

USDOT Region V Regional University Transportation Center Final Report

IL IN

WI

MN

MI

OH

NEXTRANS Project No. 072IY03

Agent-based Traffic Management and Reinforcement Learning in
Congested Intersection Network

By

Juan C. Medina
PhD Candidate

University of Illinois at Urbana-Champaign
jcmedina@illinois.edu

and

Rahim F. Benekohal

Professor
University of Illinois at Urbana-Champaign

rbenekoh@illinois.edu

Final Report
August 23, 2012

http://www.purdue.edu/discoverypark
mailto:jcmedina@illinois.edu

DISCLAIMER

Funding for this research was provided by the NEXTRANS Center, Purdue University under
Grant No. DTRT07-G-005 of the U.S. Department of Transportation, Research and Innovative
Technology Administration (RITA), University Transportation Centers Program. The contents of
this report reflect the views of the authors, who are responsible for the facts and the accuracy
of the information presented herein. This document is disseminated under the sponsorship of
the Department of Transportation, University Transportation Centers Program, in the interest
of information exchange. The U.S. Government assumes no liability for the contents or use
thereof.

USDOT Region V Regional University Transportation Center Final Report

TECHNICAL SUMMARY

IL IN

WI

MN

MI

OH

NEXTRANS Project No. 072IY03 Final Report, August 23, 2012

Agent-based Traffic Management and Reinforcement Learning in
Congested Intersection Network

Introduction
This study evaluates the performance of traffic control systems based on reinforcement learning (RL),
also called approximate dynamic programming (ADP). Two algorithms have been selected for testing: 1)
Q-learning and 2) approximate dynamic programming (ADP) with a post-decision state variable. The
algorithms were tested in increasingly complex scenarios, from an oversaturated isolated intersection,
to an arterial in undersaturated conditions, to a 2x5 network in both undersaturation and
oversaturation, and finally to a 4x5 network in oversaturation with even and uneven directional
demands. Potential benefits of these algorithms include signal systems that not only quickly respond to
the actual conditions found in the field, but also learn about them and truly adapt through flexible cycle-
free strategies. Moreover, these signal systems are decentralized, providing greater scalability and lower
vulnerability at the network level.

Findings
Results showed that agents with RL algorithms (ADP and Q-learning) were able to manage the traffic
signals efficiently in both undersaturation and oversaturation. This was observed in all the cases
analyzed in this study. In a isolated intersection, the signals processed vehicles at short discharge
headways and provided green times in a similar proportion to the actual demand for left-turns and
through movements. Through phases were displayed more often, reducing lost times in frequent
transitions to left-turning movements that had lower demands. For a arterial in undersaturation, the
agents continuously provided green to approaches with demand at intersections with no opposing
traffic and also favored coordination for the two adjacent intersections with conflicting volumes.
Coordination was emphasized in the direction of heavier traffic, as expected, and performance was
similar to that provided by signals optimized by TRANSYT7F. In a 2x5 network in undersaturation, the RL
agents prevented queue spillbacks for through vehicles, but left-turn pockets were momentarily blocked
due to the permitted nature of the turning movements. The total number of vehicles processed
fluctuated around the total expected demand for this scenario, indicating no increase in residual queues
at the end of the study period. In oversaturation, the agents were tested with and without
communication capabilities to illustrate the need to provide information on adjacent intersections in
order to prevent queue spillbacks. Results clearly showed that the performance of the network was
improved with communication capabilities, in this case by informing of potential downstream blockages.

NEXTRANS Project No 019PY01Technical Summary - Page 1

Lastly, in a realistic 4x5 network with oversaturated conditions and even and uneven directional
demands, results from ADP and Q-learning were comparable to those obtained by optimizing the signals
with TRANSYT7F. The addition of an explicit coordinating strategy using the max-plus algorithm showed
benefits in terms of reduced average number of stops and throughput, but to a limited extent due to
multidirectional coordination between neighboring intersections.

Recommendations
The use of reinforcement learning for traffic control applications is a growing field being pursued by an
increased number of researchers. Applications are being improved constantly and it is expected that
these will continue improving given their potential in this field. Further extensions to the
implementations presented in this study for oversaturated conditions can be envisioned in the following
aspects: restrictions to the max-plus algorithm to limit multidirectional coordination between adjacent
intersections, alternate algorithms or alternate implementations of explicit coordinating strategies,
improved coupling mechanisms to incorporate coordination to decentralized ADP and Q-learning
strategies, and exploration of more efficient reward functions and state representations.

The implementation of reinforcement learning strategies can also be explored in undersaturated
networks (including coordinating mechanisms), to determine their performance in comparison with
current state-of-practice signal timing. Furthermore, scenarios where a network transitions between
undersaturated and oversaturated conditions could also be improved using reinforcement learning.

A number of questions remain open in terms of enhancements in the performance with increased
communication capabilities, including not only information passing (state and reward sharing), but also
advice exchange and negotiating strategies suitable for real-time applications.

Contacts
For more information:

Rahim F. Benekohal
University of Illinois at Urbana-Champaign
Department of Civil and Environmental Engineering
205 N. Mathews Ave., Urbana, IL, 61801
(217)-244-6288
(217)-333-1924 (fax)
rbenekoh@illinois.edu

NEXTRANS Center
Purdue University - Discovery Park
2700 Kent B-100
West Lafayette, IN 47906

nextrans@purdue.edu
(765) 496-9729
(765) 807-3123 Fax
www.purdue.edu/dp/nextrans

NEXTRANS Project No 019PY01Technical Summary - Page 2

mailto:nextrans@purdue.edu
http://www.purdue.edu/dp/nextrans

NEXTRANS Project No. 072IY03

Agent-based Traffic Management and Reinforcement Learning in
Congested Intersection Network

By
Juan C. Medina
PhD Candidate

University of Illinois at Urbana-Champaign
jcmedina@illinois.edu

and

Rahim F. Benekohal

Professor
University of Illinois at Urbana-Champaign

rbenekoh@illinois.edu

Final Report
August 23, 2012

mailto:jcmedina@illinois.edu

2

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 3

CHAPTER 2. BRIEF ACCOUNT OF PAST RESEARCH ON AGENT-BASED TRAFFIC
CONTROL .. 5

2.1 Traffic Control Using Learning Agents ... 7

2.2 Explicit Coordination of Agents and Group Formation ... 10

CHAPTER 3. METHODOLOGY .. 15

3.1 The Q-learning Algorithm .. 19

3.2 The ADP Algorithm with Post-decision State Variable... 20

3.3 An algorithm for signal coordination – The Max-Plus .. 24

3.4 Implementation of the algorithms for real-time traffic control 28

3.5 Experimental Setup .. 31

CHAPTER 4. ANALYSIS OF RESULTS ... 34

4.1 Single Intersection - Oversaturated Conditions .. 34

4.1.1 ADP implementations ... 35

4.1.2 Performance .. 36

4.1.3 Q-learning implementations.. 41

4.1.4 Performance .. 41

4.2 Four-intersection Arterial, undersaturated conditions .. 47

4.2.1 ADP Implementations ... 48

4.2.2 Performance .. 50

4.2.3 Q-learning Implementations ... 54

4.2.4 Performance .. 54

4.3 5x2 Network, Undersaturated Conditions .. 62

4.3.1 Implementations .. 63

4.3.2 Performance .. 64

4.4 5x2 Network, Oversaturated Conditions .. 68

4.5 4x5 Network, Oversaturated Conditions .. 70

4.6 4x5 Network, Oversaturated Conditions - Uneven Demands .. 77

CHAPTER 5. CONCLUSIONS AND FUTURE WORK .. 80

CHAPTER 6. REFERENCES .. 83

3

CHAPTER 1. INTRODUCTION

Traffic control systems have evolved from traditional pre-timed isolated signals to actuated and

coordinated corridors, and more recently to more complex “adaptive” signal control systems.

These improvements go along with increases in traffic demands and urban congestion, which

makes necessary to use as much of the available roadway capacity in the most efficient and

economical way. Even though most advanced traffic control signals can, react to changes in

traffic, to certain degree, unexpected variations in demands, oversaturation, the occurrence of

incidents, and adverse weather conditions, among others, may significantly impact the traffic

network operation.

This study evaluates the performance of a traffic control system that diverges from

traditional approaches. The proposed implementations make use of machine learning techniques,

and more specifically of unsupervised learning through algorithms of reinforcement learning

(RL), also called approximate dynamic programming (ADP) in some research communities

(Gosavi, 2009). Potential benefits of this approach include signal systems that not only quickly

respond to the actual conditions found in the field, but also learn about them and truly adapt

through flexible cycle-free strategies. Moreover, these signal systems are decentralized,

providing greater scalability and lower vulnerability at the network level.

The RL algorithms have been implemented using a commercially available microscopic

traffic simulation (VISSIM) that allows to operate the traffic signals in real time through a

communications port that is accessed in running time. Thus, the potential for these systems can

be tested practically in any scenario that can be simulated. This report includes the performance

of two particular algorithms (Q-learning, and ADP with post-decision state variable) building on

a case for a single intersection, and then moving onto two different arterials, to finally arrive to a

realistic network of 20 intersections.

A series of indicators or measures of performance are examined to determine how the

algorithms behave in the proposed scenarios. The main focus of this study goes to oversaturated

conditions, but some scenarios where the demand is lower than the capacity are also studied.

4

The remaining of the report is organized as follows. First, a review of current literature

on agent-based approaches using reinforcement learning is provided. Then, Chapter 3 describes

the methodology, the algorithms, as well as the implementation of real-time control in the

simulation software. In Chapter 4, the results and analysis of the performance of the RL control

is presented, as mentioned above, starting from a single intersection and moving to a mid-sized

network. Lastly, Chapter 5 includes the conclusions and recommendations for future studies.

5

CHAPTER 2. BRIEF ACCOUNT OF PAST RESEARCH ON AGENT-BASED TRAFFIC

CONTROL

Very broadly, today’s advanced traffic signal systems could be grouped as traffic responsive and

traffic adaptive systems, following a classification proposed in the Traffic Control Systems

Handbook (Gordon et al, 2005). Traffic responsive systems make use of vehicle detectors to

determine the best gradual changes in cycles, splits, and offsets, for intersections within a

predetermined sub-area of a network. Well known examples in this category are the SCOOT and

SCATS systems. On the other hand, adaptive systems have more flexibility in the signal

parameters and they do not make use of predetermined signal timing settings for their operation.

In addition to sensor information, they also use prediction models to estimate traffic arrivals at

intersections and adjust the signal settings to optimize an objective function, such as delay.

Examples of adaptive systems are RHODES and OPAC, which optimize an objective function

for a specified rolling horizon (using traffic prediction models) and have pre-defined sub-areas

(limited flexibility) in which the signals can be coordinated.

Alternative methods for real-time traffic signal control have been previously proposed

based on developments from the field of machine learning. These strategies can solve stochastic

optimization problems that are difficult to model (the expectation of the transition function is

difficult to be computed), require sequential decision making, and have high dimensional

decision and solution spaces, similar to the problem of finding optimal signal timings in a traffic

network.

In the 1980s, long-acknowledged limitations in the application of exact dynamic

programming methods to solve large stochastic optimization problems prompted the search for

alternative strategies. Different research communities including those from the operations

research and artificial intelligence started developing a series of algorithms to solve Bellman’s

optimality equation (at least approximately), finding near-optimal solutions for large scale

problems. Among other methods, members of the artificial intelligence community proposed

what is it known as a reinforcement learning (RL) approach by combining the concepts from

classical DP, adaptive function approximations (Werbos, 1987) and learning methods (Barto el

at, 1983).

6

Q-learning is one of such reinforcement learning strategies. After its initial publication

(Watkins, 1989, 1992 – Watkins and Dayan, 1992), many studies have followed on the analysis

of this and other algorithms based on similar principles. A good example is the analysis of

reinforcement learning published by Sutton and Barto (1998) with their book “Reinforcement

Learning: An Introduction”, which covers the reinforcement learning problem, a series of

methods for solving it (dynamic programming, Monte-Carlo, and temporal difference methods),

extensions, and case studies. Similar learning algorithms include Sarsa and actor-critic methods,

but the focus here will be given to Q-learning, mostly giving its off-policy nature of doing

temporal difference control.

Q-learning has been the research topic of numerous practical applications, leading to

enhancements in the algorithm and its learning structure. For example, a combination of Q-

learning and principles of temporal difference learning (Sutton, 1988 – Tesauro, 1992) resulted

in the Q(λ) algorithm (Watkins, 1989 – Peng and Williams, 1991) for non-deterministic Markov

decision processes. In Q(λ) – which implements an eligibility trace, the updates are allowed not

only for the last visited state-action pair but also for the preceding predictions. The eligibility is

based on a factor that decreases exponentially over time (given that the discount factor for

delayed rewards is lower than one and that lambda is greater than zero). Thus, the original

version of the Q-learning algorithm is equivalent to a Q(0)-learning, and on the other end the

traces can extend the full extent of the episodes when Q(1)-learning is used. In terms of its

performance and robustness, the Q(λ) algorithm has shown improvements over the 1-step Q-

learning (Pendrith, 1994 – Rummery and Nirajan, 1994 – Peng, 1993), and it is a viable option

for the traffic control problem. Also, several other forms of Q-learning approaches have emerged

with enhanced capabilities, such as W-learning (Humphrys, 1995, 1997), HQ-learning (Wiering,

1997), Fast Online Q(λ) (Wiering, 1998), and Bayesian Q-learning (Dearden, et al, 1998).

Thus, it could be said that the study and development of reinforcement learning has

benefitted from a great number of approaches. The fields of classical dynamic programming,

artificial intelligence (temporal difference), stochastic approximation (simulation), and function

approximation have all contributed to reinforcement learning in one or other way (Gosavi, 2009).

On the other hand, approximate dynamic programming (under such name) evolved based

on the same principles as reinforcement learning, but mostly from the perspective of the

7

operations research. Also, in some sense, advances shown above for reinforcement learning are

also advances in the approximate dynamic programming (ADP) field. As it is pointed by Powell

(2007), the initial steps in finding exact solutions for Markov Decision Processes date back to the

work by Bellman (1957) and Bellman and Dreyfus (1959), and even back to Robbins and Monro

(1951), but it was not until the 1990s that formal convergence of approximate methods was

brought to light mainly in the books by Bertsekas and Tsitsiklis (1996) and Sutton and Barto

(1998) (even though this last one is focused from a computer science point of view). These two

books are arguably the most popular sources for ADP methods, and quite a few significant works

have followed, including the book by Powell (2007) itself, which covers in great detail some of

the most common algorithms, and particularly the use of the post-decision state variable (which

is widely used in this research).

2.1 Traffic Control Using Learning Agents

Specifically for traffic signal control, the study of reinforcement learning dates back

about 15 years ago. One of the first of such studies was completed by Thorpe (1997), using the

RL algorithm SARSA to assign signal timings to different traffic control scenarios. Later,

Wiering (2000) discussed a state representation based on road occupancy and mapping the

individual position of vehicles over time, and Bakker (2005) later extended this representation

using an additional bit of information from adjacent intersections. This allowed communication

between agents, trying to improve the reward structure and ultimately the overall performance of

the system.

Using a different approach, Bingham (1998, 2001) defined fuzzy rules to determine the

best allocation of green times based on the number of vehicles that would receive the green and

red indication. He presented a neural network to store the membership functions of the fuzzy

rules, reducing memory requirements. It is noted that a Cerebellar Model Articulation Controller

(CMAC) has also been used in the past to store the information learned (Abdulhai, 2003).

Another application using fuzzy rules for traffic control was presented by Appl and Brauer

(2000), where the controller selected one of the available signal plans based on traffic densities

measured at the approaching links. Using a single intersection, their fuzzy controller

outperformed learning from a controller with a prioritized sweeping strategy.

8

Choy et al. (2003) also used a multi-agent application for traffic control, but creating a

hierarchical structure with three levels: intersection, zones, and regions. The three types of agents

(at each level) made decisions based on fuzzy rules, updated their knowledge using a

reinforcement learning algorithm, and encoded the stored information through a neural network.

Agents selected a policy from a set of finite possible policies, where a policy determined

shortening, increasing, or not changing green times. Experiments on a 25-intersection network

showed improvements with the agents compared to fixed signal timings, mostly when traffic

volumes were higher.

Campoganara and Kraus (2003) presented an application of Q-learning agents in a

scenario of two intersections next to each other, showing that when both of those agents

implemented the learning algorithm, the systems performed significantly better than when only

one of none of them did. The comparison was made with a best-effort policy, where the approach

with longer queue received the green indication. Also, Medina et al. (2010) used Q-learning to

manage the traffic signals of a 5-intersection arterial and showed emergent coordination along

the corridor in scenarios with variable demands. A similar work by Medina and Benekohal

(2011) showed the performance of the Q-learning algorithm in a 2x3 and a 3x3 network with

loads near capacity, and found better results than using pretimed signals and more balanced

operation in two-lane roadways.

A study on the effects of non-stationary nature of traffic patterns using RL was proposed

by De Oliveira et al. (2006b), who analyzed the performance of RL algorithms upon significant

volume changes. They pointed out that RL may have difficulties to learn new traffic patterns,

and that an extension of Q-learning using context detection (RL-CD) could result in improved

performance.

Ritcher et al (2007) showed results from agents working independently using a policy-

gradient strategy based on a natural actor-critic algorithm. Experiments using information from

adjacent intersections resulted in emergent coordination, showing the potential benefits of

communication, in this case, in terms of travel time. Xie (2007) and Zhang (2007), explored the

use of a neuro-fuzzy actor-critic temporal difference agent for controlling a single intersection,

and used a similar agent definition for arterial traffic control where the agents operated

independently from each other. The state of the system was defined by fuzzy rules based on

9

queues, and the reward function included a linear combination of number of vehicles in queue,

new vehicles joining queues, and vehicles waiting in red and receiving green. Results showed

improved performance with the agents compared to pre-timed and actuated controllers, mostly in

conditions with higher volumes and when the phase sequence was not fixed.

Note that most of the previous research using RL has been focused on agents controlling

a single intersection, or a very limited number intersections interacting along an arterial or a

network. Most of the efforts have been on the performance of the agents using very basic state

representations, and no studies focusing on oversaturated conditions and preventing queue

overflows have been conducted. Additional research exploring the explicit coordination of agents

and group formation in different traffic control settings will be reviewed in the next subsection,

and will provide an important basis for the coordination of agents proposed in this study.

Regarding the application of exact dynamic programming (DP), only a few attempts at

solving the problem of optimal signal timings in a traffic network are found in the literature. This

is not surprising because even though DP is an important tool to solve complex problems by

breaking them down into simpler ones - and generating a sequence of optimal decisions by

moving backward in time to find exact global solutions – it suffers from what is known as the

curses of dimensionality. Solving Belman’s optimality equation recursively can be

computationally intractable, since it requires the computation of nested loops over the whole

state space, the action space, and the expectation of a random variable. In addition, DP requires

knowing the precise transition function and the dynamics of the system over time, which can also

be a major restriction for some applications.

Thus, with these considerations, there is only limited literature for medium or large-sized

problems exclusively using DP. The work of Robertson and Bretherton (1974) is cited as an

example of using DP for traffic control applications at a single intersection, and the subsequent

work of Gartner (1983) for using DP and a rolling horizon, also for the same application.

On the other hand, Approximate Dynamic Programming (ADP) has increased potential

for large-scale problems. ADP uses an approximate value function that is updated as the system

moves forward in time (as opposed to standard DP), thus ADP is an “any-time” algorithm and

this gives it advantages for real-time applications. ADP can also effectively deal with stochastic

10

conditions by using post-decision variables, as it will be explained in more detail in the

subsequent Section.

Despite the fact that ADP has been used extensively as an optimization technique in a

variety of fields, the literature shows only a few studies in traffic signal control using this

approach. Nonetheless, the wide application of ADP in other areas has shown that it can be a

practical tool for real-world optimization problems, such as signal control in urban traffic

networks. An example of an ADP application is a recent work for traffic control at a single

intersection by Cai et al. (2009), who used ADP with two different learning techniques:

temporal-difference reinforcement learning and perturbation learning. In their experiments, the

delay was reduced from 13.95 vehicle-second per second (obtained with TRANSYT) to 8.64

vehicle-second per second (with ADP). In addition, a study by Teodorvic et al. (2006) combined

dynamic programming with neural networks for a real-time traffic adaptive signal control,

stating that the outcome of their algorithm was nearly equal to the best solution. Lastly,

Hajbabaie, Medina, and Benekohal (2011) used approximate dynamic programming and

compared it to genetic algorithms and TRANSYT7F in an oversaturated network of 20

intersections.

