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' Iraffic at the edge of chaos

movement of people and goods between origins and destinations
. And every decision is based on incomplete

information of the state of the transportation system as
a whole . Since complete global knowledge of the current

(and future ) state (s) of a transportation system seems

very difficult to obtain , future informational based control 

strategies probably to a large extent should be based
on self-organizing local strategies . However, that would
still not take away the tension between global and local
transportation optima which is one of the many reasons

why predictability is very difficult in such systems.
There is another source of unpredictability which may

very well become more dominating in a foreseeable future
: Assume that all these management measures and

modern information technology succeed in moving the

transportation system closer towards higher efficiency.
Then we face another problem . In road traffic systems,
there is a critical regime around maximal capacity , as
we shall see, which implies that transportation systems
are very sensitive to small perturbations in this regime.
Small perturbations will generate large fluctuations in

congestion formation and thus travel times .
This is the topic for our paper .
One method of dealing with the inherent complexi -

ties of the large transportation systems is to represent
the systems and generate their dynamics through simulation

. The most straightforward way seems to be a
bottom -up microsimulation of the dynamics of all travelers 

and loads at the level of where the transport decisions
are made. Starting with a generation of travel demands
and trip decisions, then routing , over traffic , eventually
the consequences for congestion frequencies, travel time ,
air quality etc. are generated and can thus be analyzed .
This is the approach used by the TRANSIMS project [4] ,
which this work also is a part of. Note that all the performance 

properties that we may be interested in in a

transportation system (in fact in any man-made system)
are emergent properties from the interacting objects in
the system. They are nowhere explicitly represented at
the level of the interacting objects . They are generated
through the dynamics .

The advantage of a microsimulation approach is that
the system dynamics is being generated through the simulation 

with all its emergent properties without any explicit 

assumptions or aggregated models for these properties
. The major disadvantages of a complete microsim -

We use a very simple description of human driving
behavior to simulate traffic. The regime of maximum 

vehicle flow in a closed system shows near-
critical behavior, and as a result a sharp decrease
of the predictability of travel time. Since Advanced
Traffic Management Systems (A T M Ss) tend to drive
larger parts of the transportation system towards
this regime of maximum flow, we argue that in consequence 

the traffic system as a whole will be driven
closer to criticality , thus making predictions much
harder. A simulation of a simplified transportation
network supports our argument.

1 . Introduction

More and more metropolitan areas worldwide suffer from
a transportation demand which largely exceeds capacity .
In many cases, it is not possible or , even not desirable to
extend capacity to meet the demand [1] . In consequence,
a consistent management of the large , distributed , man-

made transportation systems has become more and more

important . Examples of such activities include the construction 
of fast mass transit systems, the introduction of

local bus lines, design of traveler informational systems
and car pooling to improve the use of current capacity ,
introduction of congestion pricing , and in the long term
also guidance of the urban planning proce B B towards an
evolution of urban areas with lower transportation needs.

Unfortunately , the man-made transportation systems
are highly complex , which makes them very difficult to

manage. Due to the complexity of the dynamics of these

systems, control decisions often lead to counter -intuitive
results . In fact , management measures may even have

consequences opposite to their . intention . A clear example 
of how this can happen is the addition of a new

street in
. 
a particular road network which leads to a reduced 

overall capacity [2] . The reason for this dynamical
. response is an extreme example of the general conflict
between the individual traveler 's optimal travel plans
(Nash Equilibrium ) and the travel plans that give overall 

maximal throughput ; the System Optimum [3] . At
the level of a met ; opolitan region , the transportation dynamics 

is the aggregated result of thousands or , in some
cases, millions of individual trip - making decisions for the

Abstract

Kai N age141 C1d and Steen Rasmussen4lb,c

4TSA-DOjSA, MS-M997 and bCNLS, MS-B258, Los Alamos National Laboratory,
Los Alamos, NM 87545, U.S.A.

CSanta Fe Institute, 1660 Old Pecos Trail, Santa Fe, NM 87505, U.S.A.
d Zentrum mr Parallel es Rechnen ZPR, Universitit zu Koln, 50923 Koln, Germany.

kai Gzpr.uni-koeln.de, steen Glanl .gov



The single lane version of the model is defined on a
one-dimensional array of length L , representing asingle -
lane) freeway. Each site of the array can only be in one
of the following seven states: It may be empty , or it
may be occupied by one car having an integer velocity
between zero and five . This integer number for the velocity 

is the number of sites each vehicle moves during
one iteration . Before the movement , rules for velocity
adapt ion ensure "crash-free" traffic . The choice of five
as maximum velocity is somewhat arbitrary , but it can
be justified by comparison between model and real world
measurements, combined with the aim for simplicity of
the model . In any case, any value fJm4~ ~ 2 seems to
give qualitatively the same results (i .e. the emergence of
branching jam waves). For every (arbitrary ) configuration 

of the model , one iteration consists of the following
steps, which are each performed simultaneously for all
vehicles (gap := number of unoccupied sites in front of
a vehicle) :

. Acceleration of free vehicles : Each vehicle of
speed" < "mAC with gap ~ ,, + 1 accelerates to " + 1:
" - + " + 1.

. Slowing down due to other cars: Each vehicle
(speed,,) with gap ~ " - 1 reduces its speed to gap:
" -+ gap.

. Randomization : Each vehicle (speed ,,) reduces its
speed by one with probability 1/ 2: " -+ max[ " - 1, 0]
(takes into consideration individual fluctuations).

