., “The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping,” The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 37, 2008, pp. 1187–1192.

4Sharp, C. S., Shakernia, O., and Sastry, S. S., “A vision system for landing an unmanned aerial vehicle,” Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, Vol. 2, IEEE, 2001, pp. 1720–1727.

5Shakernia, O., Vidal, R., Sharp, C. S., Ma, Y., and Sastry, S., “Multiple view motion estimation and control for landing an
unmanned aerial vehicle,” Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, Vol. 3,
IEEE, 2002, pp. 2793–2798.

6Ducard, G. J., Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles,
Springer Science & Business Media, 2009.

7Kim, B. S. and Calise, A. J., “Nonlinear flight control using neural networks,” Journal of Guidance, Control, and
Dynamics, Vol. 20, No. 1, 1997, pp. 26–33.

8Kim, H. J., Shim, D. H., and Sastry, S., “Nonlinear model predictive tracking control for rotorcraft-based unmanned
aerial vehicles,” American Control Conference, 2002. Proceedings of the 2002 , Vol. 5, IEEE, 2002, pp. 3576–3581.

9 of 10

American Institute of Aeronautics and Astronautics



9Caballero, F., Merino, L., Ferruz, J., and Ollero, A., “Unmanned aerial vehicle localization based on monocular vision
and online mosaicking,” Journal of Intelligent and Robotic Systems, Vol. 55, No. 4-5, 2009, pp. 323–343.

10Wang, J., Garratt, M., Lambert, A., Wang, J. J., Han, S., and Sinclair, D., “Integration of GPS/INS/vision sensors to
navigate unmanned aerial vehicles,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, Vol. 37, 2008, pp. 963–970.

11Gupte, S., Mohandas, P. I. T., and Conrad, J. M., “A survey of quadrotor unmanned aerial vehicles,” Southeastcon, 2012
Proceedings of IEEE , IEEE, 2012, pp. 1–6.

12Kim, J.-H. and Sukkarieh, S., “Airborne simultaneous localisation and map building,” Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, Vol. 1, IEEE, 2003, pp. 406–411.

13Sinopoli, B., Micheli, M., Donato, G., and Koo, T. J., “Vision based navigation for an unmanned aerial vehicle,” Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, Vol. 2, IEEE, 2001, pp. 1757–1764.

14Shim, D. H., Chung, H., and Sastry, S. S., “Conflict-free navigation in unknown urban environments,” Robotics &
Automation Magazine, IEEE , Vol. 13, No. 3, 2006, pp. 27–33.

15Kim, K., Kim, T., Lee, K., and Kwon, S., “Fuel cell system with sodium borohydride as hydrogen source for unmanned
aerial vehicles,” Journal of power sources, Vol. 196, No. 21, 2011, pp. 9069–9075.

16Marsh, R., Vukson, S., Surampudi, S., Ratnakumar, B., Smart, M., Manzo, M., and Dalton, P., “Li ion batteries for
aerospace applications,” Journal of power sources, Vol. 97, 2001, pp. 25–27.

17Saha, B., Koshimoto, E., Quach, C., Hogge, E., Strom, T., Hill, B., and Goebel, K., “Predicting Battery Life for Electric
UAVs,” AIAA Infotech@ Aerospace, 2011.

18Yang, G. and Kapila, V., “Optimal path planning for unmanned air vehicles with kinematic and tactical constraints,”
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on, Vol. 2, IEEE, 2002, pp. 1301–1306.

19Jun, M. and DAndrea, R., “Path planning for unmanned aerial vehicles in uncertain and adversarial environments,”
Cooperative control: models, applications and algorithms, Springer, 2003, pp. 95–110.

20Rysdyk, R., “Unmanned aerial vehicle path following for target observation in wind,” Journal of guidance, control, and
dynamics, Vol. 29, No. 5, 2006, pp. 1092–1100.

21Sigurd, K. and How, J., “UAV trajectory design using total field collision avoidance,” American Institute of Aeronautics
and Astronautics, 2003.

22Ollero, A. and Maza, I., Multiple heterogeneous unmanned aerial vehicles, Springer Publishing Company, Incorporated,
2007.

23Ruff, H. A., Narayanan, S., and Draper, M. H., “Human interaction with levels of automation and decision-aid fidelity
in the supervisory control of multiple simulated unmanned air vehicles,” Presence: Teleoperators and virtual environments,
Vol. 11, No. 4, 2002, pp. 335–351.

24Cai, G., Feng, L., Chen, B. M., and Lee, T. H., “Systematic design methodology and construction of UAV helicopters,”
Mechatronics, Vol. 18, No. 10, 2008, pp. 545–558.

25Kopardekar, P. H., “Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and
UAS Operations,” Tech. Rep. NASA/TM2014218299, NASA Ames Research Center, Moffett Field, CA 94035, USA, April
2014.

26Krishnakumar, K., Ippolito, C., Kopardekar, P., Melton, J., Stepanyan, V., Sankararaman, S., and Nikaido, B., “Safe
Autonomous Flight Environment (SAFE50) for the Notional Last “50 ft” of Operation of “55 lb” Class of UAS,” AIAA SciTech
Conference, Grapevine, Texas, USA, AIAA, 2017.

27Hohenbichler, M. and Rackwitz, R., “First-order concepts in system reliability,” Structural safety, Vol. 1, No. 3, 1983,
pp. 177–188.

28Sankararaman, S., “Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life
prediction,” Mechanical Systems and Signal Processing, Vol. 52, 2015, pp. 228–247.

29Sankararaman, S., Daigle, M. J., and Goebel, K., “Uncertainty quantification in remaining useful life prediction using
first-order reliability methods,” Reliability, IEEE Transactions on, Vol. 63, No. 2, 2014, pp. 603–619.

30Haldar, A. and Mahadevan, S., Probability, reliability, and statistical methods in engineering design, John Wiley, 2000.

10 of 10

American Institute of Aeronautics and Astronautics