2.2 Explicit Coordination of Agents and Group Formation

Additional efforts have been conducted to incorporate explicit coordination to the

behavior of groups of agents so that they can act together and form temporary coalitions. There

is extensive research in this area for other applications other than traffic control, and most of the

work has been originated from the artificial intelligent community. Given the focus of this study,

review on this topic is centered on cooperative agents that share or exchange some information

to achieve better system-wide performance, and where the communication is achieved in a

completely decentralized way.

Communication between agents, without mediation from agents with higher hierarchies,

may allow the formation of (temporary) groups that can improve the overall performance of the

system. For the traffic control domain, it is of outmost importance to maintain acceptable

operational levels in the whole network, since queue spillbacks and traffic breakdowns may

extend to greater areas and ultimately collapse the system. For the particular case of traffic signal

control, researchers have explored some mechanisms to communicate agents and improve

11

performance. Nunez et al. (2002) included a feature for heterogeneous agents to request advice

from agents with better performance index, similar to supervised learning. Agents exchanged

their state, the best action for such state (as a means of advice), as well as their performance

index. The effects of the advice exchange were tested using a series of individual intersections

(not along an arterial) in a very simple simulation, each with an agent that had a different

learning algorithm. Results showed that the advice exchange was likely to improve performance

and robustness, but ill advice was also said to be a problem hindering the learning process.

De Oliveira et al. (2006a) used a relationship graph as a support of the decision-making

process. Related agents entered a mediation process to determine the best set of actions. Agents

have priorities and the one with highest value will lead the mediation. Branch-and-bound was

performed to find the best outcome of the sub-problem. The test was conducted on a 5x5

network in a very simple simulation environment provided by a generic tool for multi-agent

systems (not a traffic-specific environment). Temporary group formation was achieved and

resulted in improved performance in terms of a cost function, compared to pre-timed coordinated

signals. The agents regrouped (through a new mediation) when traffic patterns changed, adapting

to new conditions.

Kuyer (2008) also used coordination graphs and the max-plus algorithm to connect

intersections close to each other. Networks having up to 15 intersections were tested, finding

improved results compared to Wiering (1997) and Bakker (2005). Oliveira and Bazzan (2004,

2006, and 2007) have made significant contributions using approaches based on swarm

intelligence, where agents behave like a social insect and the stimuli to select one phase or plan

is given by a “pheromone” trail with an intensity related to the number and duration of vehicles

in the link.

A different approach by Junges and Bazzan (2007) also studied a strategy using a

distributed constraint optimization problem for networks of up to 9x9 intersections, but only for

the task of changing the offset of the intersections given two different signal plans. A scenario

without online capabilities to change the coordinated direction was compared another with the

coordination scheme, showing improvements in the performance. However, for frequent action

evaluations, and for bigger networks, the methodology may not be practical as the computation

time increases exponentially with the number of agents.

12

A summary of past research using RL for traffic control is shown in Tables 2.1 and 2.2.,

where the state and the reward representation of the different approaches are described. The

implementations presented in this report will be based on modifications and variations of

previous work, with the addition of factors that may improve the system performance

particularly in oversaturated conditions, including the explicit coordination of agents through the

use of the max-plus algorithm.

13

Table 2.1 – Summary past research on RL for traffic control – States and Actions

Author Algorithm State and actions
Communication Between

Agents Application Loads Training

Thorpe SARSA with eligibil ity traces State: Number of vehicles (vehicles grouped in bins). Actions: unidimensional (direction to
receive green)

No 4x4 network different loads Mutiple (undersaturation) On a single intersection, then use same training for network

Thorpe SARSA with eligibil ity traces
State: Link occupation (l ink divided in equal segments). Actions: unidimensional

(direction to receive green) No 4x4 network different loads Mutiple (undersaturation) On a single intersection, then use same training for network

Thorpe SARSA with eligibil ity traces
State: Link occupation (l ink divided in unequal segments). Actions: unidimensional

(direction to receive green) No 4x4 network different loads Mutiple (undersaturation) On a single intersection, then use same training for network

Thorpe SARSA with eligibil ity traces
State: Number of vehicles (vehicles grouped in bins), current signal status. Actions were

represented by a minimum phase duration (8 bins) and the direction which receives green No 4x4 network different loads Mutiple (undersaturation) All intersections shared common Q-values

Appl and Brauer Q-function approximated by fuzzy
prioritized sweeping

State: Link density distribution for each direction. Actions: plan selection, total of three
possible plans

No Single intersection Not described, l ikely undersaturation Not described

Wiering Model-based RL (with Q values)
State: Number of vehicles in l inks. Actions: signal states/phases (up to 6 per intersection).

Car paths are selected based on the minimum Q-value to the destination. This Is a car-
based approach. It uses values for each car and a voting approach to select actions

Yes (shared knowledge or
"tables" in some scenarios).
Also, included a look-ahead

feature

2x3 network Multiple (undersaturation/likely oversat for 1
case)

Not described

Bingham
Neurofuzzy controller with RL (using
GARIC, an approach based on ANN)

State: Vehicles in approaches with green, and those in approaches with red (these are the
inputs to the ANN). Actions: values of green extension: zero, short, medium, and long. Fuzzy

rules depend on how many extensions have already been granted
No Single intersection

Multiple (undersaturation/likely oversat for 1
case) Not described

Gieseler Q-learning
State: Number of vehicles in each of the approaches and a boolean per direction

indicating if neighbors have sent vehicles "q" seconds earlier, quere "q" is the # of veh in
queue. Actions: one of 8 possible actions at a single intersection

Yes, boolean variable showing if
the signal was green "q"

seconds earlier. Also shred
information of the rewards

3x3 network Not described Not described

Nunes, Oliveira

Heterogeneous (some agents use Q-
learning, others hil l cl imbing,

simulated annealing, or evolutionary
algorithms). Then, the learning process

is RL + advice from peers

State: two cases: one is the ratio of vehicles in each l ink to the total number of vehicles in
the intersection (4 dimentions), and the second is equal to the first plus an indication

showing the time of the front vehicle in queue - this is the longest time a vehicle has been
in the l ink (additional 4 dimentions). Action: percent of time within the cycle that green

will be given to N-S direction (the other direction receives the complement

Yes (advice exchange):
communicate state and the

action that was taken by the
advisor agent, the present and

past score

Single intersection - each agent controls one
intersection but they are not connected

Not described Boltzman distribution used for action selection (T factor between
0.3 and 0.7); learning rate decreased over time for convergence

Abdulhai Q-learning (CMAC to store Q-values)
State: Queue length of each of 4 approaches and phase duration. Action: Two possible

phases with bounded cycle length

No, but recommended by
sharing info on state and on
rewards from a more global

computation

Single intersection
Not described but variable over time (l ikely

undersaturated) E-greedy, Boltzman, and annealing (in separate experiments)

Choi et al
RL agents using fuzzy sets. Three

hierarchies well defined

State: Occupancy and flow of each l ink, and rate of change of flow in the approaches.
These are measured when signal is green. Action: duration of green for a phase, with fixed

phasing and cycle length between 60s and 120s, and offsets

Yes, but by using the
hierarchies, not between

neighbors
25-intersection network in Paramics

Not described but variable over time (l ikely
undersaturated) Not described

Campoganara and Kraus Distributed Q-learning State: Number of vehicles in each approach. Action: al location of right of way, 2 phases Yes, a distributed Q-learning Two adjacent intersections connected Not described but fixed and undersaturated Not described

Richter et al Natural actor-critic with online
stochastic gradient ascent

State: Very comprehensive state: phase, phase duration, cycle duration, duration of other
phases in cycle, bit showing if there is a car waiting on each approach, saturation level (3

posssible), and neighbor information (2 bits showing where traffic is expected from).
Action: 4 possible phases, with the restriction that all must be called at least once in the

last 16 actions

Yes, 2 bits of info showing
where is traffic expected from

2-intersection network and 9-intersection
network, 10x10 network (not detailed results)

Not described but variable over time Not described

Zhang and Xie Neuro-fuzzy actor-critic RL State: Queue length and signal state. Action: duration of the phase for fixed phase
sequence; for variable phase sequence actions included the phase to follow

No, but recommended for multi-
agent applications

4-intersection arterial in VISSIM Variable over time based on real data.
Undersaturated

Not described

Kuyer et al
Model-based RL (with Q values) - and

coordination graphs
State: Sum of all states of blocks in the network (which represnets all vehicles in the

l inks). Action: assign right of way to a specific direction.
Yes, max plus algorithm but no

RL
3-intersection, 4-intersection networks, and a

15-intersection network

Not described, but experiments with different
amount of "local" and "long route"

percentages, to create improvements when
coordination was added

Not described

Arel et al
Q-learning with function

approximation. There are central and
outbound agents

State: For each of the 8 lanes of an intersection, the state was the total delay of vehicles in
a lane divided by the total delay of all vehicles in all lanes. The central agent has access

to full states of all intersections. Action: any of 8 possible phases (an action is taken every
20 time units)

Yes, all intersections share the
state with a central agent

5-intersection network with a central
intersection that has the learning capabilities Variable, including oversaturation

10000 time steps before stats were collected. In operational mode
the exploration rate was 0.02

14

Table 2.2 – Summary past research on RL for traffic control – Rewards and MOEs

Author Algorithm Reward Communication Application MOEs Analyzed

Thorpe SARSA with eligibil ity traces Negative values for each time step until it processed all vehicles in a time period No 4x4 network different loads

Thorpe SARSA with eligibil ity traces
Negative values for each time step until it processed all vehicles in a time period, positive
values for every vehicle crossing the stop bar, and negative values for vehicle arriving at

l inks with red
No 4x4 network different loads

Appl and Brauer Q-function approximated by fuzzy
prioritized sweeping

Squared sum of average divdied by max density of l inks (the lower and the more
homogeneous the better)

No Single intersection Total average density per day

Wiering Model-based RL (with Q values) If a car does not move, assing a value of 1, otherwise assing 0 (in sum, maximizing car
movement/ or throughput).

Yes (shared knowledge or
"tables" in some scenarios).
Also, included a look-ahead

feature

2x3 network Throughput

Bingham Neurofuzzy controller with RL (using
GARIC, an approach based on ANN)

Delay of vehicles + V value at time t - V value at time t-1 (V depends on the approaching
vehicles in l inks with green plus those with red

No Single intersection Average vehicle delay

Gieseler Q-learning
A reward resulting from the difference in the activation times of vehicles being processes
(headways) - the shorter headways the better. Also, a fraction of the rewards of adjacent

intersections was added to the agent's reward

Yes, boolean variable showing if
the signal was green "q"

seconds earlier. Also shred
information of the rewards

3x3 network Not described

Nunes, Oliveira

Heterogeneous (some agents use Q-
learning, others hil l cl imbing,

simulated annealing, or evolutionary
algorithms). Then, the learning process

is RL + advice from peers

Not described

Yes (advice exchange):
communicate state and the

action that was taken by the
advisor agent, the present and

past score

Single intersection - each agent controls one
intersection but they are not connected

"Quality of service" as 1- sum(average time per
l ink/average time in l ink of all l inks)

Abdulhai Q-learning (CMAC to store Q-values) Delay between succesive actions. Combination of delay and throughput or emissions is
recommended for future research.

No, but recommended by
sharing info on state and on
rewards from a more global

computation

Single intersection Average delay per vehicle

Choi et al RL agents using fuzzy sets. Three
hierarchies well defined

Based on previous state as follows: (factor*(current-previous))-(current-best). Therefore it
is positive if current state is greater than previous and the first parenthesis is greater than

the second. A critic in the system also evaluates the performance in terms of delay

Yes, but by using the
hierarchies, not between

neighbors
25-intersection network in Paramics Average delay per vehicle and time vehicles

were stopped

Campoganara and Kraus Distributed Q-learning Not described Yes, a distributed Q-learning Two adjacent intersections connected Average number of waiting vehicles

Richter et al
Natural actor-critic with online

stochastic gradient ascent Not described, but l ikely to be related with the number of cars in the l inks
Yes, 2 bits of info showing

where is traffic expected from
2-intersection network and 9-intersection

network, 10x10 network (not detailed results)

Normalized discounted throughput (to
encourage vehicle discharge as soon as

possible)

Zhang and Xie Neuro-fuzzy actor-critic RL Linear combination of vehicles discharged, vehicles in queue, number of new vehicles in
queue, vehicles with green, and vehicles with red

No, but recommended for multi-
agent applications

4-intersection arterial in VISSIM Average delay, average stopped delay and
average number of stops

Kuyer et al Model-based RL (with Q values) - and
coordination graphs

Sum of changes in network blocks: zero value if state changed, and -1 if state did not
change - or vehicles did not move

Yes, max plus algorithm but no
RL

3-intersection, 4-intersection networks, and a
15-intersection network

Average waiting time, ratio of stopped vehicles,
and total queue length

Arel et el
Q-learning with function

approximation. There are central and
outbound agents

Based on the change in delay between the previous time step and the current one, divided
by the max of previous or current

Yes, all intersections share the
state with a central agent

5-intersection network with a central
intersection that has the learning capabilities

Average delay per vehicle and percentage of
time there was blocking

Number of steps to process demand, average
wait time per vehicle, and number of stops

15

CHAPTER 3. METHODOLOGY

The traffic signal control problem can be defined as a system that evolves over time

based on a complex stochastic process. The system behavior depends on a wide variety of

combination of driver and vehicle types that produces a series of stochastic trajectories

for identical initial conditions. Driver characteristics such as reaction times, acceleration

and deceleration rates, desired speeds, and lane changing behavior are examples of

stochastic variables that directly affect the evolution of the system state over time.

Thus, modeling the traffic state as a stochastic process, and more precisely as a

stochastic process that follows the Markov property, the control of the traffic signals can

be described as a Markov Decision Process (MDP) and there is potential for finding

optimal or near-optimal solutions using RL strategies. In this study, two algorithms are

used: Q-learning and ADP using a post decision state variable. These algorithms are very

convenient to address processes with sequential decision making, do not need to compute

the transition probabilities, and are well suited for high dimensional spaces (Powell,

2010).

Two separate systems were created, one for Q-learning and one for an ADP

algorithm using the post-decision state variable, and the two were tested under the same

conditions. Even though the formulation of the state representation and reward functions

was similar for the two algorithms, the two were implemented separately.

As opposed to more traditional adaptive approaches that rely on predictions from

traffic models to estimate the state of the system over time, RL agents act and then

observe the performance of the actions to create knowledge, thus the process is not a

predictive one, but a learning one based on the past behavior of the system. In addition,

communication between agents will be allowed, such that potential blockages due to

downstream congestion can be avoided, and more explicit coordination mechanisms can

also be adopted.

16

Assuming that the system state follows the Markovian memory-less property and

that the values of all future states are given (based on discounted rewards) the Bellman

equation shows that the value of a given state (s) can be expressed based on the value of

the potential states following the immediate action and the cost to get there, as follows:

𝑉𝜋(𝑠) = �𝜋(𝑠, 𝑥)
𝑥

�𝑃𝑠𝑠′𝑥
𝑠′

�𝐶𝑠𝑠′𝑥 + 𝛾𝑉𝜋(𝑠′)�

where Vπ(s) is the value of state s following policy π (also known as the “cost-to-

go”), x is an action drawn from a finite set of possible actions, 𝑃𝑠𝑠′𝑥 is the probability of

transitioning to state s’ given that the current state is s and the action taken is x, 𝐶𝑠𝑠′𝑥 is the

cost of such transition, and 𝛾 is a discount factor for the value of the next state 𝑉𝜋(𝑠 ′)

(Sutton and Barto, 1998). Note that in the first summation π(s,x) is simply the probability

of taking action x given that the current state is s, and that the second summation is also

commonly expressed as an expectation (instead of the sum of weighted values) for taking

action x.

Thus, based on this representation of the state value, it is possible to formulate an

optimization problem in order to find optimal state values, which in turn represents the

problem of finding an optimal policy (𝑉∗(𝑠)):

𝑉∗(𝑠) = 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 , or

𝑉∗(𝑠) = max
𝑥

�𝑃𝑠𝑠′𝑥
𝑠′

�𝐶𝑠𝑠′𝑥 + 𝛾𝑉∗(𝑠′)�

However, since the true discounted values of the states are not known (otherwise

finding optimal policies would not be a problem) some algorithms have been used to

solve this problem both in an exact and an approximate fashion. The most well known

exact strategy is the traditional dynamic programming (DP) approach originally proposed

by Richard Bellman, and approximate methods emerged well after (in 1980s), including

temporal difference methods (TD).

Traditional DP is a very powerful tool that can be used to solve the Bellman

equation and guarantees the optimality of the solution. However, the number of required

17

computations using a standard DP algorithm grows exponentially with a linear increase in

the state space, the output space, or the action space, deeming it intractable for real-sized

problems. This is known as the curse of dimensionality of DP, and can be described as

the need to perform nested loops over the state and action space as the algorithm finds the

state values in a backward recursion.

To illustrate the curse of dimensionality in a centralized signal system, consider

the task of finding the optimal signal timings for a period of 15 minutes (assuming the

control is evaluated every 10 seconds, which is a very coarse approximation) in a

network with only 10 intersections, and each of them can display up to four different

phases (through and left-turn movements for E-W and N-S directions). Also assume that

the demand for each movement can be categorized in 20 levels, thus if the capacity of the

link is 60 vehicles some loss of resolution is allowed. This leaves us with a combination

of 204 states per intersection (assuming 4 links, thus a combination of 20x20x20x20) and

2040 (204 combined for the 10 intersections, thus 204*10) for the whole system at a single

point in time. If the signals are re-evaluated every 10 seconds, a total of 90 decisions

points are required. This makes any backward recursion intractable, as looping through

the state space at every decision point is clearly unfeasible in practice.

Moreover, DP algorithms need a complete model of the systems dynamics (or

transition function) in order to perform a backward recursion and estimate the optimal

state values. However, the precision of traffic model predictions decrease as the

prediction horizon increases, indicating that if DP is used the solutions will be built

backwards starting from the least accurate end of the horizon.

On the other hand, compared to other methods to solve RL problems (i.e. dynamic

programming and Monte-Carlo methods), TD learning methods are well suited for real-

time traffic control applications since they combine the following features: a) Learning

can be performed without knowing the dynamics of the environment, b) estimates are

based on previous estimates (bootstrapping) so there is a solution for every state at every

point in time (i.e. any-time algorithm), and c) they use forward-moving algorithms than

can make use of real-time inputs as the system evolves. These are precisely some of the

18

main reasons why algorithms using TD methods are practical for the problem of

managing traffic signals in a traffic network.

Standard TD algorithms are designed to learn optimal policies for a single agent,

given their perceived state of the system. However, since the perceived states are

typically confined to the immediate surroundings of the agent (e.g. vehicles in the

approaches of the agent’s intersection), changes in the dynamics of neighboring agents

could make the learned policies no longer optimal. These characteristics emphasize the

importance of a precise state representation to capture the dynamics of the environment,

allowing for adequate learning and communication between agents in order to promote

signal coordination.

Depending on the coverage of a single agent and its perception limits, several RL

traffic control structures can be defined including three obvious cases: a) a single agent

that directly controls all intersections of a traffic network (completed centralized); b) few

agents, each controlling a group of intersections (partially decentralized); and c) one

agent per intersection (completely decentralized). Options a and b may suffer from

prohibitive number of states per agent, in addition to the increased vulnerability of the

system in case of an agent failure. On the other hand, option c seems more appropriate, it

may have better scalability properties for large systems, is less vulnerable, and (not

surprisingly) it has actually been pursued by most researchers using RL techniques for

traffic control.

Out of a handful of TD algorithms, Q-learning and ADP with the post-decision

state variable will be used to find near optimal signal timings in traffic networks. The

selected algorithms move forward in time to improve the updates of the values of being

in each state (or “cost-to-go”), which then are used as a decision-making tool.

A more detailed description of Q-learning and ADP with the post-decision state

variable are provided next.