. Movement : Each vehicle advances" sites.

The three first steps may be called the "
velocity update" . The randomization step condenses three different

behavioral patterns into one single computational rule:
(i) Fluctuations at free driving , when no other car is
close; (ii ) Non-deterministic acceleration; (ill ) Overreactions 

when slowing down.

Already this simple model gives realistic back traveling
disturbances,. as can be seen in the top two pictures of
Fig. 1. In addition, one obtains a realistic fundamental
diagram for, e.g., the flow q versus the density p. Fig. 2
gives simulation results for: (i) short time averages in a
large system, (ii ) long time averages in a large system,
(ill ) long time averages in a small system. These results
are obtained for a closed system with periodic boundary 

conditions, i .e. "traffic in a closed loop
" . The small

system means L = 102, a long system has L ~ 104.

Figure l (ne~t page) . Space-time plots at different resolutions 
of traffic at different densities. Left column: Density 

p = 0.07, slightly below the regime of maximum low .
Right column: Density p = 0.1, slightly above the regime of
maximum low . Resolutions are from top to bottom 1:1, 1:4,
and 1:16. In other words, in the top row, each pixel corresponds 

to one site (z, t ), and one can follow the movement of
individual cars from left to right . In the bottom row., 16 x 16
pixel of the space-time information are averaged to one pixel
of the plot .
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ulation are extremely high computational demands on
one side and perhaps explanatory problems on the other .
The inclusion of many details of reality may be excellent
for generating a dynamics which is close to the system
under investigation , but it does not necessarily lead to a
better understanding of the basic (minimal ) mechanisms
that cause the dynamics . Therefore the TRANSIMS
project also includes the investigation of much simpler
and computationally less demanding models as the one
we are going to discuss here.

In this paper , we concentrate on an extreme case of
such a simplified transportation system. Out of the
many modes of transportation (bus, train , . . .) we only
include vehicular traffic , and we assume that all vehicles
as well as drivers are of the same type . Our model includes 

only single lane traffic , and the driving behavior
is modeled by only a few very basic rules. The travelers 

may have individual routing plans so that they know
the sequence of links and exits they want to use to go
from their origin to their destination on a

' 
given transportation 

network . They can also re-plan depending on
their earlier experiences of travel time . The approach
is extendable to , e.g., multilane traffic and/ or different
vehicle types [5, 6] .

We use numerical techniques from Computational
Physics (cellular automata [7, 8] ), and because of this
similarity together with the resulting high computational
speed [9] ,

. 
we are able to use methods of analysis originating 

in Statistical Physics (critical phenomena , scaling
laws) [10] . We obtain results which are easy to interpret
in the context of everyday experience, which is the more
surprising as it is common belief that traffic is deeply
coupled to the unpredictability of human behavior and
cannot be modeled in terms of simple cellular automata
rules.

Other large transportation microsimulation projects
which are also dealing with different aspects of the dynamic 

complexities of large transportation systems are
PARAMICS [11] and TRAFF / NETSIM [12] .

The main part of this paper is divided into two parts .
The first one deals with results for "traffic in a closed
loop

"
, i .e. without ramps or junctions . We review recent

results about the connection between jams , maximum
throughput , and critical behavior ; and we present new
results about the relation of these phenomena to travel
times . In the second part of the paper , we turn to networks

. We concentrate on a simple (minimal ) example ,
which is nevertheless sufficient to discuss some of the issues 

we believe a.re important , especially our prediction
that traffic ,systems become more variable when pushed
(by traffic management ) towards higher efficiency. Our
simulation results

' 
support this prediction . We finish

with a
' 
conclusion . 

.

2 . Single lane traffic in a closed loop

2.1 Single .lane cellular automata model

Our freeway traffic model has been described in detail in
~ ef. [13] . Therefore , we only give a short account of the
essentials.
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6(z, t ) is 1 if z is occupied at time t and 0 elsewhen; the
sum over "mGz sites is necessary so that each bypassing
vehicle is really "seen" by the algorithm. ~ simply is
the number of vehicles which passed at Zo during the
measurement time T .

According to Fig. 2, our model reaches capacity (=
maximum throughput) qmGZ = 0.318 % 0.001 at a density 

of p
. := p(qmu ) = 0.086 % 0.002 for large systems

(L ~ 104). In addition, the figure shows that for a
smaller system (L = 102) the maximum throughput is
~ uch higher. This means that short segments behave
differently from ldng ones!

A comparison with real traffic meas.urements [13] indicates 
that it is. reasonable to assume that , at least to

the order of magnitude, one site occupies about 7.5 m
(which is the sp~ e one car occupies in a jam ), one iteration 

is equivalent to about 1 second, and maximum
velocity 5 corresponds to about 120 km/ h.

It should be noted that the model so far can be treated
analytically [14]. The analytical results, however, are
more difficult to obtain;}lInd the analytic methodology is
not extendable to more complicated situations like multilane 

traffic, ramps, or networks ([5, 6], and see below).
. Other work using (mostly even simpler) cellular automata 

for traffic :Bow. on roads is, e.g., [15, 16].

where n (t) is the number of jams with a life- time exactly
= l in a given simulation run or number of runs .) For
a true percolation -like transition [20] one would expect
a behavior as depicted in Fig . 3a. Roughly speaking ,
the curves mean that , at low densities , long life- times
are very improbable . However, at densities higher than
critical , the system should be dominated by a few "

very
longlived

" 
jams , which only leave room for shortlived

jams between them . This leads to the N (~ t )-curve
becoming horizontal for large t . And in between one
would expect a "critical " 

density , at which these curves
converge towards a straight line (N (~ t ) cx t - a

) for P - .
Pc and t - . cx) .

