
The URBAN Large-scale UAS Flight

Management System

Thomas C. Henderson

University of Utah

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

6 August 2019

Abstract

This document details the algorithms and data structures of the URBAN Large-scale UAS Flight

Management System.

1 Introduction

URBAN is a large-scale USA flight management simulation system written in Matlab. The current

set of functions includes:

An example simulation set:

UR_URBAN_sim1

* UR_gen_roads_fixed1

* UR_flight_manager

- UR_gen_airways

+ UR_gen_corridors

- UR_comms

- UR_find_fp

+ UR_shortest_path_cor

+ UR_possible_times_int

o UR_OK_sched_req_enum

1



o UR_merge_intervals

* UR_run_USS

* UR_error

Miscellaneous functions:

UR_URBAN_sim_SLC

UR_URBAN_sim_Renyi

UR_sow_airways3D

UR_display_flights_cor

UR_gen_roads_fixed

UR_gen_roads_fixed3x3

UR_gen_roads_X

UR_USS_17

UR_USS_23

UR_USS_111

UR_save_session_data

UR_MW_vis

The simulation is organized around a set of agents:

• flight manager

• comms agent

• USS agents

• UAV agents

The flight manager and all USS agents first register with the comms agent in order to get a comms

code and to enable transmission of messages to other agents. Once USS’s are registered with the

comms agent, they must register with the flight manager. After USS agents have received a regis-

tration acknowledgment from the flight manager, they can send flight scheduling requests. Such a

request has a message with the following information:

.data: [USS_ID, speed, Op_id, pf_id, launch_vertex, land_vertex,

time_start, time_end, request_number]

1.1 Flight Manager

The flight manager:

2



• initializes corridors (given a set of roads and intersections)

• acquires launch/land sites

• registers with comms agent

• registers USS’s

• schedules flights for USS’s

1.2 USS Agents

USS’s handle flights for operators:

• gets launch and land sites

• registers with comms agent

• registers with flight manager

• generates flight requests

• requests flight schedules from flight manager

• receives telemetry info from UAS’s (not implemented)

• sends contigency info to UAS’s and flight manager (not implemented)

1.3 UAS Agents

Each USS agent will ultimately be a separate Matlab function with its own custom data and ex-

periences. It will run a percept-action agent loop and will have state (e.g., x, y, z, ẋ, ẏ, ż, heading,

ground speed) as well as sensor data (i.e., percepts like GPS, altimeter, ground speed, cameras, lidar,

etc.).

• has own platform info

• has communication info

• has agent framework

– receives percepts and messages

– provides actions and messages

– handles contingencies

3



1.4 Mirror World Agent

The MirrorWorld agent takes the simulation information and provides a visualization; it may also

provide a physical simulation for each platform:

• receives flight launch info and agent function names

• gives percept data to UAS agents

• gives messages to agents

• receives actions from agents

• updates UAS state based on requested action and environmental conditions

• handles communication between agents

1.5 System Flow Chart

The process flow is as shown in Figure 1.

Figure 1: Flow of Simulation Processing.

4



2 Data Structures and Associated Files

2.1 Global Data Structures

The global data structures are defined in UR flight manager:

global g_radius g_offset g_del

g_radius: radius for roundabout circles

g_offset: offset from circle into between vertex lanes

g_del: perpendicular offset onto circle

global g_USS_info

g_USS_info: describes USS’s

global g_airways

g_airways: describes airways

global g_z_upper g_z_lower g_z_circle g_z_launch g_z_land

g_z_upper: altitude for upper lane between intersections

g_z_lower: altitude for lower lane between intersections

g_z_circle: altitude for roundabouts

g_z_launch: altitude for launch site (on ground)

g_z_land: altitude for landing site (on ground)

global g_speed

g_speed: unused

global g_flights g_flight_plans

g_flights: flight info by corridor

g_flight_plans: flight plan info by UAS

global g_launch_vertexes g_land_vertexes

g_launch_vertexes: indexes of road vertexes for launch sites

g_land_vertexes: indexes of road vertexes for land sites

global g_ht

g_ht: min headway time between flights

5



2.2 g airways

Airways are described by the following fields:

.vertexes: road intersection locations (2D) [x_i,y_i]

.edges: road connections [index_i1,index_i2]

.launch_vertexes: indexes (road) of launch site vertexes

.land_vertexes: indexes (road) of land site vertexes

.corridors: corridor info for all corridors

[x1 y1 z1 x2 y2 z2 zone c_ind1 c_ind2 v_ind1 v_ind2]

.cor_vertexes: 3D corridor vertex data [x_i,y_i,z_i]

.cor_edges: corridor edges [index_i1,index_i2]

2.3 g USS info

USS info provides info about the USS’s.

g_USS_info(k) has the fields:

.id (comms code)

.requests

.flights

.uname: function name (e.g., ’UR_USS_111’)

2.4 g flights

g flights gives the scheduled flights ordered by corridor:

g_flights(c).flights: c is the corridor number

[t1 t2 speed corr USS_id Op_id pf_id launch_vertex land_vertex]

Some other data structures used to handle flights include:

flight_plans(k).data: corridor sequence for a flight

[t11 t12 speed corr1 USS_id Op_id pf_id launch_vertex land_vertex,

t21 t22 speed corr2 USS_id Op_id pf_id launch_vertex land_vertex,

...

tn1 tn2 speed corrn USS_id Op_id pf_id launch_vertex land_vertex]

6



An individual flight plan is put into the flight info data structure.