19

3.1 The Q-learning Algorithm

As described above, the RL problem can be thought as the problem of finding the

policy that guarantees maximum expected rewards:

𝑉∗(𝑠) = 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆

This maximization problem can also be described in terms of the value of state-

action pairs (called Q-values), and therefore the goal will be to find a policy with action-

value functions (𝑄𝜋(𝑠, 𝑎)) leading to maximum expected total rewards:

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎)

The advantages of having values of state-action pairs, as opposed of only states,

are mostly observed in systems where the dynamics are not completely known (the

algorithm is model-free) or the random information received over time is not precisely

determined in advance. The reason for such advantage is that there is no need to estimate

the full expectation of the transition function to perform an update of the Q estimates (as

opposed to the standard Bellman equation):

𝑞�(𝑠, 𝑥) = 𝑐𝑠𝑠′𝑥 + 𝛾max
𝑥′

𝑄(𝑠′, 𝑥′)

as opposed to

𝑄(𝑠, 𝑥) = 𝐶𝑠𝑠′𝑥 + 𝛾�𝑃𝑠𝑠′𝑥
𝑠′

max
𝑥′

𝑄(𝑠′, 𝑥′)

Since the learning process is done gradually and based on experiencing sampled

information from the system, the estimates can be updated using the following standard

rule:

𝑄(𝑠, 𝑥) = (1 − 𝛼)𝑄(𝑠, 𝑥) + 𝛼𝑞�

Where α is the learning rate.

The general algorithm for Q-learning can be formulated as shown in Figure 3.1

below.

20

Figure 3.1. Pseudo-code for the Q-learning algorithm

Q-learning has shown good performance for a variety of practical problems under

stationary conditions, even though the convergence of Q-values has only been proven if

the states are visited an infinite number of times (Watkins, 1989, 1992). This is because

practical decision making does not require full convergence of Q-values as long as they

are “sufficiently” different for the agent to commit to the best choice. Unfortunately,

precise boundaries of the Q-learning algorithm for decision-making purposes only are not

well defined and require further research.

3.2 The ADP Algorithm with Post-decision State Variable

Unlike standard DP, which finds the best policy from exact values of the states,

ADP uses approximate state values that are continuously being updated. Estimates of

state values are available at any point in time (thus, the algorithm is suitable for real-time

control), and bootstrapping is used for closing the gap between approximate estimates

and the true value of a state (similar to Q-learning). Also, since ADP does not require a

model of the dynamics of the system over time, the system moves step by step following

a transition function (that does not need to be known) provided by a simulation

environment or by incoming real-world data.

There are a series of variants to the basic ADP algorithm, but for this research it

was decided to adopt an ADP algorithm that uses the “post-decision” state variable; more

21

precisely, the formulation described by Powell (2007). This algorithm provides a series of

computational advantages, as it is explained below.

The post-decision state variable formulation uses the concept of the state of the

system immediately after an action is taken. This will be described based on the

expression that represents the transition function of our problem:

Where the state changes from St to St+1 in a transition that starts at time t and ends

at t+1. Wt+1 represents the exogenous (or random) information that influences the

transition from state St to St+1, after executing action xt. Specifically for our system, the

exogenous information is the combination of different driver and vehicle characteristics

that ultimately translates in the (stochastic) behavior of vehicles in the traffic stream.

Note that the transition shown above can be also described by the following

sequential steps:

1) The system has just arrived at time t and the state (St) has been updated

based on the transition from the last time step:

2) Also at time t, the state of the system (St) is modified immediately after the

action xt is taken (St
x), but no exogenous information from time t to t+1 has been received

(in other words, the signal has just changed but vehicles have not reacted to it):

3) At time t+1, the exogenous information (Wt+1) has been received and the

transition from St
x to St+1 has been completed (this is, after the vehicles have reacted to

the signal):

)W,x,S(SS 1ttt
M

1t ++ =

)x,S(SS tt
x,Mx

t =

)W,x,S(SS t1t1t
M

t −−=

22

Similarly, the process to update the value of a state from one time step to the next

can be decomposed as follows:

1) The value of state 𝑆𝑡−1 at time t-1 after committing to action x, 𝑆𝑡−1𝑥 , can

be expressed as a function of the expected value of the next state 𝑉𝑡(𝑆𝑡), following the

Markov property:

2) In addition, the value of the next state (at time t) can be expressed based

on the maximum value of the state after taking the optimal action Xt (this is, 𝑉𝑡𝑥(𝑆𝑡𝑥)) and

the cost to get there Ct:

3) Analogous to the expression in step 1, the sequence repeats for the value

of state 𝑆𝑡, but at time t and after committing to a new action x:

As explained in Powell (2007), the standard optimality equation could be obtained

by combining the equations in steps 2 and 3. However, if the first two equations (steps 1

and 2) are combined instead, a new expression using the “post-decision” state variable is

obtained as follows:

)W,S(SS 1t
x
t

W,M
1t ++ =

{ }x
1ttt

x
1t

x
1t S|)S(V)S(V −−− = Ε

())S(V)X,S(Cmax)S(V x
t

x
tttt

x
tt t

γ+=

{ }x
t1t1t

x
t

x
t S|)S(V)S(V ++= Ε

()






 += −−−−

x
1t

x
t

x
tt

x
1ttx

x
1t

x
1t S)S(V)x,S(CmaxE)S(V

t

γ

23

Note that this expression is very different from the traditional optimality equation

mainly because the expectation is outside of the optimization problem.

Similar to Q-learning, this provides an important computational advantage and

allows the algorithm to provide better approximate solutions as the number of iterations

increases. It also allows for the use of a forward algorithm so that it is no longer needed

to loop though all possible states. However, it is required to approximate the expectation

of the value function. Thus, as long as the states are visited with some frequency, it is

possible to have “good enough” estimates for adequate decision making support.

The value function using the post-decision variable can be updated using a similar

equation as the one from the traditional update rule for temporal difference learning, as

follows:

Where 𝑉�𝑡−1𝑛 (𝑆𝑡−1𝑛) is the approximated value of the state 𝑆𝑡−1𝑛 at iteration n, and α

is the step size or learning rate. The step size determines the weighted value of the current

direction pointed out by 𝑣�𝑡𝑛 in relation to the approximation of the state value at the

current iteration.

It is pointed out that since it is necessary to have a value of 𝑉�𝑡𝑛(𝑆𝑡𝑛) for each state

𝑆𝑡𝑛 , the problems do not reduce their dimensionality when using ADP, but rather the

number of computations needed to find an approximate solution.

The general algorithm for the ADP using the post-decision state variable is shown

in Figure 3.2.

n
tn

n
t

n
tn

n
t

n
t vSVSV ˆ)()1()(11

1
1111 −−
−

−−−− +−= αα

24

Figure 3.2. Pseudo-code for the ADP algorithm using the post-decision state variable

To achieve convergence, the learning rate should decrease over time. Rules for

the algorithms to converge require the same typical rules for stochastic gradient

algorithms: 1) the step size should not be negative, 2) the infinite sum of step sizes must

be infinite, and 3) the sum of the square of the step sizes must be finite.

3.3 An algorithm for signal coordination – The Max-Plus

A shortcoming of learning agents acting separately is that each of them will strive

to take actions that maximize their local payoff without considering the global payoff of

all agents together. For the problem of managing the traffic signals, agents will take

actions to improve one or a combination of measures of performance such that their own

set of indicators is improved over time. These measures may include throughput, delay,

number of stops, or any other traffic related indicators.

Traffic networks with high demands may evolve into states that are not able to

process traffic at their capacity due to oversaturation and possibly into de-facto red and

gridlocks. Under these conditions, agents operating solely on the basis of their

approaching links may take decisions that could degrade the performance of adjacent

intersections and ultimately its own. For example, an intersection at the edge of a network

may allow vehicles to enter at a rate that is higher than the rate that can be processed

25

downstream due to high conflicting volumes. This situation will eventually create queue

overflows inside the network and a gridlock, which may translate into a great decrease in

the network throughput.

The scenario described above can be easily encountered when demands are high,

and particularly in situations where the conflicting volumes are also high. Therefore, if

the traffic system is controlled by agents operating individual intersections, they should

be able to communicate with each other at least to a certain degree.

A series of communication capabilities can be thought to be important. A first

level of communication could be the transmission of information regarding the current

state of neighboring intersections. In this way, for example, an agent could prevent queue

overflows in downstream links or even create green waves to reduce the number of stops

of oncoming platoons. As it can be imagined, this simple mechanism can create emergent

coordination, as it was explored by Medina et al. (2010) for the case of an arterial.

A second level could be related to not only the transmission of the neighboring

states, but also of knowledge stored in the form of learned policies (e.g. Q or V values).

The communication in this case can be perceived as an advice exchange from agents with

similar characteristics and geometry.

In addition, a more explicit mechanism can be implemented such that the

exchange is not limited to information-passing only, but is extended to the actual

decision-making process. For example, a coordination strategy can be devised for agents

to take decisions as a team or a coalition considering network-wide implications. A series

of algorithms have been proposed to obtain “negotiated” actions using either hierarchy of

agents (given assigned priorities) or through message passing among agents at the same

level of influence, with “variable elimination” being one of the most widely known

because it is guaranteed to converge, however it is not an any-time algorithm and

solutions are not available until all iterations have been completed.

On the other hand, in this category of explicit mechanisms for coordination the

max-plus algorithm (Vlassis et al., 2004; Kok and Vlassis, 2005 and 2006) emerges as a

26

viable option for controlling the traffic signals in a traffic network. The max-plus

algorithm uses a message-passing strategy that is based on the decomposition of the

relations in a coordination graph as the sum of local terms between two nodes at the time.

This allows the interchange of messages between neighboring intersections, such that in a

series of iterations the agents will reach a final decision based on their own local payoff

function as well as the global payoff of the network.

Thus, the max-plus is an algorithm that propagates the combination of local and

global payoffs among the agents that are interconnected in a coordination graph. Locally

optimized messages 𝑈𝑖𝑗�𝑎𝑗� are sent by agents i to neighbor j over the edges that connect

them and with respect to the action executed by agent j (𝑎𝑗). For tree structures, the

algorithm converges to a fixed point after a finite number of iterations (Pearl, 1988;

Wainwright et al., 2004). However, proof of convergence is not available for graphs with

cycles, and there is no guarantee on the quality of the solution of max-plus in these cases.

Nonetheless, as pointed out by Kok and Vlassis (2006), the algorithm has been

successfully applied in practice in graphs with cycles (Murphy et al., 1999; Crick and

Pfeffer, 2003; Yedidia et al., 2003).

Kok and Vlassis (2006), describe the algorithm and some considerations when it

is applied to graphs with cycles. For the traffic signal problem, and in particular for grid

scenarios, the intersections are interrelated by connections in all their approaches and

create a series of cycles between neighboring intersections. The algorithm and the

considerations for graphs with cycles are described next.

Let’s suppose that the traffic network is a graph with |V| vertices (or intersections)

and |E| edges (or links). To find the optimal action in the network (a*), agent i repeatedly

sends the following message 𝑢𝑖𝑗 to its neighbors j:

() () () () ij
j\)i(k

ikijiijiiajij caua,afafmaxau
j

+








++= ∑
∈Γ

27

Where Γ(i)\j are all neighbors of i except j, and 𝑐𝑖𝑗 is a normalization value.

Message 𝑢𝑖𝑗 , as explained by Kok and Vlassis (2006), is an approximation of the

maximum payoff agent i can achieve with every action of j, and it is calculated as the

sum of the payoff functions 𝑓𝑖, 𝑓𝑖𝑗, and all other incoming messages to agent i, except

that from agent j. Messages 𝑢𝑖𝑗 are exchanged until they converge to a fixed point or until

the agents are told to stop the exchange due to an external signal, for example after the

time available to make a decision is over. It is noted that the messages only depend on the

incoming messages of an agent’s neighbors based on their current actions, thus there is

no need to have these messages optimized, nor evaluated over all possible actions.

On the other hand, the normalization value 𝑐𝑖𝑗 is very useful specially for graphs

with cycles since the value of an outgoing message 𝑢𝑖𝑗 eventually becomes part of the

incoming message for agent i. Thus, in order to prevent messages to grow extremely

large, it is proposed to subtract the average of all values in 𝑢𝑖𝑘 using:

For this study, given that the agents are implemented in a microscopic traffic

simulator where the states are updates in a synchronous fashion, the centralized version

of the max-plus algorithm was implemented. This version has been taken from Kok and

Vlassis (2006) and it is shown in Figure 3.3.

()∑=
k

kik
k

ij au
A
1c

28

Figure 3.3. Pseudo-code for the centralized max-plus algorithm from Kok and Vlassis

(2006)

3.4 Implementation of the algorithms for real-time traffic control

The proposed traffic control is completely decentralized and relies on independent

agents with communication capabilities. The general structure of an agent and its

interaction with the traffic environment is represented schematically in Figure 3.4. As it

is typical of an agent-based application, the only direct input from the environment to the

agent is in the form a “perceived” state, which in this particular case comes from static

traffic sensors and the state of the traffic signals, in addition to an indirect input of the

environment through communication with other agents. Conversely, the only mechanism

for the agent to impact the traffic environment is through actions that modify the status of

the traffic signals and the actions of other agents.

29

Figure 3.4. Schematic Representation of Agent and Environment Structures

Inside the agent structure, there is close interaction among all elements. The

structure is standard of an agent using a RL algorithm, with exception of the COM

module (for achieving explicit coordination and signal progression), and can be described

in general using Figure 3.4 as follows.

Information from the environment is received by the agent and recognized as the

current state of system. The state is used in these internal tasks: 1) estimation of the

reward of the previous action, 2) determination of potential actions from a pool of all

possible actions, 3) estimation of the value of the previous state (or state-action pair), and

4) communication with other agents. The estimation of the reward requires a comparison

between previous state(s) and the current one (to determine the goodness of the action),

and the execution of a model to determine changes in the desired measures of

performance (e.g. delay or amount of carbon emissions). The value of being in a given

30

state (for Q-learning the value is also associated to the action) uses the reward estimation

and previous knowledge on the value of the state. A value function provides estimates of

the “true” or discounted value of a state (or a state-action pair), which is also known as

the “cost-to-go”.

It is noted that the agent determines the best action and the learning is based on

the optimal choice, but the algorithm does not force the agent to commit to such action.

This is the reason why Q-learning and the selected ADP algorithm are called “off-policy”

- since the learning process is optimal even though the policy may continuously change,

for example by following an exploration strategy instead of always using an e-greedy

criterion.

Finally, the agent commits to a decision based on the learned policy. This step

may be influenced by the results of the value function and the information exchange with

other agents, provided that the action selected belongs to the set of valid actions; The

selected actions are sent to the traffic signals for their execution, which in turn will affect

the vehicular traffic (and the state of the system) and the cycle starts again by the agent

observing a new state.

The RL agents were coded and tested in a C++ computer environment and

coupled with the traffic simulator VISSIM, produced by PTV AG. This simulator is able

to provide the desired undersaturated and oversaturated traffic conditions and allows for

the state of the traffic signals to be manipulated in running time based on user-defined

rules. This is done through a communications interface in VISSIM, and the access to the

simulation is accomplished using a dynamic linked library (DLL), generated by the

custom C++ code.

As described earlier, each intersection is operated by a single agent. Therefore,

each agent has its own separate set of state values and keeps track of its own gained

knowledge independently. Each agent in VISSIM sequentially calls the DLL every

simulation second, thus all variables accessible to the user can be tracked with the same

frequency. The current implementation updates the agents every two seconds, given that

this is the typical time needed to process a single vehicle through an intersection at

31

saturation flow rate. In addition, a 2-second window for evaluating the next signal

response is expected to provide very accurate results, also leaving more time available to

other functions that may be needed, such as communication between agents and conflict

resolution for group formation.

Currently, default driver behavior parameters from VISSIM have been used in the

simulations, since at this point the objective was to determine the feasibility of the

methodology, not the precise representation of a particular network in the real world.

Nonetheless, some work has been done to calibrate VISSIM parameters and compare

results obtained by the agents with other commercially available traffic signal optimizers

such as TRANSYT7F implemented in a different simulation package (CORSIM).

The information that agents receive about the state of the system is collected via

vehicle detectors placed along the roadway. This allows for calculations of the number of

vehicles in the links, queues, density, and speeds in all approaches, which the agents can

use to make the control decisions (in addition to information received from other agents).

Recall that the agents can operate with complete flexibility in terms of timing

parameters, thus the operation of the signals is not restricted by pre-specified cycle

length, splits, or offsets. Furthermore, restrictions such as maximum green times or phase

sequence, are not an issue in this implementation. Nonetheless, a minimum green time of

8 seconds was deemed reasonable and was imposed in all experiments in this study.

3.5 Experimental Setup

Different experimental scenarios were defined and created in VISSIM to

determine the performance of the algorithms. The analysis of the algorithms is focused on

both undersaturated and oversaturated conditions and a series of measures of

performance were used to evaluate the effects of using variations of Q-learning and ADP

parameters.

Experiments were defined such that the level of complexity was increased,

starting from a single intersection, followed by two scenarios with arterials, and finally

evaluating a medium-sized network with 20 intersections, as described below. Figures for

32

all the scenarios are shown in the next chapter, immediately before the analysis of their

results.

- Single intersection, oversaturation: this scenario required the algorithms to

control a single intersection with four phases (exclusive through and left-turn

movements), where the demands for all approaches and phases is very high. The

intersection was assumed to be isolated and had long entry links (2000 ft) and long left-

turn lanes (1000 ft), all of which had a single lane. The traffic signal controlling the

intersection could display up to four phases, two for the through movements and two for

the left movements. The phase sequence did not have any restrictions. Traffic demands

ensured oversaturation, with 1000 vphpl for each of the four entry links and 20% of such

demand turning left. The schematic representation of the single intersection is shown in

the following Chapter, Figure 4.1.

- Four-intersection arterial, undersaturation: this second scenario was

designed to test the potential coordination of four closely spaced intersections along a

corridor. Two of the intersections did not have conflicting demand, therefore the agents

should learn not to provide green time to the unused approaches. In addition, the other

two intersections had demand in all approaches and were next to each other, thus it was

possible to coordinate their actions to improve the performance of the arterial. The

arterial had two lanes per direction and short left-turn pockets of approximately 140 ft.

The distance between intersections 1 and 2, and between 3 and 4 was close to 400 ft, and

there was a link 790 ft long between intersections 2 and 3. The entry links on the arterial

were about 500 ft long and the approaches in the opposite direction had 3 or 1 lane per

direction. Entry volumes were 1000 vphpl in the north and south bounds at both ends of

the arterial, and one third (333 vphpl) for the conflicting movements in intersections 1

and 2.

- Two parallel arterials: this scenario contains a total of 10 intersections

where two two-way streets run parallel to each other and intersect streets with high

conflicting demands. This is a step up in the complexity level for finding traffic signal

timings compared to the previous scenario, as there is interaction between intersections in

33

both directions of traffic. Both undersaturated and oversaturated conditions were

analyzed in two separate cases. Demands for the oversaturated case were at similar levels

than in previous scenarios, with 1000 vphpl, and for the undersaturated case they were

1000 vphpl in the direction with high demand and about one third of this amount (333

vphpl) for the opposing direction.

- Medium-sized, realistic network in undersaturation and oversaturation: a

network of 20 intersections was created based on a section of downtown Springfield, Il.

This network is an expansion of the previous scenarios, and the intersections are

distributed in a 4x5 grid-like configuration. This scenario is highly complex, as there are

combinations of one-way and two-way streets, as well as different number of lanes. This

scenario can be regarded as a realistic one, where the potential for ADP and Q-learning

can be observed in challenging conditions in terms of traffic control. Both undersaturated

and oversaturated conditions were analyzed.

34

CHAPTER 4. ANALYSIS OF RESULTS

As described above, a series of experiments were designed to determine the performance

of the reinforcement learning algorithms in scenarios with increased complexity,

beginning with a single isolated intersection, then for two different arterials, and lastly

using a mid-sized realistic network. This section describes the results and presents an

analysis of the algorithms in these scenarios in terms of a series of a performance

measures or indicators including: vehicle throughput, delay, number of stops, signal

timings, queues, and average discharge headways.

This set of indicators provides a clear understanding of the behavior of traffic

when the intersections were controlled by the algorithms. The case of the single

intersection is presented next, followed by the remaining cases in order of complexity.

4.1 Single Intersection - Oversaturated Conditions

As described above, a single intersection with one lane per approach and

exclusive left-turn lanes was created for the first scenario. A sample image of the single

isolated intersection in VISSIM is shown in Figure 4.1.