In practice , we find a more complicated behavior for
our system [19, 21] . The following is a short interpretation

:
. The model has a certain probability P" on~ of the spontaneous 

initiation of a new jam , which depends on
the density of cars and on the amount of fluctuations
which happen when cars move at full speed.

. This probability provides an upper cut -off on the
length -scale and on the time -scale, up to which the
model can display critical behavior .

"True" critical behavior can be recovered, when the
model is redefined in a way that P" on~ = O. In terms of
the model , this means that one has to reduce the fluctuations 

of free driving (i .e. undisturbed by other cars)
to zero. Note that this leaves the fluctuations at accelerating 

and at slowing down unchanged. Once all cars
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density

Figure 2. Fundamental diagram of the model (throughput
versus density). Triangles: Averages over short times (200 iterations

) in a sufficiently large system (L = 10, 000). Solid
line: Long time averages (10' iterations) in a large system
(L = 10, 000). Dashed line: Long time averages (108 iterations

) for a small system L = 100.

Measurements are done at one fixed place in the system
; technically , we measure

1 to+T-l 1 mo+"_..-l
TE : ; - E 6(z,t)t=to mGm m=mo

~
N(?; t) := En (t) ,

 =iand

1
q = - ~ .

T

p
=

2.2 Critical life -times of traffic jams
Looking closer at traffic pattern near capacity (as in
Fig. 1), one makes at least two observations:
. Already at densities lower than p

* 
(left column of

Fig. 1), the system displays spontaneous jams. They
are sometimes very rare: In Fig. 1 their existence only
shows up in the bottom picture of the left column,
near the right of the picture.

. Space-time plots of systems near p
* have a remote

resemblance to a directed percolation transition [17]
and the emergence of the giant component in random
graphs [18] in the way that jams at densities p* have
a finite life-time, whereas there seem to be jams of
infinite life-times and spanning jam-clusters above p

*

(right column in Fig. 1).
A jam-cluster is roughly defined in the following way:
Spontaneous formation of a jam is caused by one car
accidently coming too close to the one ahead of it , which
leads to a lower speed than normal. Other cars which
have to slow down because of this car are "in the same
jam" . The life-time Tti/ a of this jam-cluster is the time
until this structure is dissolved (i .e. no more cars with
speed lower than normal).

In a more quantitative treatment, we measure the distribution 
of jam life-times using closed systems with different 

densities. We plot the number N (~ t ) of jams
with a life-time longer than t as a function of t in a dou-
blelogarithmic plot [19]. (Technically,
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Figure 3. Theoretical ( top) and simulated (bottom) distribution 
functions of life-times of traffic jams for a model where

the spontaneous initiation of jams is impossible (p,.,Oftt = 0).
The curves show, for different densities, the number of jams
with a life-time larger or equal than t as a function of t . (y-
axis arbitrary units)

have reached maximum speed (if density allows that ) ,
no new jam may initiate itself spontaneously . One can
then externally initiate one jam at a time (e.g. by picking
on car randomly and reducing its speed by 1) and measure 

the properties of this jam . Doing this with different
densities, we obtain the results of Fig . 3 bottom , which
show that in this particular limit , the model corresponds
indeed closely to the theoretical picture .

Please refer to the above-mentioned references for a
more complete description .

2 .S Variability and predictability of travel
. .

times

Measuring, the life- time distribution of traffic jams is convenient 
for a theoretical understanding , but it is not very

useful for everyday traffic . The probably most important
reason for this is that life- times of jam -clusters are prac-
'
tically not amenable to measurements.

A quantity which is much easier to measure and which
is extremely relevant in the context of transportation
management is the individual travel -time and its variation 

from vehicle; {o vehicle using the same route . For the

following simulations , we still use a closed loop of size L .
We define a subsegment of 'length l < L and measure,
for each car , the time t , between entry and exit of this

subsegment.
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Figure 4. Travel time and variations of travel time as a function 
of density. System me L = l Oa, length of traveled subsection 

I = 102, measured time T = 10' time-steps.

The relative variation of travel -times is defined as

v( (t, - (t, ))2).t,u(t ,) :=

( . . . ) denotes the average over all cars during the simulation

; ( t , ) therefore is the average travel -time for all
cars during the simulation .

Results of these measurements as a function of density
are shown in Fig . 4. We use a system of length L =
103 and measure trips along a designated subsegment
of I = 100. The simulation runs for 106 time steps,
and every time a car finish es a complete travel along the
measurement subsegment, its travel time is taken into
account for the average.

One clearly sees that both the travel time and the
vehicle- to- vehicle fluctuations are approximately constant 

up to a density around 0.09. There , the travel
time starts to rise as a function of density , and the fluctuations 

go up very steeply and reach a maximum near

p = 0.11. In other words , one can not only show that
the region of maximum throughput shows near-critical
behavior in a theoretical sense, but also that this behavior 

has practical consequences: It implies that , passing
from slightly below to slightly above capacity , one comes
from a regime where the travel time is predictable with
an accuracy of approx . :1:3% to a regime where the error
climbs up to %65% or more .