3 Time

Time is currently handled as integer steps. Some work was done to use current date and time

functions and encode them in an index (by minute from some start time, e.g., 1 January 2019).

cur_date = date;

cur_time = clock;

time_index = UR_time_index(cur_date,cur_time(4),cur_time(5));

4 Communications

Communications is handled so as to simulate radio transmissions to some extent. The UR comms

function allows 4 actions:

• DIRECTORY: request comm code for known entities

• SEND: send a message

• RECEIVE: receive messages

• REGISTER: register to get a comms code

UR comms takes the parameters: (1) action, (2) params, and (3) mess. These variables take on

different values according to the requested action.

4.1 Directory Action

The DIRECTORY action returns either the flight manager comms code or that of the comms agent.

action: 1

params: can either be ’flight-manager’ or ’comms’ – it is not possible to get the comms code for

any other entity

7



mess: [] (empty)

4.2 Send Action

The SEND action sets up a message to be relayed to another agent.

action: 2

params: [< my comms code >,< other comms code >]

mess: struct with fields:

.type (int)

== 1: USS2FM

== 2: FM2USS

.code: sender’s comms code

.action:

== 1: register

== 2: request

.data: depends on type, code and action

type code action data

-----------------------------------------------------------

1 - 1 USS_name (string)

1 - 2 [USS_id, speed, Op_id, pf_id,

launch_vertex, land_vertex,

t_start, t_end, req_no]

-----------------------------------------------------------

2 <FM_code> 1 USS index in flight manager

2 <FM_code> 2 flight plan:

[t_start, t_end, speed, corridor,

USS_id, Op_id, pf_id, launch_vertex,

land_vertex,]

8



4.3 Receive Action

The RECEIVE action allows an agent to obtain all messages sent to it since its last request.

action: 3

params: [< my comms code >,< other comms code >]

mess: [] (empty)

4.4 Register Action

The REGISTER action allows an agent to register with the comms agent.

action: 4

params: < my name > (string

mess: [] (empty)

4.5 Internal Message Representation

UR comms represents messages in a vector struct:

messages(k).sender: <comms_code>

.receiver: <comms_code>

.mess message with fields:

.type

.code

.action

.data

The message format is:

9



.type: 1: USS to flight manager

2: Flight manager to USS

.code: <sender comms code>

.action: 1: register (from USS) / ACK (from flight manager)

2: request (from USS) / ACK (from flight manager)

.data <appropriate to type and action>

4.6 Examples

Flight manager registers with comms agent:

FM_comm = UR_comms(COMM_DIRECTORY,’flight-manager’,[]);

Flight manager requests messages (i.e., a RECEIVE action);

messages = UR_comms(COMM_RECEIVE,[FM_comm,0],[]);

Flight manager acknowledges USS registration:

mess_out.type = M_FM2USS;

mess_out.code = FM_comm;

mess_out.action = M_REGISTER;

mess_out.data = len_g_USS_info;

UR_comms(COMM_SEND,[FM_comm,mess.code],mess_out);

USS registers with comms agent:

my_comm = UR_comms(COMM_REGISTER,my_name,[]);

USS gets flight manager comms code:

FM_comm = UR_comms(COMM_DIRECTORY,’flight-manager’,[]);

10



USS registers with flight manager:

mess.type = M_USS2FM;

mess.code = my_comm;

mess.action = M_REGISTER;

mess.data = my_name;

UR_comms(COMM_SEND,[my_comm,FM_comm],mess);

USS requests messages (RECEIVE action):

message = UR_comms(COMM_RECEIVE,[my_comm,FM_comm],[]);

USS requests flight to be scheduled:

mess.type = M_USS2FM;

mess.code = my_comm;

mess.action = M_REQUEST;

mess.data = [USS_ID,speed,op_id,platform_id,launch_vertex,...

land_vertex,t_start,t_end,req_no];

UR_comms(COMM_SEND,[my_comm,FM_comm],mess);

5 Simulation Data File

Each simulation requires a data file containing values of parameters used to set up the airway corri-

dors (airlanes), and required headway. The file consists of 9 lines specifying:

Parameter Index Meaning

1 radius (roundabout radius)

2 offset (into lane from center of roundabout)

3 del (minimum distance between roundabout points)

4 z upper (upper airlane altitude)

5 z lower (lower airlane altitude)

6 z circle (roundabout altitude)

7 z launch (launch altitude)

8 z land (land altitude)

9 g ht (minimum headway time)

11