35

Figure 4.1. Schematic representation of single isolated intersection

The agents were trained during 160 replications of 15 minutes each, where they

accumulated experience and improved their performance based on the feedback received

through the reward function. The number of replications was chosen after observing the

learning curve of the agents, peaking near the 100th replication, so that the performance

measures were obtained after the training was in its final stages. Results from the last 20

replications were used to estimate the performance of the already-trained agents.

A total of four variations of the ADP algorithm and four more of the Q-learning

algorithms were implemented by incorporating different state and reward functions.

Results are presented for the ADP implementation first, followed by those using Q-

learning.

4.1.1 ADP implementations

Four variations were tested in this scenario to explore different state and reward

representations, and their potential effects on the intersection performance. The following

implementations were evaluated:

2000 ft

2000 ft

2000 ft 2000 ft

1000 ft

1000 ft

1000 vph

1000 vph

1000 vph

1000 vph

36

- ADP 1: The state was represented by a five-dimensional vector with one

dimension for the demand of each phase and an additional dimension for the status of the

current phase. The reward for displaying a given phase was also very simple and

calculated as the total demand present in the approach served by this phase. A penalty for

changing phases was imposed to account for the lost time in the yellow-red transitions

and it was a value proportional to the demand being served by the new phase.

- ADP 2: This application used a similar state and reward representation to

that in ADP 1, but included an additional component in the state that indicated the

duration of the current phase being displayed. The rationale behind this additional

information was to serve as a proxy for the delay of vehicles in the phases not being

served. The reward structure used in ADP 1 was maintained unchanged.

- ADP 3: Instead of using the phase duration as a proxy for the delay of

competing demands, this implementation used an estimation of the time that vehicles

have spent in the link. This value was then combined with the actual number of vehicles

to determine the state of each of the demands in the four phases. The time vehicles have

been in the link was accumulated using a dynamic table that kept track of vehicles as they

entered and left the link, assuming no lane changes. This information can be easily found

in the field with the use of entry and exit detectors. The reward structure remained

unchanged, thus the effects in the performance will reflect only those of the added

information. For this implementation, phase duration was not included as a dimension in

the state space.

- ADP 4: This implementation is similar to that used in ADP 3, with the

exception that the phase duration was added to the state representation. The reward

structure was the same as the one used in the implementations above.

4.1.2 Performance

In oversaturated conditions it is common practice to maximize the number of

vehicles processed by an intersection, or vehicle throughput. For the case of a single

37

intersection, this may be the case because upon demands that exceed capacity, it is often

desired to meet as much of such demand so that the remaining number of vehicles is as

low as possible. The learning curve for the agents running the four ADP implementations

is shown in Figure 4.2., where it is observed how the performance of the signal was

improved over time as the agents continued accumulating experience. For the two

algorithms that had the best performance (ADP 1 and 3), the throughput reached about

700 vehicles in 15 minutes for the four phases combined. This translates to about 1400

vphpl of vehicles processed by a single approach. Note that along with the actual

throughput for each replication, a 10-point moving average is also displayed in Figure

4.2. for each implementation.

Figure 4.2. Learning curve for throughput of ADP algorithms in a single intersection

Additional analysis to determine how efficiently was the green time utilized in

each phase was conducted by taking into account the signal timings. The total green time

of the last 20 replications was used for this analysis in order to take into account the

internal variation of the simulation software and the data when the agents had the most

accumulated training time.

400

450

500

550

600

650

700

750

800

0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 (v

eh
icl

es
 p

ro
ce

ss
ed

)

Replication

ADP 1 ADP 2
ADP 3 ADP 4
10 per. Mov. Avg. (ADP 1) 10 per. Mov. Avg. (ADP 2)
10 per. Mov. Avg. (ADP 3) 10 per. Mov. Avg. (ADP 4)

38

The average duration of each phase and their throughput for the last 20

replications is shown in Table 4.1. This allowed an estimation of the average discharge

headways for each phase, which can be easily translated into green time utilization. It is

observed that the lowest discharge headways were obtained using ADP 3, which makes

use of the time vehicles have spent in the link as part of the state and did not include the

phase duration in the state space. It is also noted that the total throughput found with

ADP 3 was also the highest, confirming that this implementation had a favorable

performance compared to the others, as it can also be observed in Figure 4.2. above.

Table 4.1. Signal timings and average discharge headway for ADP in a single intersection

Even though the number of vehicles processed and efficiency in the utilization of

green time are important indicators of the signal performance, other indicators such as

queue lengths and quality of service for all users should also be considered. For example,

it would be useful knowing how fair the service is for a driver turning left compared to a

Green EW Left Green EW Thru Green NS Left Green NS Thru Total Througput

Ave green time (s) 8.23 10.07 8.37 9.8

Total phase frequency 402 1206 429 1220

Total green time (s) 3308 12144 3591 11956

Throughput (veh) 3284 13476 3410 13281

Ave. discharge headway
(s) 2.01 1.80 2.11 1.80

Ave green time (s) 8.19 9.36 8.1 9.24

Total phase frequency 294 1168 759 1181

Total green time (s) 2408 10932 6148 10912

Throughput (veh) 2632 12130 3089 12186

Ave. discharge headway
(s) 1.83 1.80 3.98 1.79

Ave green time (s) 8.18 10.32 8.31 10.08

Total phase frequency 385 1216 385 1216

Total green time (s) 3149 12549 3199 12257

Throughput (veh) 3306 13834 3352 13682

Ave. discharge headway
(s) 1.91 1.81 1.91 1.79

Ave green time (s) 8.1 9.19 8.01 9.14

Total phase frequency 264 1250 632 1269

Total green time (s) 2138 11488 5062 11599

Throughput (veh) 2378 12794 3313 12964

Ave. discharge headway
(s) 1.80 1.80 3.06 1.79

ADP 4

IndicatorImplementation Phase

33451

30037

34174

31449

ADP 1

ADP 2

ADP 3

39

driver continuing straight through the intersection. In this regard, from Table 4.1., it is

observed that the frequency with which the left-turn and the through phases were

displayed was very different for all implementations, with through phases being around 3

or 4 times more frequent and with higher average duration. Recall that the demands for

the left-turn phases were 20% of the total incoming traffic, thus the actual allocation of

green time actually reflected the demand distribution.

Figure 4.3. shows the average vehicle delays for the four ADP implementations.

Moving averages for each of the implementations help the reader observe trends for the

four cases. It is noticed that the lowest average delays were obtained using ADP 1 (which

had the second highest throughput), followed by those using ADP 3 which had the

highest throughput. On the other hand, similar to the results from Figure 4.2.

(throughput), the performance of ADP 2 and ADP 4 was (which included the phase

duration) was not on par to the other two cases.

In addition, in order to determine the fairness and quality of service for left and

through movements, a detailed analysis was performed on the delay of vehicles for each

phase. The average and variance of the last 20 replications for left-turning and through

drivers is shown in Table 4.2. for the four ADP implementations. Table 4.2. also shows

the relative delay of left-turners compared to those continuing through the intersection.

This can also be seen as a measure of fairness for all users.

40

Figure 4.3. Learning curve for average delay of ADP algorithms in a single intersection

Table 4.2. Delay per phase for ADP implementations in a single intersection

The lowest delay per phase was obtained with ADP 3 for the through movements,

but the most balanced service was provided using ADP 1, where the mean waiting time

for both left and through movements was practically the same. Other implementations

(ADP 2 and ADP 4) were highly unstable and provided longer delays for both left and

through movements, and significantly higher variances for the left-turn phases.

At this point a tradeoff is observed between providing more balanced service

(ADP 1) and favoring the phases with higher demands (ADP 3) but achieving the highest

throughput. It is also noted that even though the differences in the average signal timings

between ADP 1 and ADP 3 were very small, this resulted in significant changes in the

ratio of delay between drivers in left and through phases and the throughputs.

160

180

200

220

240

260

280

300

320

340

360

0 20 40 60 80 100 120 140 160

Av
er

ag
e d

el
ay

 (s
ec

/v
eh

)

Replication

ADP 1 ADP 2
ADP 3 ADP 4
10 per. Mov. Avg. (ADP 1) 10 per. Mov. Avg. (ADP 2)
10 per. Mov. Avg. (ADP 3) 10 per. Mov. Avg. (ADP 4)

Me a n (s) Va ria nce (s) Me a n (s) Va ria nce (s)
ADP 1 226.3 531.6 242.5 29.6 0.93
ADP 2 251.9 17758.6 283.8 4.1 0.89
ADP 3 373.5 487.3 208.5 34.8 1.79
ADP 4 395.6 89499.7 245.1 10.8 1.61

Le ft-turn p ha se s T hro ug h p ha se s
Imp le me nta tio n

Ra tio
Le ft/T hro ug h

41

Lastly, the average speed of all vehicles in the network is shown for the four ADP

implementations. ADP 1 had the highest average speeds, which combined with the

lowers average delays and the second highest throughput, provides a favorable

performance along with ADP 3 which has the highest throughput. Similar to previous

Figures, Figure 4.4. shows a 10-point average speed shows the learning curve as the

agents gain and accumulate experience.

Figure 4.4. Learning curve for average speed of ADP algorithms in a single intersection

4.1.3 Q-learning implementations

A series of signal controllers were created for Q-learning algorithms, following

similar implementations to those used for ADP. Thus, there were four analogous cases

with Q-learning that use the same state and reward definitions as explained for ADP 1

through 4. The reader is directed to the ADP definitions in the previous subsection for

details. The analysis of the performance of these implementations is described below.

4.1.4 Performance

The first indicator to determine the performance of the algorithms was the

intersection throughput. The learning curve for the Q-learning implementations is shown

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

Av
er

ag
e

Sp
ee

d
(m

ph
)

Replication

ADP 1 ADP 2
ADP 3 ADP 4
10 per. Mov. Avg. (ADP 1) 10 per. Mov. Avg. (ADP 2)
10 per. Mov. Avg. (ADP 3) 10 per. Mov. Avg. (ADP 4)

42

in Figure 4.5., where there was a distinctive improvement using Q1 and Q3, compared to

those that had the phase duration as part of the state representation (Q2 and Q4). This

trend is similar to that observed for ADP implementations.

Figure 4.5. Learning curve for throughput of Q-learning algorithms in a single

intersection

A direct comparison between ADP and Q-learning is also possible given that the

algorithms make use of the same information from the simulation and share the source

code for data collection and processing. In addition, the same random seeds were used for

the two algorithms, allowing for a paired comparison. Figure 4.6. shows the two most

favorable implementations for both ADP and Q-learning are implementations 1 and 3. It

is easily observable that performance of the two algorithms is comparable at the end of

the 160 training runs, especially for Q3 and ADP 3, reaching the highest throughput

levels for the two series of implementations.

400

450

500

550

600

650

700

750

800

0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 (v

eh
icl

es
 p

ro
ce

ss
ed

)

Replication

C1Q C2Q
C3Q C4Q
10 per. Mov. Avg. (C1Q) 10 per. Mov. Avg. (C2Q)
10 per. Mov. Avg. (C3Q) 10 per. Mov. Avg. (C4Q)

43

Figure 4.6. Learning curve for throughput of best Q-learning and ADP in a single

intersection

The signal timings and the throughput per phase were also examined for the Q-

learning implementations. From this, the average discharge headway was obtained and

used as a measure of the efficiency green time utilization. Results of this analysis are

shown in Table 4.3. below.

400

450

500

550

600

650

700

750

800

0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 (v

eh
icl

es
 p

ro
ce

ss
ed

)

Replication

Q1 Q3
ADP 1 ADP 3
10 per. Mov. Avg. (Q1) 10 per. Mov. Avg. (Q3)
10 per. Mov. Avg. (ADP 1) 10 per. Mov. Avg. (ADP 3)

44

Table 4.3. Signal timings and average discharge headway for Q-learning in a

single intersection

From Table 4.3., the highest throughput was found with Q3, showing that for both

Q-learning and ADP, an implementation using an estimate for the time vehicles have

spent in the link in the state of the system resulted in improved results.

In terms of signal timings, the through phases were displayed more often than the

left-turn phases with a ratio of about 2:1, and in the case of Q3 the duration of the

through phase was about double the duration of the left-turn phase. This mimics the

actual traffic distribution, with about 20% of the green time dedicated to left-turn phases

and the remaining time for through movements. In comparison with ADP, Q-learning

phases for the through movements were longer and generated fewer phase changes, and

therefore reduced the lost time. The effect of having these longer phases in terms of delay

is examined for each movement, as follows.

The average delay for all vehicles in the system is shown in Figure 4.7. for the

four Q-learning implementations. At the end of the 160 runs the four implementations

seem to converge to the same lower delay level, with faster learning rates for the

Green EW Left Green EW Thru Green NS Left Green NS Thru Total Througput
Ave green time (s) 8 13.43 8.14 13.49

Total phase frequency 488 889 555 905
Total green time (s) 3904 11939 4518 12208

Throughput (veh) 3267 13058 3443 13430
Ave. discharge headway

(s) 2.39 1.83 2.62 1.82

Ave green time (s) 8.01 10.88 8.09 10.93
Total phase frequency 505 1046 581 1026

Total green time (s) 4045 11380 4700 11214
Throughput (veh) 3075 12601 3167 12382

Ave. discharge headway
(s) 2.63 1.81 2.97 1.81

Ave green time (s) 8.01 15.19 8.14 15.2
Total phase frequency 433 844 501 867

Total green time (s) 3468 12820 4078 13178
Throughput (veh) 3347 13844 3718 14245

Ave. discharge headway
(s) 2.07 1.85 2.19 1.85

Ave green time (s) 8.01 10.54 8.04 10.33
Total phase frequency 535 1013 641 1058

Total green time (s) 4285 10677 5154 10929
Throughput (veh) 3229 13454 3497 13333

Ave. discharge headway
(s) 2.65 1.59 2.95 1.64

Q 2 31225

Q 3 35154

Q 4 33513

Implementation Indicator Phase

Q 1 33198

45

algorithms that made use of the time vehicles have spent in the link as part of the state

(Q1 and Q3).

Figure 4.7. Learning curve for average delay of Q-learning algorithms in a single

intersection

In comparison with ADP, Figure 4.8. shows the implementations with the lowest

delay for both Q-learning and ADP, which in this case were implementations Q3 and

ADP 1. It is clear that the performance of the two implementations is similar in terms of

delay and this is also reflected in their similar average discharge headway, however they

yielded different throughputs (Tables 4.1. and 4.3.).

160

180

200

220

240

260

280

300

320

340

360

0 20 40 60 80 100 120 140 160

Av
er

ag
e D

el
ay

 (s
ec

/v
eh

)

Replication

Q1 Q2

Q3 Q4

10 per. Mov. Avg. (Q1) 10 per. Mov. Avg. (Q2)

10 per. Mov. Avg. (Q3) 10 per. Mov. Avg. (Q4)

46

Figure 4.8. Learning curve for average delay of best Q-learning and ADP in a single

intersection

In a more detailed examination of the delay of Q-learning, the individual phases

are observed to obtain the data shown in Table 4.4., analogous to Table 4.2. for ADP. It is

observed that the lowest overall delays were observed for left-turning drivers using Q2,

but causing a significant unbalance with delays of through vehicles. The delay of through

movements was more predictable, with variances significantly lower than those of left-

turn vehicles. Better balance of service for both directions was achieved by Q4 and Q3.

Given that the demand for through movements is 4 times greater than that of left

turns, it is not surprising that Q3 had the lowers overall delay for the whole intersection

together, as seen in Figure 4.7.

Table 4.4. Delay per phase for Q-learning implementations in a single intersection

160

180

200

220

240

260

280

300

320

340

360

0 20 40 60 80 100 120 140 160

Av
er

ag
e D

el
ay

 (s
ec

/v
eh

)

Replication

Q3

ADP 1

10 per. Mov. Avg. (Q3)

10 per. Mov. Avg. (ADP 1)

Me a n (s) Va ria nce (s) Me a n (s) Va ria nce (s)
Q 1 179.2 248.6 256.3 76.0 0.70
Q 2 175.6 77.1 282.7 13.4 0.62
Q 3 244.5 856.2 220.3 33.8 1.11
Q 4 235.0 1443.0 239.5 4.2 0.98

Imp le me nta tio n
Le ft-turn p ha se s T hro ug h p ha se s Ra tio

Le ft/T hro ug h

47

Regarding the average speed of vehicles, a summary of the performance of the

four Q-learning implementations is shown in Figure 4.9.. Similar to the curve for delay,

the speed of the four cases approach a similar speed level by the time they reach the last

of the 160 replications in the learning stage.

Figure 4.9. Learning curve for average speed of Q-learning algorithms in a single

intersection

4.2 Four-intersection Arterial, undersaturated conditions

As mentioned above, the second case study used to evaluate the algorithms was

an arterial with four intersections. Conflicting volumes in the first two intersections

create the need to continuously change phases, and open the opportunity to observe if

there is any emergent coordinated behavior between them. The remaining two

intersections do not have conflicting volumes and the signals should learn not to provide

green time to those approaches. Entry volumes on the north and south end of the arterial

are 2000 vph for the two lanes combined, and one third of the per-lane volume was input

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

Av
er

ag
e S

pe
ed

 (m
ph

)

Replication

Q1 Q2

Q3 Q4

10 per. Mov. Avg. (Q1) 10 per. Mov. Avg. (Q2)

10 per. Mov. Avg. (Q3) 10 per. Mov. Avg. (Q4)

48

at intersections 1 and 2, for a total of 1000 vph in the three lanes combined. A schematic

representation of the arterial is shown in Figure 4.10.

Figure 4.10. Schematic representation of arterial, where “x” indicates no traffic in the

approaching links

This section presents the results of multiple implementations, in a similar format

to that used for the single intersection case. The analysis of ADP will be described next,

followed by the analysis of Q-learning and some contrasts between the two approaches.

4.2.1 ADP Implementations

A total of four implementations were created for this scenario using ADP

algorithms. The implementations will be numbered using the letter “a” to create a

1

2

3

4

1000 vph

1000 vph

2000 vph

2000 vph

375 ft

790 ft

390 ft

500 ft

500 ft

740 ft 760 ft

49

distinction between this scenario and the others. This will be followed by the next

scenarios as well, using letters to prevent confusion between implementations.

The first two implementations (ADP1a and ADP2a) are analogous to

implementations ADP1 and ADP3 from the previous scenario (the single intersection).

Thus, in ADP1a the state was represented only by the number of vehicles in each link and

the current phase, and in ADP2a the state incorporates a measure of the time the vehicles

have spent in the link together with the number of vehicles. It is noted that the state space

does not change from ADP1a to ADP2a, but only the variables involved in the estimation

of the current state.

The remaining two implementations (ADP3a and ADP4a) included the following

communication capabilities: 1) it was known to an agent if the receiving links of the

neighboring intersections were near capacity (implemented as a dimension in the state),

and 2) the agent will receive an incentive for providing green to incoming vehicles from

adjacent intersection (implemented as a reduction in penalties). In addition to these

capabilities, ADP4a used a modified reward function that included potential downstream

blockages, so that penalties were created if green time was given to approaches that could

result in these situations. More specifically, penalties were gradually increased if the

downstream link was occupied between 0 and 40%, between 40 and 60%, or higher than

60%, as a function of the opposing traffic.

The potential for blockage in ADP3a and ADP4a was included as an additional

dimension in the state space in the form of up to two levels of potential blockage per

direction. The additional information included in ADP4a did not affect the size of the

state space, but the calculation of the reward.

Recall that this scenario was studied in undersaturated conditions, thus

performance indicators such as total throughput should be maintained approximately

stable for all implementations unless their performance is significantly subpar compared

to the others. A similar set of the indicators used in the case of a single intersection will

be shown in this case as well, in combination with other indicators that are appropriate

for multiple intersections such as the number of stops for the vehicles in the system.

50

4.2.2 Performance

The analysis begins with the average delay of all vehicles in the network, as

shown in Figure 4.11. It is observed that the performance of the four implementations

varied significantly, including the last replications of the training curve. ADP3a achieved

the lowest average delays and ADP1a the highest. Recall that ADP3a included an

incentive for incoming vehicles from adjacent intersections, but so did ADP4a using a

different reward function.