In order to simulate this simple network , we first need
reasonable algorithms for transferring vehicles from one
road to another at junctions . This involves two parts :
Including the vehicle into the traffic stream on the target
road ; and then deleting it from the source road .

Unfortunately , introducing an additional car into a
given traffic stream can cause some problems . Just
adding the ramp- inflow to the traffic on the main road
easily leads to disturbances which (i ) block the traffic on
the main road , and (ii ) lead to an outflow , downstream
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2.4 Traffic at the edge of chaos But , as stated initially in this section, a more realistic
S . 

It bt . 
th   llow

. 
P
. 

t r version of the model with P,pont significantly differentumming up our resus , we 0 &In e 0 lng lC u e: . .
N . 

th h t r del how call.n of from zero moves the pomt of m&X1mum throughput awayear m&X1mum roug pu , ou mo s ssg f th .t . al . t Th   h . .1 t. 1.  t . d h. 
h . b.

lit ftr 1 tl.  eat res rome cn lC pom . ere ore, we ave, slml ar 0Jam 1 e- lmes an 19 varla 1 yo ave me, uh t [26] h . t f _om . h " " "th.ch . d. t .t . al h t .t . B t th 1.  ot er sys ems , te eX1S ence 0 trGJUc m te v Icini Yw 1 m lca e a cn lC p ase ranal 10n. u e 1 e- 
f "th d f ch "

time scaling shows an upper cut-off; and the density of 0 e e ge 0 . &Os . . .
maximum throughput does not exactly coincide with the :rhe ~est ~f This paper. wl11 be devoted to argumg. why
density of maximum fluctuations. Thus, the transition This Regime lS of speclallmportance for transportatl0n.
is not truly critical (although we use the word criticality .
throughout the text). However, it becomes exactly crit- 3 . A sImple transport network
ical in the limit of zero fluctuations for free driving (i .e. We now move away from the single lane closed loop sys-not influenced by other cars). Tern to a single lane highway network with ramps con-

A helpful concept for understanding critical phase necting the different segments. The travelers on this net-
transitions in discrete systems is the notion of "dam- work have route plans so that they know which ramps
age spreading

" 
[22]: One simulates two identical copies they need to exit to reach their individual destinations.

of the system. At a certain point , a minimal change in We assume that each traveler always has the same ori-
one of the copies is made and then the time evolution of gin/ destination pair. Each traveler remembers the last
the difference, between the systems is observed. travel time for each alternative route between his or her

In our traffic system, "
damaging

" means to change origin and destination. The network may have traffic
the velocity of one randomly picked car by - 1. This car density sensors at specified locations which can be used
then causes a jam of a certain life-time; and downstream to identify congested areas and perhaps introduce toll
of this jam , the traffic pattern will be different from the for the use of such links. The travelers are able to re-
undisturbed model. After this jam has dissolved, the plan depending on their aggregated transportation costs
,pa.tia.l amount of damage extends from the disturbed which is their remembered travel time plus eventual toll .
car to the last car involved in the jam , and this length Such a sensor setup is an example of a (Advanced) Trans-
is proportional to the life-time of the jam . For the limit portation Informational System (ATIS), and the introP
,pont -+ 0 (but P,pont :#: 0), i .e. where spontaneous ini- duction of toll for the use of highly congested links is a

tiation of a jam becomes rare, one obtains the following simple example of an (Advanced) Transportation Main-
picture: a.gement System (ATMS) [27, 28]. The rationale behind
. For low densities p   Pc, jams are usually short-lived such a toll policy is to make the highway traffic more

(i .e. with an exponential cut-off in the life-time distri- efficient by pushing a larger part of the system towards
bution). As a result, the average amount of spatial the density corresponding to maximum flow. Interest-
damage is small. ingly, this implies that more traffic intentionally will be

. When approaching the critical density Pc, jams be- moved into the critical regime as defined above which in
come increasingly long-lived with the result that the turn will increase the fluctuations of the travel times as
amount of spatial damage b~comes larger and larger. well as the non-predictability of transportation system
Ultimately , exactly at the critical point , a damage of dynamics. This effect is the topic of this .section.
size infinity (in the thermodynamic limit ) is possible. Some attempts have been made earher to use CA

. Above the critical point (p > Pc), the jam caused by techniques to simulate simple representations of network
the disturbance will (in the average) survive forever, traffic. Mo~t of the models map n.etwork traffic on par-

0 thus (in the average) causing infinite damage. ticies hoppmg on a 2-D square grId [29, 30, 3: ].. These
However, traffic for p > > Pc is characterized by the exmodels are. very use~ul to ~nderstan~ the transltlon from
istence of many jams quasi-randomly distributed over .a free flowmg to a Jam~ mg phase m urban .tra~ c, but
the system. So the additional jam caused by the dis- 1~ these models the. ~ &X1mum ~ow of triaftic lS Given ~n

-
turban ce will not change the , ta.tiltica.l properties of tirely by the capacltles of the mtersectl0ns [30], Which

. the system. . is not alw.a Y S realistice .g. for arterials. Closes~ to our
All these observations are similar to conventio- approach lS [32], Which however was never used m order
nal damage spreading observations. in cellular au- to do systematic studies like the one presented here.
tomata (CA) [2:t]: The damage is limited for class I and
class II CA, and it ca.n be infinite for class VI CA. For 3 .1 Ramps
class III CA, the. damage is practically always infinite ,
but does not change the-statistical properties of the system

.
In summary, for the limit P" oni -+ 0, P" oni =F 0 we

have in our probabilistic CA a phase transition of the
traffic patterns similar ~ the one found in more conventional 

and determinstic CA. The control parameter in
our case is the density, whereas in CA rule space it is
.still an open question how to derive an order parameter
from the rules [23, 24], or if this is at all possible [25].
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Figure 5. Fundamental diagram for ramp. A circular segment 
of length L = 103 may be partially bypassed by a second 

segment. 50% of the traflic uses the bypass; at the end
of the bypass, it again merges with the main stream of the
traflic . The measurements were taken at the part of the main

segment where no bypUl exists.

of [33]) , especially as we will use the same example for

simulation experiments later on.