Figure 4.11. Learning curve for average delay of ADP algorithms in an arterial

Differences between the four implementations were, for the most part, the result

of not completely eliminating phase changes for the two intersections that did not have

conflicting volumes. The signals at these locations were not stable enough using ADP1a

and ADP4a and the green phase was at times assigned to the E-W direction. A closer

view of the signals in these two intersections showed that ADP1a provided green to the

opposite direction for about one fourth of the total green time at intersection 4 and only a

negligible portion of the green at intersection 3 (about 1% of the time). On the other

hand, using ADP4a about one sixth of the green time was allocated to the E-W direction

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90

Av
er

ag
e

De
la

y
(s

/v
eh

)

Replication

ADP1a ADP2a
ADP3a ADP4a
10 per. Mov. Avg. (ADP1a) 10 per. Mov. Avg. (ADP2a)
10 per. Mov. Avg. (ADP3a) 10 per. Mov. Avg. (ADP4a)

51

at intersection 4, and about 5% to the E-W direction at intersection 3. The remaining two

implementations did not provide green time to approaches without demand.

On the other hand, an inspection of the delay was also conducted for each of the

phases at the two intersections with conflicting volumes. These results are shown in

Table 4.5.

Table 4.5. Delay per phase for ADP implementations in an arterial

Overall, from Table 4.5. the average delays between the four implementations are

similar, indicating limited effects of the additional features for ADP3a and ADP4a. This

may not come as a surprise as the undersaturated conditions were not expected to

generate blockages. However, the incentives and provide green times for oncoming

traffic could have had an impact in the operation in terms of delay, but this did not seem

to be the case.

Additional information about the signal timings for each of the two directions of

traffic in these two intersections is shown in Table 4.6.

Me a n (s) Va ria nce (s) Me a n (s) Va ria nce (s)
ADP1a 15.4 269.6 25.0 2.1
ADP2a 18.8 225.8 17.3 0.8
ADP3a 16.3 280.3 23.3 2.4
ADP4a 16.0 284.7 23.1 2.3
ADP1a 10.3 81.5 20.7 1.4
ADP2a 11.7 117.8 18.0 0.6
ADP3a 11.5 125.6 20.8 2.4
ADP4a 11.1 116.9 21.5 2.4

Intersection 1

Intersection 2

Inte rse ctio n Imp le me nta tio n
N-S p ha se E-W p ha se

52

Table 4.6. Signal timings and average discharge headway for ADP in arterial

From Table 4.6., the signal timings from ADP2a and ADP3a provided longer

green times for the traffic direction along the arterial compared to the other

implementations. Likewise, the average discharge headway was slightly longer for

ADP2a and ADP3a.

In addition, the average green times for intersection 1 were longer than for

intersection 2 along the arterial. This is explained by the more continuous arrival of

vehicles at intersection 1 given that the demand on the northbound is reduced to about

72% of the original entry volume due to right and left turn movements, and the demand

southbound to about 95%. This is also an indication that, given the greater demand

E-W N-S Total Througput E-W N-S Total Througput
Ave green

time (s)
8.07 24.89 8.3 20.77

Total phase
frequency

877 876 974 977

Total green
time (s) 7082 21810 8092 20294

Throughput
(veh) 9912 34402 9994 33964

Ave.
discharge

headway (s)
2.14 2.54 2.43 2.39

Ave green
time (s)

8.01 30.42 8.04 21.67

Total phase
frequency

769 777 952 956

Total green
time (s) 6164 23640 7654 20716

Throughput
(veh) 9919 34375 9939 34010

Ave.
discharge

headway (s)
1.86 2.75 2.31 2.44

Ave green
time (s)

8.07 26.57 8.06 22.71

Total phase
frequency

850 849 930 931

Total green
time (s) 6860 22558 7496 21143

Throughput
(veh) 10008 34315 9999 33948

Ave.
discharge

headway (s)
2.06 2.63 2.25 2.49

Ave green
i ()

8.11 23.42 8.15 21.52
Total phase
frequency

907 908 953 953

Total green
time (s)

7360 21270 7766 20508

Throughput
(veh)

9907 34392 9956 34033

Ave.
discharge

headway (s)
2.23 2.47 2.34 2.41

ADP 2a 44294 43949

ADP 3a 44323 43947

Implementation Indicator

ADP 1a 43958

Intersection 1 Intersection 2

44314

ADP 4a 44299 43989

53

southbound, coordination should have been provided in this direction. The offsets

between the beginning of green time at intersections 1 and 2 on the southbound and on

the northbound were explored to determine if the coordination occurred as expected.

For the southbound, the offsets of the last 20 replications (at the end of the

training period) were found to be shorter than those for northbound and closer to an ideal

offset given the distance between intersections. The ideal offset assuming no initial queue

was around 10 seconds in free-flow speed, but closer to 15 seconds with the assigned

demands. For example, a plot of the cumulative distribution of the offsets using ADP3a

showed that 70% of the offsets in the southbound direction were lower than 22 seconds,

whereas in the southbound the 70% of the cumulative distribution was located at 34

seconds. This is a clear indication of better coordination in the southbound, as expected.

Another example without the coordination features (using ADP2a) showed that 70% of

the offsets were slightly longer in both directions, with the southbound direction at 24

seconds and for the northbound at 38 seconds.

Another measure of the coordination of traffic along the arterial is the average

number of stops per vehicles. Even though this indicator does not account for vehicles

slowing down, it may show when coordination was significantly different between the

implementations. This is shown in Figure 4.12, where ADP2a and ADP3a, following the

same trend observed for the delay, and closely linked to the signal operation in

intersections 3 and 4.

54

Figure 4.12. Learning curve for average number of stops of ADP algorithms in an arterial

4.2.3 Q-learning Implementations

Four implementations similar to those explained above for ADP where used to

test the performance of Q-learning in the arterial scenario, named Q1a through Q4a.

There is correspondence between the labeling used in this subsection and the

characteristics of the implementations for ADP, thus for example the implementation for

Q1a had the same state and reward definitions of ADP1a.

However, unlike the results for ADP all four cases using Q-learning had similar

performance at the end of the 80 training runs and reached the same levels of the best

ADP cases.

4.2.4 Performance

The first indicator used in this analysis was the average delay per vehicle in the

system, as shown in Figure 4.13. The four Q-learning implementations converged to a

similar delay value and produced similar variations on the replications. An examination

of the delays per intersection showed that in one of the implementations (Q1a) the signals

provided momentarily the right of way to the approaches with no demand, delaying

vehicles unnecessarily. In Q1a the signals provided on average about 5% of the total

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Av
er

ag
e

st
op

s
pe

r v
eh

ic
le

Replication

ADP1a ADP2a
ADP3a ADP4a
10 per. Mov. Avg. (ADP1a) 10 per. Mov. Avg. (ADP2a)
10 per. Mov. Avg. (ADP3a) 10 per. Mov. Avg. (ADP4a)

55

green time to the approaches with no demand, which accounts for some of the increased

total delay of Q1a compared to the other algorithms in Figure 4.13. Additional

reinforcement from adding an estimate of delay in the state, as well as incentive from

adjacent intersections had a better effect in preventing switching phases upon no demand

in the Q-learning implementations compared to ADP.

 Figure 4.13. Learning curve for average delay of Q-learning algorithms in an arterial

 Delay values for the two intersections with opposing demands are shown in

Table 4.7. Delays for the N-S direction were in general lower than for the E-W direction,

which may be at first counterintuitive given the greater demand on the N-S direction, but

it can be mainly explained by the greater number of vehicles that could be processed

without stopping due to increased pressure to hold the green light. The larger variance of

the delay for the N-S direction also explains this situation, where some vehicles may have

been processed by the intersection without stopping but some others had to wait at least

the minimum green time and yellow-red transition of the E-W direction. On the other

hand, vehicles in the E-W direction were likely to wait for the duration of the N-S

direction (a great portion of a typical cycle) to be processed in the next green light,

having a more constant delay. Lastly, a slight decrease in the delay of the intersections on

the N-S direction (along the arterial) can be observed when using Q4a (which accounted

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80

Av
er

ag
e

De
la

y
(s

/v
eh

)

Replication

Q1a Q2a

Q3a Q4a

10 per. Mov. Avg. (Q1a) 10 per. Mov. Avg. (Q2a)

10 per. Mov. Avg. (Q3a) 10 per. Mov. Avg. (Q4a)

56

for incentive upon arrival of platoons) but at the expense of greater delay for the E-W

direction.

Similar comments to those mentioned for the ADP implementations apply to

these cases with Q-learning in relation to the magnitude of the mean and variance of the

delay.

Table 4.7. Delay per phase for Q-learning implementations in an arterial

The characteristics of the signal timings and the average discharge headway for

the four implementations are shown in Table 4.8. As expected, given the undersaturated

conditions, all four algorithms processed a very similar number of vehicles. Slightly

different discharge headways were observed using Q3a and Q4a compared to Q1a and

Q2a, favoring the N-S direction (larger headways) and also signal progression.

Me a n (s) Va ria nce (s) Me a n (s) Va ria nce (s)
Q1a 17.1 267.4 21.4 1.2
Q2a 17.1 208.1 17.6 1.0
Q3a 17.5 284.6 19.6 1.7
Q4a 16.0 284.7 23.1 2.3
Q1a 13.3 156.4 15.5 0.4
Q2a 13.4 150.5 15.2 0.7
Q3a 12.3 136.3 18.1 1.1
Q4a 11.1 116.9 21.5 2.4

Intersection 1

Intersection 2

Inte rse ctio n Imp le me nta tio n
N-S p ha se E-W p ha se

57

Table 4.8. Signal timings and average discharge headway for Q-learning in arterial

Different from ADP, the average phase duration for both N-S and E-W directions

are more similar between intersections 1 and 2, creating a better probability of

coordination in both directions due to common cycle length. If this is true, the offsets in

both directions should be similar to each other. Therefore, an examination of the offsets

for the implementation of Q4a was examined to determine the similarity of the offsets.

Results showed a closer agreement between the two distributions, with the 70% of them

being 22 seconds or lower for the N-S direction and 26 seconds or lower for the E-W

direction. A sample image of the two distributions is shown in Figure 4.14, and indicates

that the offsets varied in a very similar way throughout the 20 last replications, favoring

coordination in the two directions of traffic.

E-W N-S Total Througput E-W N-S Total Througput

Ave green time (s) 8.14 23.47 8.16 20.73

Total phase
frequency

906 904 979 977

Total green time (s) 7375 21217 7989 20253

Throughput (veh) 9957 34347 10013 33939

Ave. discharge
headway (s)

2.22 2.47 2.39 2.39

Ave green time (s) 8.23 21.17 8.24 19.63

Total phase
frequency

962 967 1008 1003

Total green time (s) 7917 20471 8306 19689

Throughput (veh) 9929 34404 10026 33993

Ave. discharge
headway (s)

2.39 2.38 2.49 2.32

Ave green time (s) 8.28 23.05 8.46 22.05

Total phase
frequency

912 917 932 935

Total green time (s) 7551 21137 7885 20617

Throughput (veh) 9922 34328 9980 34026

Ave. discharge
headway (s)

2.28 2.46 2.37 2.42

Ave green time (s) 8.32 26.7 8.48 26.56
Total phase
frequency

841 838 834 833

Total green time (s) 6997 22375 7072 22124

Throughput (veh) 9968 34341 9992 33974

Ave. discharge
headway (s) 2.11 2.61 2.12 2.60

Q3a 44250 44006

Q4a 44309 43966

Intersection 1 Intersection 2

Q1a 44304 43952

Q2a 44333 44019

Implementation Indicator

58

Figure 4.14. Cumulative distribution of offset durations for NB and SB in intersections 1

and 2 using Q4a

The total number of stops per vehicle was also monitored for the whole system,

and it is shown in Figure 4.15. The four implementations converged to a value of about

0.7 stops per vehicle, with an edge for the Q4a implementation. This was also expected

given the longer average green time for the N-S direction in Q4a compared to the other

implementations and the similar timings for the two intersections with conflicting

movements, as shown above.

Offset (s)

Cumulative
Probability

59

Figure 4.15. Learning curve for average number of stops of Q-learning algorithms in

arterial

In comparison with the best ADP, the learning curve of the Q-learning

implementation was very similar, with slight benefits in terms of the number of stops for

Q-learning. This can be observed in Figure 4.16, showing ADP3s and Q4a.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Av
er

ag
e

st
op

s
pe

r v
eh

ic
le

Replication

Q1a Q2a
Q3a Q4a
10 per. Mov. Avg. (Q1a) 10 per. Mov. Avg. (Q2a)
10 per. Mov. Avg. (Q3a) 10 per. Mov. Avg. (Q4a)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Av
er

ag
e

st
op

s
pe

r v
eh

ic
le

Replication

Q4a

ADP3a

10 per. Mov. Avg. (Q4a)

10 per. Mov. Avg. (ADP3a)

60

Figure 4.16. Comparison of learning curves for average number of stops of Q4a and

ADP3a

The performance of the best ADP and Q-learning algorithms was also compared

to the results of the traffic signal optimization performed by the commercial software

package TRANSYT7F, which uses a search in the solution space through a genetic

algorithm. The traffic environment for TRANSYT7F was provided by CORSIM, a well

known microscopic simulator.

The arterial was coded in CORSIM with the exact same characteristics as in

VISSIM. In addition, calibration had to be performed to ensure that the vehicle

characteristics, the discharge headways and speeds were the same in the two simulation

environments. The following variables were modified in VISSIM to attain the desired

calibration: desired speed, vehicle types were limited to two, with the same dimensions

and similar operational characteristics, the additive part of the desired safety distance in

the car-following model (to obtain similar discharge headways), and the standstill

distance of vehicles (to match the number of vehicles that a link could store). It is noted

that the decision to perform this comparison was made before obtaining VISSIM results

presented in this report; therefore all data presented up to this point and onward was

obtained in VISSIM after this calibration was performed.

The comparison of ADP and Q-learning with TRANSYT7F was performed in

terms of average delay per vehicle, average vehicle speeds, and total system throughput.

The last 40 replications of the training for ADP and Q-learning were used in the

comparison whereas 40 replications were obtained from CORSIM using the signal timing

settings after the optimization process was completed. Results of the comparisons are

shown below in Figure 4.17.

61

19a – Throughput

19b – Total vehicle delay

1300

1350

1400

1450

1500

1550

1600

1650

0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (

ve
hi

cl
es

 p
ro

ce
ss

ed
)

Replication

Q4a ADP3a
TRANSYT7F 10 per. Mov. Avg. (Q4a)
10 per. Mov. Avg. (ADP3a) 10 per. Mov. Avg. (TRANSYT7F)

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

To
ta

l D
el

ay
 (h

r)

Replication

Q4a ADP3a
TRANSYT7F 10 per. Mov. Avg. (Q4a)
10 per. Mov. Avg. (ADP3a) 10 per. Mov. Avg. (TRANSYT7F)

62

19c – Average vehicle speed

Figure 4.17. Comparison performance of Q4a, ADP3a and TRANSYT7F in

undersaturated arterial

Figure 4.17. shows similar average values for all three methods for the three

indicators. However, higher variation between different replications was obtained in

VISSIM compared to CORSIM. It is important to observed that while the same random

seeds where used for ADP and Q-learning, this was not possible with CORSIM, as the

simulation packages had a different car following model, and therefore different use of

random numbers. This variation can be better observed in 19a, where the vehicle

throughput is shown for the different replications.

These results indicate that the ADP and Q-learning implementations were as

effective as current commercial solutions in finding the signal timings of the arterial

studied in this study, with undersaturated conditions. Results can also be seen as a

building block for more complex scenarios described in the following subsections.

4.3 5x2 Network, Undersaturated Conditions

The third scenario included in this study was a small network of ten intersections

in a 5x2 configuration. As described above, there were single-lane links along the 5

contiguous intersections in the E-W direction, and a combination of 3-lane and 2-lane

16

17

18

19

20

21

22

23

24

0 5 10 15 20 25 30 35 40

Av
er

ag
e

Sp
ee

d
(m

ph
)

Replication

Q4a ADP3a
TRANSYT7F 10 per. Mov. Avg. (Q4a)
10 per. Mov. Avg. (ADP3a) 10 per. Mov. Avg. (TRANSYT7F)

63

intersecting streets on the N-S direction. This particular set of experiments had demands

that were slightly below saturation, with higher inputs per lane in the E-W direction. All

entry links in the E-W direction received 1000 vphpl whereas all links in the N-S

direction received one third of this volume per lane (333 vphpl). A schematic

representation of the network is shown in Figure 4.18.

Figure 4.18. Schematic representation of 5x2 network

4.3.1 Implementations

Similar to the previous two scenarios, a set of implementations were tested to

determine their performance. The following are the descriptions of the implementations,

which include either and ADP approach or a Q-learning approach:

- ADP1b: The definition of the state for this implementation includes a

component for each direction of traffic that is estimated using both the number of

vehicles and the time they have already spent in the link. This is a similar implementation

to that used in previous scenarios, such as ADP3 and ADP2a.

1000 vph

1000 vph 1000 vph 666 vph

666 vph

666 vph

666 vph

1000 vph

1000 vph

1000 vph

1000 vph

1

2

3

4

5

6

7

8

9

1

500 ft 365 ft 365 ft 760 ft 740 ft 500 ft

500 ft

375 ft

790 ft

64

- ADP2b: This implementation included a factor to account for potential

blockages due to downstream congestion. This factor was represented in the state as an

additional dimension, thus one dimension for each direction was created. This factor also

affected the rewards by increasing the relative weight of the link without potential

blockage, therefore favoring the green light in that direction. The reward is analogous to

that used in ADP4a.

- Q1b: In this case, an application using Q-learning was created not only

including the blockage factor from ADP2b, but also some incentives for anticipating

vehicles from adjacent intersections. This incentive was in the form of added weight to

the direction expecting the vehicles. Even though this feature is expected to produce

better results with very low traffic in one of the traffic direction, it was included in this

scenario to determine if it had any impact in the network.

- Q2b: This implementation had the same state definition as Q1b, but the

calculation of the rewards was estimated using the same definition from ADP4a,

therefore the blockages and incentives have a significant impact in the rewards for each

action.

4.3.2 Performance

The performance of the implementations is analyzed next, beginning with the

delay for all vehicles in the network as the agents trained (shown in Figure 4.19). An

improvement in the average delay of all vehicles in the network is observed as the agents

trained. It is noted, however, that the change in performance between the initial portion of

the training and the last of the replications was in the order of 10% or less.

65

Figure 4.19. Learning curve for average delay of RL algorithms in 2x5 network

An analysis of the queue lengths in all links in the network, and for all

implementations, showed that the only points that eventually had queues near their

capacity (>85%) were left-turn lanes and the eastbound link of intersection 4. Therefore

the signals prevented queue spillbacks on the through movements but due to the

permitted operation of the left-turns (as opposed to using an exclusive phase), these

eventually created queues that reached the main line. Given that only a few links were

likely to be blocked, it is not surprising that the total throughput of the network was

similar for all implementations and fluctuated around the expected number of vehicles to

be processed in each of the 15-minute replications, which in this scenario was around

2400 vehicles (Figure 4.20).

27

29

31

33

35

37

39

41

43

45

47

0 10 20 30 40 50 60 70 80

Av
er

ag
e

De
la

y
(s

/v
eh

)

Replication

ADP1b ADP2b
Q1b Q2b
10 per. Mov. Avg. (ADP1b) 10 per. Mov. Avg. (ADP2b)
10 per. Mov. Avg. (Q1b) 10 per. Mov. Avg. (Q2b)

66

Figure 4.20. Learning curve for network throughput of RL algorithms in 2x5 network

Then, the actual signal timings were examined to determine how green times were

utilized at each intersection. The direction of traffic with greatest volume was monitored

in detail (E-W) since the main problematic areas were observed along these links. In

addition, the discharge of left-turning vehicles was more critical on the E-W links given

that there was only one through lane and it could be easily blocked by left-turning

vehicles overflowing the turning lane.

The percentage of green time given to the E-W direction for all intersections was

between 57% and 74% of the total green time. Based on the total demand per link, and

assuming the same number of lanes for all approaches, the proportion of green time given

to the E-W direction should have been about 50% for intersections 1 to 6, and about 66%

for intersections 7 to 10. However, given that there is a single through lane on the E-W

direction, it is necessary to give additional green time in order to process the same

number of vehicles. Therefore, there is a tradeoff between two objectives in the network:

providing equal service rates for the two directions of traffic and processing more

vehicles per unit of time.

For the network to be more efficient, it is preferred to provide green time to the

approaches with greater number of lanes (e.g. the N-S direction), as more vehicles will be

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

0 10 20 30 40 50 60 70 80

N
et

w
or

k
Th

ro
ug

hp
ut

 (v
eh

ic
le

s
pr

oc
es

se
d)

Replication

ADP1b ADP2b
Q1b Q2b
10 per. Mov. Avg. (ADP1b) 10 per. Mov. Avg. (ADP2b)
10 per. Mov. Avg. (Q1b) 10 per. Mov. Avg. (Q2b)

67

processed per unit of time. However, approaches in the E-W can develop long queues and

this may result in eventual blockages, even during the green phase in the N-S since there

are incoming vehicles to the E-W links from right- and left-turning movements.

From the analysis of the signal timings, it was observed that the lowest and

highest ratios of green times for the E-W direction were located at intersections 2 and 4,

respectively. This explains the relatively long queues found in the eastbound direction of

intersection 4, as mentioned above. Incoming vehicles in the eastbound direction entered

the link using 74% of the green time at intersection 2, but only had 57% of the green at

intersection 4 to be processed.

Lastly, the average speed of vehicles in the network improved also in a similar

proportion than the delay during the training period (see Figure 4.21). It is noted that the

improvements in the system as training progresses should be observed by looking at the

throughput, delay, and speed simultaneously. In this case delay decreased and speed

increased while maintaining constant throughput (which was equal to the total demand),

but in oversaturation delays may increase and speed decrease while the throughput is

improved. This situation is examined in the next subsection.

Figure 4.21. Learning curve for average vehicle speed of RL algorithms in 2x5 network

15

15.5

16

16.5

17

17.5

18

18.5

0 10 20 30 40 50 60 70 80

Av
er

ag
e

Sp
ee

d
(m

ph
)

Replication

ADP1b ADP2b
Q1b Q2b
10 per. Mov. Avg. (ADP1b) 10 per. Mov. Avg. (ADP2b)
10 per. Mov. Avg. (Q1b) 10 per. Mov. Avg. (Q2b)

68

4.4 5x2 Network, Oversaturated Conditions

This scenario was evaluated to provide an indication of the performance of the RL

algorithms in oversaturated conditions. As opposed to single intersections, where

oversaturation may create long queues but without preventing the intersection to service

vehicles at the front of the queue, in a network the occurrence of gridlocks can

completely prevent the intersections to discharge vehicles, collapsing the system without

recovery for the agents to learn improved strategies.

The same network used in the previous subsection is used here, but with

additional demands in the N-S direction. In total, entry volumes were modified such that

there were 1000 vphpl at all entry points, thus for example in a three-lane approach the

total entry volume was 3000 vph. These inputs ensured oversaturation and increased the

complexity of the scenario. For the traffic signals, a key issue is to prevent blockages in

the inner links of the network due to queue spillbacks.

Two algorithms were tested under this condition to illustrate the need of

communication between neighboring intersections. The first implementation used Q-

learning without communication between intersections or any other form to identify

potential blockages downstream, and it was called Q1c. The second implementation was

called C2c. It allowed communication between neighboring agents and added the

potential for blockages to the state and reward representation, similar to implementations

described in the above subsections such as Q2b.

The analysis is focused on the total network throughput and queues rather than

speed or number of stops, given the oversaturated conditions of this case. Results of the

learning curves for the total network throughput are shown in Figure 4.22., where it is

observed that the performance of the agents without communication is clearly lower than

those with communication. The number of vehicles processed with communications

reached an average of 3870 vehicles processed, which is about 74% of the total number

of vehicles that represent the demand at all entry links. A more realistic measure of the

69

efficiency of the network, however, it is necessary to recognize the existence of signals

and therefore a lost time for the yellow-red transitions.

As a rough estimate, the demand per intersection is 2000 vphpl and if it is

assumed that about 1600 vphpl can be processed (with an average discharge headway of

2 seconds and subtracting about 10% of lost time), the capacity should be about 1600 vph

per exiting lane, or 80% of the total demand. The total number of vehicles trying to enter

the network is 5250, therefore the capacity should be about 5250*0.8=4200. If this is the

case, the network is currently operating at over 90% efficiency in terms of throughput

using the agents with communication.

Figure 4.22. Learning curve for network throughput of RL algorithms with and without

communication in oversaturated 2x5 network

An examination of the performance of both algorithms showed that the main

concern in this scenario was downstream blockages and gridlocks, often created by

turning vehicles. Without communication, intersections will strive to process as many

vehicles as possible disregarding the available capacity of the receiving links, increasing

the potential of gridlocks.

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140 160 180 200

N
et

w
or

k
Th

ro
ug

hp
ut

 (v
eh

ic
le

s
pr

oc
es

se
d)

Replication

Q1c - No Communication
Q2c - Communication between agents
10 per. Mov. Avg. (Q1c - No Communication)
10 per. Mov. Avg. (Q2c - Communication between agents)

70

Lastly, the average delay per vehicle for the same implementations is shown in

Figure 4.23. As expected delays without communication were significantly higher and

did not reach the lower levels as with communication. Also, it is noted that for both

algorithms, as the learning occurred, throughput had a tendency to increase while the

average vehicle delay decreased.

Figure 4.23. Learning curve for average delay of RL algorithms with and without

communication in oversaturated 2x5 network

4.5 4x5 Network, Oversaturated Conditions

In this section, a more challenging scenario is used to test the Q-learning and

ADP algorithms. A portion of downtown Springfield, IL, was coded in VISSIM for this

purpose. Vehicle demands ensured oversaturation in all directions, with 1000 vphpl in all

directions, and there is a combination of one-way and two-way streets as well as different

number of lanes. Left-turn movements are completed from left-turn pockets that have

very limited capacity and tend to block through movements given the oversaturation

conditions. Also, the left-turn movements do not have an exclusive phase, but are allowed

upon traffic gaps in the oncoming traffic flow. In fact, this network encompasses the two

previous scenarios - the arterial with four intersecting streets, and the 2x5 network from

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200

Av
er

ag
e

De
la

y
(s

/v
eh

)

Replication

Q1c - No Communication
Q2c - Communication between agents
10 per. Mov. Avg. (Q1c - No Communication)
10 per. Mov. Avg. (Q2c - Communication between agents)

71

the section above - and expands on their boundaries to form a 4x5 network. A schematic

representation of the network is shown in Figure 4.24.

One implementation using ADP and one using Q-learning were tested in this

network. The implementations included features to identify potential blockages and to

promote flow of incoming platoons from adjacent intersections. These features are

similar to those used in previous scenarios. It is highlighted that without elements to

identify blockages, the implementations may not be able to learn since the system will

not evolve past gridlocks, as it was pointed out in a previous scenario.

An additional implementation using the max-plus algorithm described in the

Methodology section was also tested in this scenario. The max-plus algorithm identifies

potential actions that may favor coordination based on the occupation level of all links.

This is done by quantifying the benefits of selecting the phase in the E-W and the N-S

direction for each intersection, and finding an optimal solution for the whole network.

There are a number of ways to implement these benefits in the reward and/or in

the state representation. As described in the brief literature review provided in Chapter 2,

previous studies have used the results of the max-plus algorithm as the major factor to

select the phases in a traffic network and it has not been incorporated within other

methodologies such as learning algorithms.

In this study, it was decided to incorporate the results of the max-plus algorithm

as a factor to the standard reward values obtained for the E-W and N-S actions. This was

implemented by finding the ratio between the max-plus benefits of E-W and N-S and this

value is applied as a multiplication factor to the cost of taking one of the two actions. For

example, if the max-plus benefit of selecting E-W is measured as 10 and the benefit of

selecting N-S is 7.5, then the value of E-W is increased by a factor of 10/7.5=1.33, and

the value of N-S is not modified.

Using this procedure the max-plus results can be combined with RL algorithms,

and it is possible to bias the agent actions towards improved coordination, in combination

with other elements of the reward structure, such as potential blockages.

72

Figure 4.24. Schematic representation of 5x4 network

Similar to the scenario with an arterial in Section 4.2, results from this scenario

are compared to TRANSYT7F through the use of similar measures of performance,

providing a valid and commercially available reference point. It is noted that as described

in Section 4.2., calibration efforts were conducted in order to have meaningful

comparisons between results from the RL algorithms in VISSIM and results from

TRANSYT7F using CORSIM.

The total network throughput for the four algorithms is shown in Figure 4.25. It

can be observed that by the end of the 60th replication all four implementations have

73

reached a similar number of vehicles that can be processed in the whole network. A series

of observations can be drawn from Figure 4.25 as follows:

- Even though the RL algorithms and TRANSYT7F use mechanisms that

are very different, they show similar performance in terms of throughput.

- There is a sudden improvement in the performance of ADP past the initial

training period, reaching a point where it is comparable to the other strategies. This

occurred when the action selection changed from the Boltzman distribution to an e-

greedy strategy. The action selection changed when a given state has been experienced

“enough” times (in this case each action at least 5 times), so that a more robust estimate

of the value of the states exists. Also, e-greedy strategies were used exclusively in the

operational mode of the agents, leaving the Boltzman distribution for the training periods.

- The addition of the max-plus algorithm had marginal improvements in the

learning at the beginning of the learning stages, but ultimately converged to similar

values by the end of the last replication. This could be case due to the nature of the

current max-plus implementation itself, where multidirectional coordination may result

between neighboring intersections, promoting immediate localized benefits but not

necessarily network-wide improvements at the end of the time period.

- Fluctuation in the performance in the last replications is in the order of

10% depending on the initial random seed. This was true for all solutions including

TRANSYT7F.

74

Figure 4.25. Learning curve for network throughput of RL algorithms and TRANSYT7F

in oversaturated 4x5 network

Figure 4.26 shows the total delay of vehicles in the network for the 15-minute

analysis period. Delay levels seem to be similar for the three implementations using ADP

or Q-learning and somewhat larger for the implementation from TRANSYT7F. In

addition of the delay, the total number of vehicles in the network was observed to

determine if delay for the four implementations could be compared. On average, the total

number of vehicles in the network was very similar for the different implementations:

1433 for Q learning, 1511 for Q-learning with max-plus, 1534 for ADP, and 1565 for

TRANSYT7F; this indicates that approximately the same number of vehicles was

included in the calculation of the total delay.

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 5 10 15 20 25 30 35 40 45 50 55

N
et

w
or

k
Th

ro
ug

hp
ut

 (v
eh

ic
le

s
pr

oc
es

se
d)

Replication

ADP Q-learning
TRANSYT7F Q-learning with Max-Plus
10 per. Mov. Avg. (ADP) 10 per. Mov. Avg. (Q-learning)
10 per. Mov. Avg. (TRANSYT7F) 10 per. Mov. Avg. (Q-learning with Max-Plus)

75

Figure 4.26. Learning curve for total vehicle delay of RL algorithms and TRANSYT7F in

oversaturated 4x5 network

More detailed analysis of the max-plus algorithm was conducted in terms of the

combination of total network throughput and the average number of stops per vehicle, as

seen in Figure 4.27. This rather particular view of the effects of the max plus algorithm in

the Q-learning implementation, it is seen that there is a tendency for the average number

of vehicles processed to be higher and the number of stops to be lower when the

algorithm is added. This is desirable and shows that there could be improvements in

performance by incorporating an active coordinating strategy in the learning mechanism.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50 55

To
ta

l D
el

ay
 (h

r)

Replication

ADP Q-learning

TRANSYT7F Q-learning with max-plus

10 per. Mov. Avg. (ADP) 10 per. Mov. Avg. (Q-learning)

10 per. Mov. Avg. (TRANSYT7F) 10 per. Mov. Avg. (Q-learning with max-plus)

76

Figure 4.27. Effects of Max-plus algorithm on the Q-learning implementation in the

oversaturated 4x5 network

In addition, an evaluation of the queue levels inside the network was conducted to

determine the most likely locations of blockages and gridlocks. Using the last 10

replications from both the ADP and Q-learning implementations, it could be observed

that all of the queue backups occurred on the lower portion of the network, this is, where

a single lane encounter two or three intersecting lanes. Note that this is area is the same

used for the 2x5 network in the previous case.

Most of the movements where queue exceeded the capacity were left-turns, as

shown in Figure 4.28. In Figure 4.28., short red lines and long black lines show areas of

queue overflow for the left-turn pockets and through links, respectively. It is also

observed that even though the upper corridors carried the highest volumes per link

because they had two and three lanes, queues did not create significant blockages. The

issue of having permitted left-turn movements from a pocket with very limited capacity

and a single through lane in oversaturated conditions seemed to be the main constraint in

the operation of the network.

4

4.5

5

5.5

6

6.5

7

4000 4500 5000 5500

Av
er

ag
e

St
op

s p
er

 V
eh

ic
le

Throughput

Q-learning WITHOUT Max-plus

Q-learning WITH Max-plus

Average WITHOUT Max-plus

Average WITH Max-plus

77

Figure 4.28. Location of queue backups for ADP and Q-learning in oversaturated 4x5

network

4.6 4x5 Network, Oversaturated Conditions - Uneven Demands

In this case, the same network used in the previous scenario is tested with reduced

demands in one of the directions of traffic. The objective of this experiment was to

determine if under less demanding loads, the max-plus algorithm is also able to improve

the performance of a RL implementation. It is expected to have increased benefits when

using a strategy to group agents in scenarios with heavier demands in one direction of

traffic. Two implementations were compared: one using the Q-learning implementation

from the previous case, and one that is analogous but also has the max-plus algorithm.

78

The demands were reduced in the E-W direction to about one third of their

demands in the previous case, thus the heavier traffic will be in the N-S direction and will

carry very high volumes that may also result in blockages if not managed properly.

The resulting network throughput for the two implementations is shown in Figure

4.29. The max-plus algorithm resulted in a similar learning curve than in the case without

it. However, the early learning stages favored max-plus showing faster discovery of

useful solutions to increase throughput. This can be observed in the first 100 replications,

where the moving average is slightly higher for the max-plus implementation.

Figure 4.29. Learning curve for network throughput with and without Max-plus

algorithm in the oversaturated 4x5 network with uneven demands

A closer look at the benefits of max-plus can be found in a similar format to that shown

for the previous case with even demands. This is shown in Figure 4.30, where the average

number of stops is plotted versus the total network throughput. The max-plus algorithm

resulted in fewer average stops per vehicle and a higher number of vehicle processed by

4000

4200

4400

4600

4800

5000

5200

0 25 50 75 100 125 150 175 200 225 250

N
et

w
or

k
Th

ro
ug

hp
ut

 (v
eh

ic
le

s
pr

oc
es

se
d)

Replication

With max plus

Without max plus

10 per. Mov. Avg. (With max plus)

10 per. Mov. Avg. (Without max plus)

79

the network. The number of stops was reduced by 5%, or 0.13 fewer stops per vehicles,

for a total of more than 600 fewer stops in the network. Similarly, the average throughput

was increased with max-plus by 34 vehicles, which corresponds to a 1% increase. It is

also noted that the effects with uneven demands seemed to be in similar proportion to

those observed in the case with even demands.

 Thus, with uneven demands, coordination due to an external algorithm coupled to

the learning strategies also resulted in benefits for the network as a whole. However, the

current max-plus implementation may result in competing coordination between adjacent

intersections, thus indicating that there is potential for improved implementations where a

given coordinating direction should be emphasized over an extended area without

overloading the links. This may result in significant network-wide improvements as the

coordination directions will be explicitly decided over corridors instead of immediate

neighbors.

Figure 4.30. Effects of Max-plus algorithm on the Q-learning implementation in the

oversaturated 4x5 network – uneven demands

1.5

2

2.5

3

3.5

4

4.5

4200 4300 4400 4500 4600 4700 4800 4900 5000

St
op

s p
er

 V
eh

icl
e

Throughput

Q-learning WITHOUT Max-plus

Q-learning WITH Max-plus

Average WITH Max-plus

Average WITHOUT Max-plus

80

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

This study explores the utilization of reinforcement learning (RL) agents for traffic signal

control in a variety of scenarios, with emphasis on oversaturated conditions. The

algorithms of choice for this study were Q-learning and an approximate dynamic

programming (ADP) with a post-decision state variable. These strategies were

implemented using a commercially available microscopic traffic simulator (VISSIM) and

its communication interface, which allowed for the manipulation of the traffic signals in

real time. In addition, an explicit coordinating mechanism (the max-plus algorithm) was

included in one of the RL algorithms to determine its benefits with high traffic demands.

A series of scenarios were created to test the RL agents. Their complexity

increased from an oversaturated isolated intersection, to an arterial in undersaturated

conditions, to a 2x5 network in both undersaturation and oversaturation, and finally to a

4x5 network in oversaturation with even and uneven directional demands.

Results showed that agents with RL algorithms (ADP and Q-learning) were able

to manage the traffic signals efficiently in both undersaturation and oversaturation. This

was observed in all the cases analyzed in this study. In the isolated intersection, the

signals processed vehicles at short discharge headways and provided green times in a

similar proportion to the actual demand for left-turns and through movements. Through

phases were displayed more often, reducing lost times in frequent transitions to left-

turning movements that had lower demands. Also, improved performance was found if

the state of the system not only considered the number of vehicles in the links, but also an

estimate of the time vehicles have spent in the link.

For the arterial in undersaturation, the agents continuously provided green to

approaches with demand at intersections with no opposing traffic and also favored

coordination for the two adjacent intersections with conflicting volumes. Coordination

was emphasized in the direction of heavier traffic, as expected, and performance was

81

similar to that provided by signals optimized by TRANSYT7F. Implementations that

included features such as incentives for providing green to oncoming vehicles from

neighboring intersections showed benefits over those that did not.

In a 2x5 network in undersaturation, the RL agents prevented queue spillbacks for

through vehicles, but left-turn pockets were momentarily blocked due to the permitted

nature of the turning movements. The total number of vehicles processed fluctuated

around the total expected demand for this scenario, indicating no increase in residual

queues at the end of the study period. In oversaturation, the agents were tested with and

without communication capabilities to illustrate the need to provide information on

adjacent intersections in order to prevent queue spillbacks. Results clearly showed that

the performance of the network was improved with communication capabilities, in this

case by informing of potential downstream blockages.

Lastly, the RL agents were tested in a realistic 4x5 network in oversaturation with

even and uneven directional demands. In the first case, scenarios with ADP and Q-

learning were implemented separately, in addition to a scenario using a Q-learning

strategy with an explicit coordination strategy using the max-plus algorithm. The

performance of the three implementations was similar, with improvements for the case

with the max-plus algorithm. These results were comparable to those obtained by

optimizing the signals with TRANSYT7F. Analysis of the queues in the network showed

that most problematic areas occurred at intersections with only one through lane,

especially where left-turn lanes had long queues and blocked the through movement. An

additional scenario with heavier demands in one direction of traffic (N-S) was created to

determine if the max-plus algorithm could offer additional benefits to the network.

Results showed a trend to obtain increased throughput and reduced number of stops when

the outcome of the max-plus algorithm was added to the reward structure such that the

coordinated direction of traffic was emphasized. This indicates that there is potential

benefits using explicit mechanisms to coordinate agents, and opens the discussion for

additional exploration of such mechanisms and how to incorporate them into the RL

process.

82

In summary, results presented in this study shows that reinforcement learning

agents can efficiently control the traffic signals in realistic networks and oversaturated

conditions when implemented with communication capabilities designed to prevent

queue spillbacks and promote signal coordination. Oversaturation is especially

challenging for the agents to manage queues, but results indicate that even in this

conditions the traffic signals prevented spillbacks and gridlocks and at a level comparable

to state-of-practice traffic optimization software.

Future work includes further experimentation to expand the use of agents in larger

networks and varying traffic demands. Special attention should also be given to alternate

algorithms or alternate implementations of explicit coordinating strategies in order to

increase the efficiency of the network, including other implementations of the max-plus

algorithm and its coupling to ADP and Q-learning strategies. Additional restrictions to

the max-plus algorithm to limit multidirectional coordination between adjacent

intersections may result in significant improvements and will be pursued in future

applications.

The implementation of these strategies to undersaturated networks (including a

coordinating mechanism) could also result in benefits compared to current state-of-

practice signal timing, mostly due to their flexibility to face unexpected changes in

demands. Furthermore, scenarios where a network transitions between undersaturated

and oversaturated conditions could also be improved using reinforcement learning.