Imagine a road from A to B with capacity qmAc, with

a bottleneck with capacity q." shortly before B . (Fig . 6

shows the same network , albeit different traffic patterns . )
Further imagine that there exists an alternative , but

longer route between A and B . On the direct route from

A to B additional travelers from C have to go to destination 

D . First assume that there are no travelers with

origin in C.
If many drivers are heading from A to B, they will ,

without knowing anything about the overall traffic situation

, all enter the direct road . In consequence, a queue
builds up from the bottleneck .

A Nash-Equilibrium is defined as a situation where no

agent (= driver ) can lower his or her cost (= decrease

travel time ) by unilaterally changing behavior . Assuming 
that the drivers have complete information , this implies 

that the waiting time in the queue exactly compensates 
for the additional driving time on the alternative

route .
Now assume that there are additional travel demands

from C to D (see Fig . 6) , the exit for the latter lying

shortly before the bottleneck . Obviously , this traffic is

suffering from the bottleneck queue upstream (= left ) of

the bottleneck , and from these travelers point of view it

would be much better if the queue were located to the

left of the ramp that the travelers from C use to enter

the link . Note that moving the queue further upstream
does not make any difference for the drivers originating
in A .

This example illustrates that one easily finds situations 

where there are better overall solutions than the

NE . (Technically , a SO is reached when the sum of all

individual .costs (= travel times ) is minimal .) Recent

simulation results [34] indicate that the SO could give
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from the ramp, which is below capacity. For this reason,
we chose an. algorithm where acceBB to the main road
is only po B Bibly when there is sufficient space between
vehicles. We believe that this is realistic enough to represent 

metered ramps (i .e. ramps with regulated access),
and since we are often concerned with the analysis of
future traffic systems, it seems appropriate to model a

technically advanced traffic control system here.
The algorithm works as follows. Imagine a ramp, as

in common experience, as two parallel stretch es of road;
these parallel stretch es have a length of 5 sites in the
model. The target stretch is part of a longer road and
therefor~ is connected at both ends, whereas the source
stretch is only backwards connected. If there is a vehicle

(velocity v) on the source stretch, then
. it looks, on the target stretch, for the next car ahead

(which may be its neighbor; ~ ga.P! Ot'w Gt'd); and
. it looks for the next car behind on the target stretch

(~ ga.P&Gclw Gt' U). .
. Then the following rules are applied:

IF (ga.P! Ot'w Gt'd > v .AND. ga.P&Gclw Gt'dl > vmu )
dJange-lane
v = max(vmG. ' ga.P! Ot'w Gt'd) on new lane

ELSE
IF ( v ~ 1 ) go_one-Bite_backwards ( . )
v = o

ENDIF

One may imagine that this is emulating a ramp metering
system, where a technical device upstream of the ramp
determines where to fit in a car. The car then gets a

green light and arrives at maximum speed, in between
two other cars on the target road.

Line (. ) is a technicality. It is nece B Bary because the

global velocity update may reaccelerate the speed of the
vehicle to one and then move it one site ahead. If the
car repeatedly fails to change to the target lane, then
the car would slowly advance on the changing area and

ultimately leave it .
The details of this algorithm' will probably not matter 

for our results, as long as it allows maximum :How
downstream from the ramp. That this indeed is the case
is shown in Fig. 5, which may be compared to Fig. 1.
It gives the fundamental diagram for a system with two
road segments where one is a closed loop and the other
one provides an alternative route for a certain length,
connected- to the main road by one exit and one entry
ramp. Half of the vehicles use this alternate lane. Density 

and ~hroughput are measured on the undivided part .

3.2 Nash Equilibrium versus System
Optimum
An important ilsue in the context of a tranSportation
network is the difference between Nash Equilibrium (NE;
= User Equilibrium , UE) and System Optimum (SO);
the optimum dynamics of an individual traveler versus
the situation wnere the capacity of the transportation
system is used in the most optimal manner. These two

systems states are often in con:Hict.
This conflict can perhaps best be illustrated in terms

of a simple .transport network example (a variation
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Figure 6. Schematic network representation with traffic , showing time-steps 10, 20, and 210 of a particular simulation. Traffic
entering at (A) is bound for (B) and may use the "direct route" or the "alternative route" . Traffic entering at (C) is bound
for (D). The bottleneck is denoted by V1V1V1V1V1 (maximum speed 1). One observes that the traffic coming from (C) has
difficulties ~ntering into the main streamj and- in time-step 210- a disturbance denoted by (. ) has traveled backwards from
the bottleneck.

performance advantages of about 15% for realistic situations
.

A way to push a traffic system from a NE towards a
SO is to keep the density on each road at or below p

.
,

the density of maximum throughput . Then there would
not exist queues anywhere in the system, thus ensuring
that additional traffic could proceed undisturbed . Note
that this could for instance imply (in the limit of a perfect 

implementation ) that drivers have to wait to enter'
the road network until sufficient capacity is available for
them .

(see below) , tdi,.8ct and tAlt are the remembered travel
times for each route , and Q is a conversion factor which
reflects trade-off between time and money. Q could be
different for each driver , but is uniformly equal to one in
this work . (Q reflects "standard values of time "

, VOT ,
which can be looked up for traffic systems.)

Then , each driver chooses the cheaper route , except
that there is a 5% probability of error (which gives each
driver a chance from time to time to update her information 

about the other possibility ).
As long as the traffic dynamics is deterministic and

completely uniform , this scheme leads to a Nash equilibrium 
[3] . However, in our case of stochastic traffic

dynamics , this is no longer true : There might well be
a decision rule different from the one above where at
least one traveler is better of, for example by triggering
from some kind of day-to-day oscillation between the two
routes and taking advantage of it . In other words , by
dealing with stochastic traffic dynamics , the notions of
economic equilibrium theory have to be used with care.
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3.4 Space -time dynamics
Before we discuss how to determine the toll , we shortly
turn to a space-time plot of the direct route from A to B
(Fig. 7). As in each part of Fig. 2, vehicle movement is to
the right and time is downward. The figure contains the
first 300 time-steps, and then time-steps 2000 to 2950.

co8t. ,.. ct = toll + Q . tdi,.. ct

and /
cost Ali = a . tAli

where cost. ,..ci and cost Ali are the expected costs for.the two route choices, toll is the toll for the current day
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3 .3 Travel plans and individual decision
.ogic
In our simple network , there are only two different types
of travelers : Travelers from A to B , and travelers from C
to D. Travelers from A to B can choose between the direct 

and the longer alternate route . In order to make decisions
, each AB- driver remembers his or her last travel -

time on each of the two routes .
A traveler calculates expected costs [3] according to
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Figure 7. Space-time plot of the main segment (A-B) of the network. The cars are injected at the left . About one half inch to
the right , a change in gray indicates the junction where vehicles to the alternative route leave. Another one and a half inches
to the right , the jam structures indicate the on-ramp for travel from C. About one inch from the right , another change in gray
indicates the off-ramp to D (see arrow on top). Very close to the right is the bottleneck, together with jams emerging from
this region and traveling backwards into the system.



driver makes her route choice. (iv ) The next microsimulation 
period starts . - This results in a day-to-day

evolution of the decision pattern [36] . The procedure is
actually very similar to standard game-theory [37] , except 

that we obtain the pay-off from the microsimulation
and not from a predefined matrix .

A critical question remains : Where should one place
the traffic sensors ) for the determination of the toll ?
Placing it i Mide the bottleneck is not very useful , because 

traffic there is always at or below the "efficient "

density (i .e. at or below the density corresponding to
maximum through put ) .

Intuitively , it would make sense to measure the length
of the queue in front of the bottleneck . However, as we
showed in the last section, the dynamics of the traffic
does not lead to the built -up of a regular queue but to a
system of back traveling jams instead , which makes this
approach infeasible .

Therefore , we chose to measure the average density
on the segment upstream of the bottleneck , i .e. between
the exit to D and the bottleneck . Then , the next question 

is, which should be the target density for the control 
algorithm ? When one is measuring traffic upstream

of a bottleneck [38], then stationary traffic can never
reach maximum throughput : Either traffic operates at
densities corresponding to How rates lower than the bottleneck 

capacity , or dense traffic builds up . Traffic can
only 

"use" the part of the fundamental diagram which
is below the capacity of the bottleneck ; in consequence,
densities are either far below or far above the ones corresponding 

to maximum through put .
However, having some knowledge about the bottleneck

is not really helpful : In a more complicated traffic network
, it may be the case that further downstream from

one bottleneck there is another one, which has even lower
capacity . Or the bottleneck may be the on-ramp to a
crowded major road : Here the performance of the bottleneck 

depends on the time -dependent and Huctuating
load on the main road .

We therefore follow a simplistic and completely local
approach here, which will nevertheless prove to be quite
effective. Assume that the toll is operated by a local
"toll agent

"
, who does not have any global knowledge .

However, she knows the fundamental diagram (How as
function of density ) of her sensor area. If she wants to
keep the traffic at maximum How, she has to keep the
density in the correct range, i .e. near p = 0.08. We
implement this by the following rules:

The major dimensions of the system are:
. direct route from A to B: 1021 sites (full size of plot )
. cars leave for the alternative route at position 111
. cars coming from C enter at position 322 and leave

again at position 881
. the bottleneck (VmGz = 1) extends from position 1001

to 1011.
20% of the AB vehicles are preselected to leave at the
junction for the longer route , as can be seen in the picture 

by a change of the gray shading . The entry -point of
the C-D vehicles is marked by the permanent existence
of a disturbance , which is very often connected to other
disturbances which travel "backwards" 

through the system
.

The point of exit for the C-D vehicles is covered by
dense traffic most of the time , but it may be seen near
the top right of the figure as a change in gray shading
and as a sudden stop of some trajectories .