Lastly, a number of questions remain open in terms of further enhancements in

the performance with increased communication capabilities, including not only

information passing (state and reward sharing), but also advice exchange and negotiating

strategies suitable for real-time applications.

83

CHAPTER 6. REFERENCES

Abdulhai, B., Pringle, R., and Karakoulas, G.J. (2003) Reinforcement Learning for True

Adaptive Traffic Signal Control, ASCE Journal of Transportation Engineering. Vol. 129,

No 3, pp. 278-285.

Appl, M., and Brauer, W. (2000) Fuzzy Model-Based Reinforcement Learning. Presented

at the European Symposium on Intelligent Techniques, Germany.

Bakker, B., Steingrover, M., Schouten, R., Nijhuis, and E., Kester, L. (2005) Cooperative

Multi-agent Reinforcement Learning of Traffic Lights. In: Gama, J., Camacho,

R.,Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720.

Springer, Heidelberg.

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983) Neuronlike adaptive elements that

can solve difficult learning control problems. IEEE Transactions on Systems, Man, and

Cybernetics, 13:835-846.

Bellman, R. (1957) Dynamic Programming, Princeton University Press, Princeton.

Bellman, R., and Dreyfus, S. (1959) Functional Approximations and Dynamic

Programming, Mathematical Tables and Other Aids to Computation 13, 247–251.

Bertsekas, D., and Tsitsiklis, J. (1996) Neuro-Dynamic Programming, Athena Scientific,

Belmont, MA.

Bingham, E. (1998) Neurofuzzy Traffic Signal Control. Master’s thesis, Dept. of

Engineering Physics and Mathematics, Helsinki Univ. of Technology, Helsinki, Finland.

Bingham, E. (2001) Reinforcement Learning in Neurofuzzy Traffic Signal Control,

European Journal of Operations Research. Vol. 131, No. 2, pp. 232–241.

84

Cai, C., Kwong Wong, C., and Heydecker, B.G. (2009) Adaptive Traffic Signal Control

Using Approximate Dynamic Programming, Transportation Research Part C: Emerging

Technologies, vol. 17, pp. 456-474.

Camponogara, E., and Kraus, W. Jr. (2003) Distributed Learning Agents in Urban Traffic

Control. In: Progress in Artificial Intelligence: Proceedings of the 11th Portuguese

Conference on Artificial Intelligence (EPIA).

Choy, M. C., Cheu, R. L., Srinivasan, D., and Logi, F. (2003) Real-time Coordinated

Signal Control Using Agents with Online Reinforcement Learning. In Proceedings of the

82nd Transportation Research Board Annual Meeting. Washington, D.C.

Crick, C., and Pfeffer, A. (2003) Loopy belief propagation as a basis for communication

in sensor networks. In Proceedings of Uncertainty in Artificial Intelligence (UAI).

Dearden, R., Friedman, N., and Russell, S. (1998) Bayesian Q-Learning. Fifteenth

National Conference on Artificial Intelligence (AAAI), Madison, WI.

De Oliveira, D., and Bazzan, A. L.C. (2006a) Emergence of Traffic Lights

Synchronization. Proceedings 20th European Conference on Modeling and Simulation.

Germany.

De Oliveira, D., Bazzan, A. L.C., Castro da Silva, B., Basso, E.W., and Nunez, L.

(2006b) Reinforcement Learning based Control of Traffic Lights in Non-stationary

Environments: A Case Study in a Microscopic Simulator. Fourth European Workshop on

Multi-Agent Systems. Portugal.

Gartner, N.H. (1983) OPAC: a demand-responsive strategy for traffic signal control.

Transportation Research Record 906, 75–81.

Gosavi, A. (2009) Reinforcement Learning: A tutorial Survey and Recent Advances.

INFORMS Journal on Computing, Vol. 21, No. 2, pp. 178-192.

85

Hajbabaie, A., Medina, J.C., Benekohal, R.F. (2011) Traffic Signal Coordination and

Queue Management in Oversaturated Intersections. NEXTRANS Project No. 047IY02,

2011.

Humphrys, M. (1995) W-learning: Competition Among Selfish Q-learners. Technical

Report no.362, University of Cambridge, UK.

Humphrys, M. (1997) Action selection Methods using Reinforcement Learning. PhD

Thesis. University of Cambridge, UK.

Junges, R., and Bazzan, A.L.C. (2007) Modelling Synchronization of Traffic Lights as a

DCOP. Proceedings of the 5th European Workshop on Multiagent Systems, pp.564-579,

Tunisia.

Kok, J. R., Vlassis, N. (2005) Using the max-plus algorithm for multiagent decision

making in coordination graphs. In RoboCup-2005: Robot Soccer World Cup IX, Osaka,

Japan.

Kok, J. R., Vlassis N. (2006) Collaborative multiagent reinforcement learning by payoff

propagation. J Machine Learn Res. 7: 1789-1828.

Kuyer L., Whiteson, S., Bakker, B., and Vlassis, N. (2008) Multiagent Reinforcement

Learning for Urban Traffic Control using Coordination Graphs. In Proc. 19th European

Conference on Machine Learning, Antwerp, Belgium.

Medina, J.C., Hajbabaie, A., Benekohal, R.F. (2010) Arterial Traffic Control Using

Reinforcement Learning Agents and Information from Adjacent Intersections in the State

and Reward Structure. Presented at the 13th International IEEE Annual Conference on

Intelligent Transportation Systems. Madeira, Portugal.

Medina, J.C., Benekohal, R.F. (2011) Reinforcement Learning Agents for Traffic Signal

Control in Oversaturated Networks. Presented at the First TD&I Conference of the

ASCE, Chicago, IL.

86

Murphy, K., Weiss, K., and Jordan, M. (1999) Loopy belief propagation for approximate

inference: An empirical study. In Proceedings of Uncertainty in Artificial Intelligence

(UAI), Stockholm, Sweden.

Oliveira, D., Bazzan, A. L. C., and Lesser, V. (2005) Using Cooperative Mediation to

Coordinate Traffic Lights: a Case Study. In: Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems, Utrecht. New York : ACM, v. 1.

Oliveira, D., Ferreira JR., P. R., Bazzan, A. L. C., and Kluegl, F. (2004) A Swarm-based

Approach for Selection of Signal Plans in Urban Scenarios. In: IV International

Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS), Brussels.

Pendrith, M. (1994) On Reinforcement Learning of Control Actions in Noisy Non-

Markovian Domains. UNSW-CSE-TR-9410. University of South Wales, Australia.

Peng, J. and Williams, R. (1991) Incremental Multi-step Q-learning. Machine Learning

22:282-290.

Peng, J. (1993) Efficient Dynamic Programming-Based Learning for Control. PhD

Dissertation, Northeastern University, Boston.

Powell, W.B. (2007) Approximate Dynamic Programming: Solving the Curses of

Dimensionality, Wiley, New York.

Powell, W.B. (2010). Approximate Dynamic Programming – II: Algorithms. In: Wiley

Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc.

Richter, S., Aberdeen, D., and Yu, J. (2007) Natural Actor-Critic for Road Traffic

Optimisation. In: Advances in Neural Information Processing Systems MIT Press ,

Cambridge, MA , pp. 1169-1176.

Robert L. Gordon, P.E., Warren Tighe, P.E. (2005) Traffic control systems handbook.

Federal Highway Administration. Publication Number FHWA-HOP-06-006.

87

Robertson, D.I., Bertherton, R.D. (1974) Optimum control of an intersection for any

known sequence of vehicular arrivals. In: Proceedings of the second IFACIFIP-IFORS

Symposium on Traffic Control and Transportation system, Monte Carlo.

Robbins, H., and Monro, S. (1951) A Stochastic Approximation Method, Annals of

Mathematical Statistics, Vol. 22, pp.400–407.

Rummery, G.A., Niranjan, M. (1994) On-line Q-learning using Connectionist Systems.

CUED/F-INFENG/TR 166, Cambridge University, UK.

Sutton, R.S. (1988) Learning to Predict by Methods of Temporal Difference. Machine

Learning, 3:9-44.

Sutton, R.S., and Barto, A.G. (1998) Reinforcement Learning: An Introduction. MIT

Press.

Teodorvic D., V. Varadarajan, J. Popovic, M. R. Chinnaswamy, S. Ramaraj. (2006)

Dynamic programming - neural network real-time traffic adaptive signal control

algorithm. Annals of Operation Research, pp-123-131.

Tesauro, G. (1992) Practical Issues in Temporal Difference Learning. Advances in

Neural Information Processing Systems 4, pp.259-266, San Mateo, CA, Morgan

Kaufmann.

Thorpe, T. (1997) Vehicle Traffic Light Control Using SARSA, Masters Thesis,

Department of Computer Science, Colorado State University.

N, Vlassis, R. Elhorst, and J. R. Kok. (2004) Anytime algorithms for multiagent decision

making using coordination graphs. In Proceedings of the International Conference on

Systems, Man, and Cybernetics (SMC), The Hague, The Netherlands.

88

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2004) Tree consistency and

bounds on the performance of the max-product algorithm and its generalizations.

Statistics and Computing, 14:143–166.

Watkins, C.J.C.H. (1989) Learning from delayed rewards. PhD Thesis, King’s College,

Cambridge, England.

Watkins, C.J.C.H. and Dayan, P. (1992) Technical note: Q-learning. Machine Learning 8.

Pp. 279-292.

Werbos, P. J. (1987) Building and understanding adaptive systems: A

statistical/numerical approach to factory automation and brain research. IEEE

Transactions on Systems, Man., and Cybernetics, 17:7-20.

Wiering, M. and Schmidhuber, J. (1997) HQ-Learning. Adaptive Behavior, 6 (2), 219-

246.

Wiering, M. and Schmidhuber, J. (1998) Fast Online Q(λ). Machine Learning, 33 (1),

105-115.

Wiering, M. (2000) Multi-Agent Reinforcement Learning for Traffic Light Control. In:

Proc. 17th International Conf. on Machine Learning, pp. 1151–1158.

Xie, Y. (2007) Development and Evaluation of an Arterial Adaptive Traffic Signal

Control System using Reinforcement Learning, Doctoral Dissertation, Texas A&M

University: College Station, TX.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2003) Understanding belief propagation

and its generalizations. In Exploring Artificial Intelligence in the New Millennium,

chapter 8, pages 239–269. Morgan Kaufmann Publishers Inc.

89

Zhang, Y., Xie, Y., and Ye, Y. (2007) Development and Evaluation of a Multi-Agent

Based Neuro-Fuzzy Arterial Traffic Signal Control System, Texas A&M University,

Report Number SWUTC/07/473700-00092-1, 2007.

USDOT Region V Regional University Transportation Center Final Report

IL IN

WI

MN

MI

OH

NEXTRANS Project No. 072IY03

Agent-Based Traffic Management and Reinforcement Learning in

Congested Intersections

By

Satish V. Ukkusuri, Ph.D.
Associate Professor

School of Civil Engineering, Purdue University, West Lafayette
sukkusur@purdue.edu

and

H. M. Abdul Aziz
Ph. D. Student

School of Civil Engineering, Purdue University, West Lafayette
haziz@purdue.edu

And

Feng Zhu

Ph.D. Student
 School of Civil Engineering, Purdue University, West Lafayette

Zhu214@purdue.edu

http://www.purdue.edu/discoverypark

DISCLAIMER

Funding for this research was provided by the NEXTRANS Center, Purdue University under

Grant No. DTRT07-G-005 of the U.S. Department of Transportation, Research and Innovative

Technology Administration (RITA), University Transportation Centers Program. The contents of

this report reflect the views of the authors, who are responsible for the facts and the accuracy

of the information presented herein. This document is disseminated under the sponsorship of

the Department of Transportation, University Transportation Centers Program, in the interest

of information exchange. The U.S. Government assumes no liability for the contents or use

thereof.

USDOT Region V Regional University Transportation Center Final Report

TECHNICAL SUMMARY

IL IN

WI

MN

MI

OH

NEXTRANS Project No. Final Report, Date

Agent-Based Traffic Management and Reinforcement Learning in

Congested Intersections

Introduction

The advancement in the Information Technology (IT) infrastructure, Advanced Traveler
Information System (ATIS), and overall communication and data systems, is now allowing
transportation systems to effectively use real time data to optimize the operation and improve
the travel experience of the system users. Optimizing the traffic signals has been a challenge for
academic researchers and practitioners in the traffic engineering arena for the last few
decades. Along with the traditional approaches researchers from the machine learning and
computational intelligence have also applied intelligent algorithms like neuro-fuzzy network
(Srinivasan et al, 2006), neural networks (Li et al, 2010), Tabu search (Hu and Chen, 2011), Self-
organizing maps (Li et al, 2011), emotional algorithm (Ishihara and Fukuda, 2001), genetic
algorithms (Sanchez et al, 2004; Stevanovic et al, 2012), ant-colony based optimization (Hoar et
al, 2002) and so on. Since traffic environment is inherently dynamic and changes over time,
there is a scope to learn in the context of signal control through interaction with the
environment and accordingly adjust the actions towards optimality of the system. Among
different learning techniques, reinforcement learning (RL) is one of the widely used sample
based control optimization techniques applied to solve the vehicular traffic signal control by
many researchers (Balaji et al, 2010; Medina et al, 2011; Abdulhai and Kattan, 2003; Abdulhai et
al, 2003; E1-Tantawy et al, 2012).

Further, the RL based approaches overcome the limitations arise generally in the centralized
system for signal control at network level. The signal controllers can operate independently
without any central entity and still can optimize the operation to a desired level. The key
advantages of RL-based algorithms are: (1) the ability to learn from the environment to adapt
with the dynamics in it; (2) ease of implementation (no direct optimization involvement), and
(3) continuous learning procedure that is appropriate for the problems where environment can
change suddenly (e.g., due to some events occurrence of high demand for some arterials that

NEXTRANS Project No 019PY01Technical Summary - Page 1

have low demand otherwise, in the context of signal control). This research applies
reinforcement-learning (RL) algorithms (Q-learning, SARSA, and RMART) for signal control at
the network level within a multi agent framework. In addition, we define the state of the
system accounting for not only local information but also information from the adjacent
signalized intersections and use different reward functions specific to congestion level

Findings

• Q-learning and R-MART algorithms perform better than the fixed signal timing plans in
all cases. The SARSA algorithm does not exhibit a consistent better performance
compared to fixed signal timing plans when tested with different levels of congestion.

• In terms of average delay, Q-learning exhibits the best performance with Reward-1 and
Reward-2, and RMART performs better with Reward-3 at low congestion level. RMART
algorithm outperforms the other two algorithms at high congestion level. In terms of
stopped delay, Q-learning exhibits better performance at low congestion level and
RMART performs better at higher congestion level.

• The algorithms exhibit different patterns of performance with different reward
functions. Section 6.5 summarizes the results. The patterns suggest to use queue length
as reward function for RMART in order to yield better results at medium to high
congestion.

• The multi reward based algorithms are found to be sensitive to the action selection
probability used in the ε-greedy algorithm. Initially we observe improvement when the
action selection strategy with greedy action probability, however the performance gets
worse after a certain range of probability values.

• The RL-based algorithms perform better than the Longest-Queue-First algorithm, which
is an adaptive control algorithm that uses real time information. This implies that,
learning is a useful and potential feature in the real time signal control algorithms and
can improve the performance of the controllers.

• The inclusion of neighborhood sharing in the RL algorithms is found to improve the
performance in most cases for the RL algorithms.

Recommendations

• Reinforcement learning based signal controllers can be implemented in real world
networks to improve overall network performance

NEXTRANS Project No 019PY01Technical Summary - Page 2

• The choice of any particular algorithm in the context of reinforcement learning highly
depends on the traffic characteristics (vehicle arrival patterns and congestion level) of
the intersection of interest.

• Multi-reward algorithms are a new direction for reinforcement learning algorithms and
more research is necessary before any implementation.

• As a future research, multi agent signal controller system with coordination should be
explored and investigated. In such a system the signal controller agents collaborate and
share information to improve the performance of the network.

NEXTRANS Project No 019PY01Technical Summary - Page 3

USDOT Region V Regional University Transportation Center Final Report

TECHNICAL SUMMARY

IL IN

WI

MN

MI

OH

Contacts

For more information:

Satish V. Ukkusuri, Ph.D.
School of Civil Engineering, Purdue University
550 Stadium Mall Drive, West Lafayette, IN 47907, USA
Phone : (765)-494-2296
Fax : (765)-496-7996
Email: sukkusur@purdue.edu

NEXTRANS Center
Purdue University - Discovery Park
3000 Kent Ave.
West Lafayette, IN 47906
nextrans@purdue.edu
(765) 496-9729
(765) 807-3123 Fax
www.purdue.edu/dp/nextrans

NEXTRANS Project No 019PY01Technical Summary - Page 1

mailto:sukkusur@purdue.edu
mailto:nextrans@purdue.edu
http://www.purdue.edu/dp/nextrans

 i

ACKNOWLEDGMENTS

The authors acknowledge the assistance and feedback from the members of the

study advisory committee.

 ii

TABLE OF CONTENTS

Page

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER 1. INTRODUCTION ... 1

1.1 Background and motivation ...1

1.2 Study objectives ...3

1.3 Organization of the research ..3

CHAPTER 2. RELATED WORK .. 4

2.1 Literature review ..4

2.2 Research contribution ..6

CHAPTER 3. SIGNAL CONTROL AS REINFORCEMNET LEARNING PROBLEM . 8

3.1 Reinforcement learning for optimal control ..8

3.2 Markov Decision Problem (MDP) ...8

3.3 Signal control problem as MDP ..9

3.4 Using Reinforcement Learning (RL) to solve MDP ..10

CHAPTER 4. ELEMENTS OF REINFORCEMENT LEARNING (RL) BASED

SIGNAL CONTROL .. 11

4.1 State of the system ...11

4.1.1 Residual queuing (RQ) state for lanes .. 11

 iii

4.1.2 Residual queuing (RQ) state of the intersection 12

4.1.3 System state for RL algorithm .. 13

4.2 Actions ...13

4.2.1 Action selection strategy ... 14

4.3 Reward functions ...15

CHAPTER 5. ALGORITHMS ... 16

5.1 Framework ...16

5.2 Q-learning and SARSA ...16

5.2.1 Terminologies ... 17

5.2.2 Initialization .. 17

5.2.3 Algorithm .. 17

5.3 R-MART (R-Markov Average Reward Technique) based algorithm.18

5.3.1 Initialization .. 18

5.3.2 Learning phase algorithm ... 19

CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS 20

6.1 Congestion level variation at intersection level ...20

6.2 Performance comparison: Average Delay ...22

6.3 Performance comparison: Stopped Delay..23

6.4 Performance comparison: Number of stops...23

6.5 Effect of variation in reward functions ..27

6.6 Comparison of the algorithms ...30

6.7 Comparison of multi-reward algorithms ...33

6.8 Comparison with adaptive signal control algorithms ..36

6.9 Value of information sharing among neighborhood signal controllers in RL

algorithms ..38

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH 40

REFERENCES ... 42

 iv

LIST OF TABLES

Table Page

Table 1Congestion variation in Intersection-3 and Intersection-6 22
Table 2Average delay comparison .. 24
Table 3 Stopped delay comparison ... 25
Table 4 Comparison metric: Average no. of stops ... 26
Table 5 Comparison with multi-reward algorithms .. 34
Table 6 Sensitivity of Multi-Reward algorithms with action selection probability.......... 35
Table 7 Comparison with adaptive signal controllers (Longest-Queue-First algorithm) . 37
Table 8 Value of information sharing in RL algorithms... 39

 v

LIST OF FIGURES

Figure Page

Figure 1Test network for evaluating the signal control algorithms 21
Figure 2 Performance rate of Q-learning with different reward functions. 28
Figure 3 Performance rate of RMART with different reward functions. 29
Figure 4 Comparison of algorithms (Reward-2). .. 31
Figure 5 Comparison of algorithms (Reward-1). .. 32

 1

CHAPTER 1. INTRODUCTION

1.1 Background and motivation

Traffic congestion is ubiquitous in the 439 urban areas of the United States and is

responsible for 1.9 billion gallons of additional fuel consumption in 2010 (Schrank et al,

2011). The net congestion cost is 101 billion (in 2010 dollars) with about 4.8 billion

hours of delay. The contribution of delay due to traffic signals is about 5 to 10 percent of

the net delay (Report card, 2012). Further, the stops made at the intersection are potential

sources for air pollutants (e.g., COx, NOx, volatile organics, particulate matters, etc.).