The bottleneck is . visible at the very right edge of the
figure , where the trajectories of the vehicles are diagonally 

pointing downwards to the right .
The striking feature of this picture is the graphic illustration 

of the highly dynamic and (seemingly ) nonlinear
structure of traffic patterns . Vehicles do not wait orderly 

in front of the bottleneck , but instead self-organize
into backwards moving jam waves. If one of these waves
reaches back into an area with higher density (in our
case the junction where the C-D cars leave) , then the
survival probability of this jam wave suddenly becomes
much larger , and it may move deeply back into the system

. A single snap- shot of such a traffic situation could
not uncover the origin of such a wave. The implications
to traffic measurement and modeling are important .

Something similar is true for the region where the C-D
traffic stream enters the main road . It is not a process
where both traffic streams line up to wait until they can
jointly proceed. Instead , it is often even possible that
the additional traffic enters into the main stream without 

causing a major disturbance right away. But the
locally enhanced densities is unstable and leads sooner
,or later to the initiation of a disturbance , which then
travels backwards to the junction (and often beyond ).

These results indicate that the methodology of queueing 
networks [35] has to be handled with care when ap-

plied to vehicular traffic .

3 .5 Congestion detection , toll and travel

pricing
For simpli ,city , ~ sume that the current toll is based on
some traffic observation on the last period (day). Let us
further assume that each driver only drives this trip once
in eaCh period (day ). (Note that this is oversimplistic ,
and further investigations are needed to make it work
for , e.g., workdays versus weekend-days.)

Algorithmically , we can pro
.
ceed as follows : (i ) The

traffic micr Qsimulatio Ms executed for one period . Each
driver updates her travel time information just after arrival 

at the destination . (ii ) After all cars have reached
. their destinations , the to U is adapted according to the
average value provided by the sensor. (iii ) Each AB
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IF ( p < 0.06 ) THEN
toll = toll - delta

ELSE IF ( p > 0.10 ) THEN
toll = toll + delta

ENDIF ,

where delta is an external parameter.
According to our arguments above, is not obvious that

this approach will produce meaningful decision behavior
: The toll agent tries to keep the traffic at a density

regime which is dynamically impossible because of the
bottleneck downstream. It is not clear, a-priori , what



4 .2 A simulation of 200 periods ( days )
We describe 200 days of a simulation where the toll was
kept at zero during the first 100 days, and in addition all
A-B-travelers were forced to use the direct route during
the first 50 days.

Fig . 8a shows results for the trip times and the adaptive 
toll , Fig . 8b the vehicle- to- vehicle variations of the

trip time ,(as defined earlier ) , 
"
and Fig . 8c the day-

aver~ged density , on selected road sections. These sections 
are: (i ) the section where the density for the toll

adaption is meas1l;red, (ii ) the section of the main road
between the on-ramp from C and the off-ramp from D ,
and (iii ) the alternative route .

Even when allowed (i .e. after day 50), not many of the
A-B drivers use the new option of the alternative route .
This is to be exptcted , since it is more than six times
longer than the direct one. In consequence, travel times
and fluctuations do not change much .

After day 100, the adaptive tolling starts and fairly
quickly reaches "a stationary value around 260. As the

"toll " line in Fig . 7c indicates , this keeps indeed Piou
near the specified range between p = 0.06 and 0.10. In
addition , the density on the main segment (used by both
A-B and C- D travelers ) drops to around 0.11, above, but
close to the density of maximum throughput .

Travel times forCD and for AB -direct travelers go
down (Fig . 8a); and the toll just offsets the time gain for
use of the direct route : timedi ,.. ci+ Q.toll ~ timeali .,.nai.;
remember that a = 1.

Vehicle-to- vehicle fluctuations (Fig . 8b) for the use of
the alternative road go up from ca. 2% to around 12%,
and for the use of the direct road from ca. 11% to
around 42%. Moreover , the day-to-day ftuctuations also
seem to go up in all measurements.

All this is in agreement with our intuition that traffic 
management can indeed make traffic more efficient ,

but may in addition lead to higher fluctuations and , as
a consequence, lower predictability , since the system is
driven closer to capacity and thus to the edge of chaos.

One should distinguish between two different kinds of
fluctuations : Fluctuations due to the dynamics , and fiuc-
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Figure 8. Simulation output for 200 iteration of the simple
corridor network model. Time-steps 1-60: No adaptionj 61-
100: drivers can choose alternative routej 101-200: drivers
can choose alternative route, and the toll adapts in order to
keep the density at the specified level. Top: Average trip
times for the direct and for the alternative route from A to
B as well as for the route from C to D, and toll for the direct
route from A to B. Middle: Vehicle-to-vehicle ftuctuations of
trip time for the direct and for the alternative route from A to
B. Bottom: Densities on the segment shared by AB - direct
travelers and C- D-travelers, on the segment shortly before
the bottleneck used for determination of the toll , and on the
alternative route from A to B.

effect this will have, and it was one of our main points
of interest in how this control mechanism would work .

4 . More simulation results : How to . 
play

traffic games
4 .1 Technical Set - up
In the following , we describe one particular simulation
run in more detail . We used a network of overall size
1962 sites, composed of the following parts :
. direct route from A to B: 241 sites (smaller than for

Fig . 7 to reduce computational demand )
. alternate route from A to B: 1570 sites (much longer

than direct )
. connection from C to main route : 103 sites
. connection from main route to D : 48 sites
. length of the section shared by AB and C-D-travelers :

101 sites
. thus , overall length from C to D : 252 sites
. length of bottleneck (with maximum velocity reduced

to one): 10 sites
. position of the bottleneck : starts 20 sites before reaching 

B
The density Ptoll for the update of the toll is measured
between the junction where the vehicles heading for D
leave the main route , and the start of the bottleneck .

We have NAB = 16000 vehicles which want to travel
from A to B, and the same amount NOD = 16000 which
want to travel from C to D. At each "day

" of the simulation
, they are lined up outside the simulated system

in the same sequence; and they enter the system at their
respective entry points as soon as the simulated traffic
allows it (cf. Fig . 6) .

When the vehicles enter the system, they already have
decided on their travel plans , so they just execute these
plans. The simulation runs until all vehicles have reached
their respective destinations . Then the toll is updated
and drivers decide their route for the next day, as described 

above.



tuations due to the learning . The fluctuations in the latter 
might be due to the specifics of the chosen learning

scheme, especially the lack of historic information beyond 
the last day. More realistic assumptions about the

learning and en-route information are claimed to avoid
that [39] . However, the results for the vehicle- to-vehicle
fluctuations (i .e. the 0' as defined in the text ) only depend
on the fact that the traffic density is driven towards the
critical value. A less fluctuating learning scheme should
therefore ~ven increue our values for 0' .

5 . Conclusion

We started out establishing / reviewing some facts for a
simple closed-loop single- lane system:
. Traffic at maximum capacity is in a regime which is

critical up to an upper cut -oft'.
. This upper cut -oft' depends on the probability P,pont

for the spontaneous initiation of a jam .
. The predictability of travel times sharply decreases

when the density goes above this point .
This leads to the observation that advanced Bow control
will not only affect traffic Bow, but will moreover drive
large portions of the system towards the critical regime .
The main reason for this is that the most efficient use
of a traffic system takes place when all parts operate at
densities at or below capacity . Systems designed for the
management of traffic Bows will reroute traffic from overcrowded 

roads to undercrowded ones, thus driving both
closer to criticality . (We use criticality in this text even
for the "not truly

" critical situations , as discussed in the
text .) Once traffic is near the critical region , further control 

inputs will have very unpredictable consequences.
More precisely, the following occurs. If one assumes

complete information and rational decisions by everybody
, the traffic will aim towards a Nash Equilibrium

(NE ). As nowadays drivers do not have complete information
, we assume that they do something like bias their

decisions towards "safe" routes , preferring e.g. shorter
routes over longer ones even if both yield the same travel
time .
. Advanced Traveler Information Systems (ATIS ) [27,
28] are developed to enhance the amount of information
available . As explained above, this will push the traffic 

system closer to the NE and therefore - because it
spreads traffic out over the network - closer to critical -

ity . .
Moreover , traffic management will aim beyond the NE

towards a Systen;t Optimum (SO). A necessary condition
for a SO isth ~t no part of it is operating above the
density p

* of maximum throughput , which will drive the
system again closer to criticality .

This implies that the 
"
approximation of deterministic ,

predictable traffic patterns would be less and less correct
the more one approach es high performance of the traffic 

system. In consequence, traffic assignment methods
based on re~axation to ~ quilibrium would no longer be
meaningful : The changes in the traffic patterns due to
one relaxation step would get lost in the changes due to
the inherently Buctuating dynamics , and the algorithm
would never converge.. An open question is inhowfar one
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can replace the equilibrium quantities by statistical averages 
(e.g. many Monte-Carlo runs); this is a topic of

future research. 
.

One envisaged way [34] of reaching the SO is to give
each driver individual route guidance instead of complete
traffic information . If one d.oubts that this will lead to
high user acceptance, then congestion pricing seems to
be the only alternative . Our simulation results support
the idea that already locally operating agents can achieve
this in an efficient manner .

In the text , we discuss the case of tolling on a specific 
road segment upstream of " the" bottleneck . This

demands prior knowledge about the system.
However, one can imagine a completely local algorithm

in the following way (see also [40]) : Assume that every
road segment in the system is operated by a simple eco-
nomic agent. This agent wants to keep the operation of
the segment as efficient as po B Bible, and the only measure 

she has is to go up or down with the toll . The agent
knows the performance characteristics (i .e. throughput q
as a function of density p) of her segment, and from this
she obtains the density which corresponds to maximum
flow and therefore to maximum road performance . The
agent then tries to keep the density on her segment at
this particular density , increasing the toll when the density 

becomes too high , and else decreasing it . In a real
network , we would expect that the toll for most segments
turns out to be zero.

This tolling scheme gives the impression that every
agent locally drives her segment towards criticality (=
maximum flow ) , but the situation is more complicated .
In most cases, it is not the traffic ift8ide bottlenecks
which is tolled , but the overcrowded segments up, trea.m
0/ the bottlenecks . But because of the bottleneck , these
upstream segments usually cannot operate at maximum
throughput : As soon as the incoming flow is more than
the bottleneck capacity , dense traffic builds up , and the
segment switch es from operation far below to far above
the critical point (see text ). Nevertheless, our results
show that this still leads to having more parts of the
network near criticality , as a result of collective effects.

In an economic context , we therefore have a local aiming 
for high performance , which happens to coincide with

criticality . But even though the criticality very often
cannot be reached locally by this mechanism , it drives
the globaJ system closer towards criticality : Local maxi -
mization of efficiency leads to global criticality [41] .

Or in short : The fact that , in a complex system, high
performance often has the downside of high variability
seems also to be true in transportation systems.
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