National Traffic Signal Report Card (2012) reports C grade for the current traffic signal

operations and signal timing practices and emphasizes on optimized and efficient signal

scheme implementation. Optimizing the traffic signals to allow for safe and efficient

movements of the vehicles through the road intersections has been a challenge for traffic

engineers for a long time. With increased demand and varying demand patterns,

deterministic offline approaches like fixed control using Webster’s formula (Webster,

1958) to optimize traffic signals do not ensure the maximum efficiency of the traffic

network. As found by many previous research, in the current day with the availability of

real-time traffic data, adaptive signal control have been shown to have better performance

over actuated and pre-timed signal control systems (Mirchandani and Head, 1998; Balaji

et al, 2010; Arel et al, 2010; Medina et al, 2011).

SCOOT(Hunt et al, 1982), SCATS(Lowrie et al, 1982), PRODYN(Farges et al,

1983), OPAC(Gartner et al, 1983), RHODES (Mirchandani and Head, 1998),

UTOPIA(Manro et al, 1989), CRONOS (Boillot et al, 1992), and TUC (Diakaki et al,

2002) are few of the well recognized adaptive signal control systems. However, most of

 2

them are model based and none of them adaptively learn from the environment. These

control systems are centralized systems based on real time traffic data. However, the

feature of real time adaptability with traffic situation is not available. Some of them

(OPAC and RHODES) use dynamic optimization to obtain the signal settings and the

complexities increase exponentially with network expansion. Researchers from the

machine learning and computational intelligence have also applied intelligent algorithms

like neuro-fuzzy network (Srinivasan et al, 2006), neural networks (Li et al, 2010), Tabu

search (Hu and Chen, 2011), Self-organizing maps (Li et al, 2011), emotional algorithm

(Ishihara and Fukuda, 2001), genetic algorithms (Sanchez et al, 2004; Stevanovic et al,

2012), ant-colony based optimization (Hoar et al, 2002) and so on. Two common

limitations tied with these algorithms are: requirement of large data for the training to

calibrate the parameters and exponential complexity of the problem for large scale

applications (Balaji et al, 2010). In addition, most of these approaches are applicable only

to isolated intersections.

Since traffic environment is inherently dynamic and changes over time, there is a

scope to learn by means of interaction with the environment and accordingly adjust the

actions towards optimality of the system. Among different learning techniques,

reinforcement learning (RL) is one of the widely used sample based control optimization

techniques applied to solve the vehicular traffic signal control by many researchers

(Balaji et al, 2010; Medina et al, 2011; Abdulhai and Kattan, 2003; Abdulhai et al, 2003;

E1-Tantawy et al, 2012). In any RL-based schemes an agent (e.g., signal controller)

learns from the interaction with environment which is modeled as Markov Decision

Process (MDP). The key advantages of RL-based algorithms are: (1) the ability to learn

from the environment to adapt with the dynamics in it; (2) ease of implementation (no

direct optimization involvement), and (3) continuous learning procedure that is

appropriate for the problems where environment can change suddenly (e.g., due to some

events occurrence of high demand for some arterials that have low demand otherwise, in

the context of signal control).

 3

This research applies R-Markov Average Reward Technique (RMART) based

reinforcement-learning (RL) algorithm for signal control at the network level within a

multi agent framework (however, joint action space is not considered). In addition, we

define the state of the system accounting for not only local information but also

information from the adjacent signalized intersections and use different reward functions

specific to congestion level.

1.2 Study objectives

• To apply reinforcement learning technique in the context of signal control

• To implement algorithms suitable for multi-agent decentralized system

• To compare the performance of RL algorithms with fixed signal timing plans

• To compare of performance of different RL algorithms with different reward

functions and to investigate the sensitivity of RL algorithms with variation in

congestion level, algorithm parameters, etc.

1.3 Organization of the research

The remainder of the research is organized as follows. Chapter 2 provides a

comprehensive review of the existing works related to applying reinforcement learning

based algorithms to optimize traffic signals. Chapter 3 defines the problem and describes

the solution approach. Chapter 4 defines and describes different elements of the

reinforcement learning based signal control algorithms. In chapter 5 the signal control

algorithms are discussed and chapter 6 discusses the results from test networks. Finally,

chapter 7 summarizes findings of the research and discusses about the future research

directions.

 4

CHAPTER 2. RELATED WORK

This chapter describes recent works that apply reinforcement learning based

control algorithms to improve the performance of traffic signals. At the end, we

summarize the specific contributions of this research.

.

2.1 Literature review

The implementation of RL in signal control area has been well studied in the last

decade. Thorpe (1997) used a neural network to predict waiting time and applied on-

policy RL (SARSA) for signal control. Miakami and Kakazu (1994) proposed

cooperative signal control scheme with a combination of evolutionary algorithm and

reinforcement learning techniques. Bingham (2000) proposed rules based on fuzzy-logic

that allocates green times based on the number of vehicles.

Abdulhai et al. (2003) applied off policy (Q-learning) algorithm to optimize signal

control in an isolated intersection. These works are mostly for isolated intersections and

not suitable for large networks due to exponential increase in the number of states due to

the consideration of joint state-action space for reinforcement learning. Later Wiering

(2000) and Wiering et al. (2004) proposed co-learning algorithms at network level

accounting for the waiting time for the vehicles and used car-based value function that

reduced the state space to a reasonable number. However, the prediction of waiting time

is not accurate and the traffic model they used cannot capture the inherent traffic

dynamics of real world (e.g., no lane changing or dynamic route choice). Kuyer et al.

 5

(2008) used coordination graph along with max-plus algorithm to handle the state

complexity issue, however only a network with 15 intersections can be solved.

Cooperative multi agent system for urban traffic control has also been studied by

the researchers (Oliveira et al, 2005; Bazzan, 2009; and Bazzan et al, 2009). More

recently, El-Tantawy and Abdulhai (2012) proposed neighborhood coordinated RL based

signal control, however joint decision framework has not been used. Although Q-learning

and SARSA are most widely used temporal difference techniques, researcher also applied

other algorithms like actor-critic temporal difference (Xie, 2007; Zhang, 2007), Q-

learning with function approximation (Prashanth and Bhatnagar, 2011), action dependent

adaptive dynamic programming (Li et al, 2008) and so on. Although common in the

machine learning area, the authors do not find any traffic signal control application using

the R-Markov Average Reward Technique (RMART) which is implemented in this

research.

The reinforcement algorithms applied for signal control vary greatly with the

definitions of state and reward. El-Tantawy and Abdulhai (2012) discuss about the

variations of state representation and reward functions in the context of signal control.

The most common definitions of state include (but not limited to) number of arriving

vehicles, queue lengths, average delay, etc. and most of them do not include the

information from neighboring intersections. Further, rewards are commonly defined as a

measure of improvement for the intersection (e.g., no. of stops made, intersection delay,

throughput, etc.). In a similar manner, the action in the RL algorithm can be switching

phases (El-Tantawy and Abdulhai, 2012), extending the green (Adam et al, 2009),

sequencing the phase, adjusting phase duration (Balaji et al, 2010) and so on. Current

literature applying RL algorithms for signal control lacks two important attributes:

sharing of neighborhood information in the representation of state and considering

varying reward structure adapting the demand variation of traffic.

Neighborhood information in the context of traffic signal is an important factor

since it provides us with congestion status of the neighborhood signals. Including this

information will help the controller to learn better. Consider a case when the adjacent

 6

intersections are heavily loaded and in near future this intersection will experience heavy

load. Using only local information the agent does not have any idea of the immediate

congestion that will appear in the network. On the other hand, when the state definition

includes congestion status of the adjacent intersections the agent learns to adjust signal

settings when the nearby intersections are congested. Based on this idea, this research

adds congestion information of the adjacent intersections to the definition of state in the

RL algorithm. This idea is different from the multi-agent coordination research (El-

Tantawy and Abdulhai, 2012; Bazzan, 2009; Bazzan et al, 2010) because multi agent

cooperative learning deals with the joint state-action space optimality and this research

aims to add neighborhood information in the state definition without any coordination

mechanism in the algorithm.

Further, the reward function is fixed in most of the cases in RL-based algorithms.

With different congestion levels, different reward functions become appropriate (Houli et

al, 2010). Houli et al. (2010) defined different reward functions (stops, delay, etc.) for

different congestion levels (free flow, saturated condition, etc.). The approach is static in

the sense that, the congestion level is known beforehand and reward is predefined. Our

study aims to address these issues and to make a significant contribution of in the signal

control algorithm literature.

2.2 Research contribution

This research applies congestion level specific reward structure within the RL

algorithm, however in both static and dynamic manner (based on the perceived state the

algorithm dynamically determines the appropriate reward). To summarize, the

contributions of this research are as follows:

a) Development of RMART based signal control algorithm that incorporates

neighborhood congestion information to improve the learning of the agents.

b) Using R-Markov Average Reward Technique (RMART) in the algorithm

c) Build a multi reward structure that accounts for the dynamic variation of traffic

 demand

 7

The off-policy (Q-learning) and on-policy (SARSA) algorithms are compared

with the performance of advanced off-policy (RMART

 8

CHAPTER 3. SIGNAL CONTROL AS REINFORCEMNET LEARNING PROBLEM

This chapter defines the problem and describes the signal control problem as

Markov Decision Process (MDP). Next, the reinforcement learning based algorithm is

explained as an efficient approach to solve the MDP.

3.1 Reinforcement learning for optimal control

Reinforcement learning techniques have been effectively applied to solve

practical problems involving optimal control and optimization in different disciplines of

science and engineering. In general, any method applying the sampling based techniques

to solve the optimal control problems or its variants can be defined as reinforcement

learning (RL). The agent (the controller in the context of optimal control problem)

interacts with the environment (the system or any representative model) by taking some

actions and the environment reacts to that action through changing its state. In addition,

the environment also tells the agent how much reward it gained by performing that

action. The reward gives a measure of the effectiveness of the actions taken by the agent

to reach its optimization goals. In the context of vehicular traffic control problem the

signal controller is the agent and the traffic network (which is dynamic and random) is

the environment.

3.2 Markov Decision Problem (MDP)

Markov decision problems (or processes) can be expressed as a model of

sequential environments (Bellman, 1957). The essential elements of MDP are state,

action, transition probability, time of transition, reward, policy, and performance metric.

State of a system refers to the set parameters describing it. In the context of RL, the state

 9

should contain enough information so that the agent is able to choose a certain action.

The controller or the agent in MDP can choose a particular action from a finite set of

actions permissible in the corresponding state of the environment in order to reach its

optimal goal. The actions are predefined and specific to the problems. Transition

probability denotes the probability of going from one state to another state after taking

any particular action by the agent. Transition period is generally assumed to be same for

the MDP. However, in the context of semi-Markov decision process (SMDP), the

transition time is an essential element and the general structure for reward takes a slightly

different form. We define rewards as the immediate outcome from the environment

(because of the action taken by the controller). The policy maps the states of the system

to specific action that yields the maximal award for the agents. For any MDP policy one

needs to evaluate the effectiveness of the policy. Performance metrics are necessary to

assess the success of the algorithm. In the context of RL, two common measures of

performance are the long term expected average reward and the average discounted

reward.

3.3 Signal control problem as MDP

Optimization of vehicular traffic signal control requires the determination of

optimal signal timing parameters. The controller has to allocate green time to specific

movements (a set of movements is defined as phase) at the intersection so that its

optimization goal is attained. The controller takes decision at specific intervals that is

determined beforehand by the signal-timing planner. The traffic network is the

environment and the traffic controllers act as agents in this context. The action of an

agent is defined as to activate any particular phase (predefined) at the decision interval.

Note that, the transition time from one state to another state after activating any of the

allowed phases is unity (or same for all cases). Thus, the traffic signal control problem

has all the elements of MDP. Each time the agent takes an action that impacts the current

environment, the state of the environment changes. The problem is to find the optimal

policy (mapping between the phase activations and traffic states) that gives the maximum

 10

reward in the context of traffic it can be measured in terms of average delay, number of

stops, etc.) in the long term.

3.4 Using Reinforcement Learning (RL) to solve MDP

One should note that there exist numerous techniques other than RL to solve the

MDP. Dynamic programming (DP) is one of most extensively used methods to solve

MDP. The key idea of RL comes from DP and AI based learning techniques. A detail

description can be found in Sutton and Barto (1998) and Gosavi (2003). The two key

elements of MDP are the reward and state transition probability. The RL technique is

most appropriate when these elements are not deterministic. The solution methodology

should have some components that determine the transition probabilities and rewards as a

feedback from the environment. However, a simulator of the real environment can solve

this problem. The simulator of the environment can provide us with the reward and one

can observe the transition of the states. A simulator of the environment can give the state,

reward and the action permissible. This research uses VISSIM (2011) as a traffic

simulator that represents the environment in the context of MDP. Further, traffic lights in

the network act as agents and take actions (activating the phase). The rewards and other

performance metrics are obtained directly from the VISSIM (2011) simulator. Details

about the components of VISSIM (e.g., car-following, lane-changing, traffic light control,

etc.) can be found in (VISSIM, 2011).

 11

CHAPTER 4. ELEMENTS OF REINFORCEMENT LEARNING (RL) BASED SIGNAL

CONTROL

Chapter 4 describes the elements of RL based control algorithms applied in this

research. The elements are defined and explained in the context of traffic signal control.

Reinforcement learning (RL) system has some specific components: the state, action, and

reward. The following sections define the state, action, and reward for the proposed RL

algorithm.

4.1 State of the system

First, we define the residual queuing state for each lane group served by the signal

phases at the intersection

4.1.1 Residual queuing (RQ) state for lanes

Residual queuing state for lane i, is defined as:

1t
t i
i

i

q
J l

ω = ×

where,

Residual queuing state for lane at step t.t
i iω =

queue length (in terms of PCE units) for lane at step t
iq i t=

Jam density (190 PCE per lane-mile)J =

Length of lane (in miles)il =

 12

Now, the residual queuing state for the lane group served by phase 1 can be

estimated by taking the average over all the lanes.

lane group,

 lane group,

i
i pt

p

i p

i

ω
π ∈

∈

=
∑
∑

where,

Averate residual queing state for the lane group serving phase, at step .t
p p tπ =

It can be seen that
t
pπ is continuous in nature and can take any value between 0

and 1.

Next, the average residual state for a particular phase, p is labeled as low, high or

medium using the following conditions:

,if 0.4

,if 0.4 0.7 ; low, = high, medium.

,if 0.7

t
p

t t
p p

t
p

L

M L H M

H

π

π

π

 <
  Π = ≤ < = = 
 ≥  

Where, label of .t t
p pπΠ =

4.1.2 Residual queuing (RQ) state of the intersection

The RQ state of the intersection is computed using the RQ states of the phases.

Different values are assigned to the labels of RQ state of a particular phase.

1,if

3,if

5,if

t
p

t t
p p

t
p

L

M

H

µ

 Π =
  = Π = 
 Π =  

Now, the labels for RQ states of the intersection are defined as follows:

 13

Phases

Phases

Phases

Free flow;if 10

Average flow;if 10 16

Saturated flow;if 16

t
p

p

t t
j p

p

t
p

p

µ

µ

µ

∈

∈

∈

 
< 

 
 

Ω = ≤ < 
 
 ≥ 
 

∑

∑

∑

4.1.3 System state for RL algorithm

At any step of the RL algorithm, the state of the system is represented by three

elements:

a) The average label of RQ states of the phases in signal timing plan

b) The phase number with maximum queue length for the intersection

c)The adjacent intersection number with maximum queue length.

The state at step t for signal controller j can be represented as:

()
()
()

average ,

max ,

max , ()

t
p

t t
j p

t
j

p P

s p P

j j

 Π ∀ ∈
 
 = Π ∀ ∈ 
 

Ω ∀ ∈Γ  


Where,

Set of phases in the signal timing plan for int er sec tion .P j=

() The set of adjacent intersection for intersection .j jΓ =

4.2 Actions

The agent’s action is to switch on any of available phases in the signal timing

plan. One should note that, there is no restriction on the sequence of the phases. Flexible

sequence in signal timing plan has been used by previous researchers and also has been

implemented in real world signalized intersections. However, the algorithm also follows

the minimum and maximum green constraints. Currently, the thresholds for these

parameters are assumed.

 14

4.2.1 Action selection strategy

Reinforcement learning algorithms in general require a balance between

exploitation and exploration in the strategies for selecting optimal action. The simplest

action rule is to select the action (or one of the actions) with the highest estimated state-

action value (complete greedy behavior). In other words, the agent always tries to

maximize the immediate reward using the immediate knowledge without any attempt to

explore other possible actions. To balance between exploitation and exploration Sutton

and Barto (1998) suggests two methods:

(i) greedyε − method:

In this method, the agents behaves greedily by choosing the action that gives the

maximum state-action value in most cases except at some cases it chooses a random

action. The probability of this random behavior is ε and the probability of selecting the

optimal action converges to greater than 1 ε− . One should note that, the advantage of

greedyε − methods over the greedy methods is highly dependent on the type of problem.

For instance, with higher variance in the reward values the greedyε − methods might

perform better.

(ii) Softmax method:

One limitation with the greedyε − method is that it gives equal priority to all

actions while exploring. It is possible to choose the worst action instead of choosing the

next best action. To resolve this, Softmax algorithms vary the action probabilities as a

graded function of estimated value. Although, the greedy action has the highest selection

probability the other are ranked and weighted according to the value estimates. In

general, Gibbs or Boltzman distribution is used to define the probability. The probability

for choosing action a in state s,

all actions

1

(,)exp()
(| state)

(,)exp()
b

Q s a

P a s
Q s b
τ

τ=

= =

∑

 15

Positive parameter called the temperatureτ =

 Higher values for the temperature can make the probability of choosing

any of the actions nearly equal. On the other hand, lower value of the temperature will

create a higher difference in the action selection probabilities.

 Another commonly used action strategy is the combination of the above

mentioned strategies that is referred to as Softmaxε − (Sutton and Barto, 1998; El-

Tantawy and Abdulhai, 2012). The agent behaves greedily with the probability of (1 ε−)

and the rest of the cases it selects an action using the probability computed from Softmax

selection process.

4.3 Reward functions

Three separate reward functions have been used: Reward-1(Queue length),

Reward-2(average delay experienced by the intersection since previous action), and

Reward-3(Residual Queue). In addition, we propose the multi reward structure that

defines queue length as reward at free flow, average delay as reward over the time

interval at medium level congestion, and residual queue as reward at near saturated

condition.

 16

CHAPTER 5. ALGORITHMS

This chapter describes the algorithms applied in this research. We implemented an

off-policy Temporal Difference (TD) control algorithm which is also known as Q-

learning (Watkins, 1989; Watkins and Dayan, 1992). We applied three specific temporal-

difference techniques:

a) Off-policy TD control (Q-Learning)

b) On-policy TD control (SARSA)

c) Advanced off-policy TD (R-MART) (41, 42)

5.1 Framework

Like most RL based schemes, each algorithm has two phases: learning phase and

implementation phase. The learning takes place before the implementation. The key

difference in the techniques stated above is the process of updating the state-value

function. During the learning phase the agents update the state-action value through

interacting with the environment. Balancing the exploration and exploitation is important

at this phase. Initially, the algorithm starts with greedyε − using higher ε value. Then,

gradually the ε value is decreased and at the end of the learning phase we implement the

Softmax method. During the implementation period, the algorithm emphasizes on

exploitation with very small ε value following the Softmaxε − action strategy.

5.2 Q-learning and SARSA

 First, we describe the off-policy Q-learning and the On-policy SARSA

algorithms. Since only change from the learning to implementation phase is the action

 17

selection strategy only the learning phase algorithms are described. Moreover, Q-learning

and SARSA have the almost same framework, therefore we use a single algorithm

separating out the update phase.

5.2.1 Terminologies

The average reward per time step.ρ =

(,) The value of state-action pair (,).Q s a s a=

(, ,) Observed reward when the agent takes action in state , and moves to state .r s a s a s s′ ′=

() Learning rate for the values (scalar) at iteration.k Q k thα = − −

() Learning rate for the average reward at step, .k kβ =

Maximum number of iterations allowed in the learning phase.Ν =

Discount factor for reward value.γ =

5.2.2 Initialization

Set initial values for (,)Q s a for all state-action pairs (,)s a .

Set learning rate:
() log (2)10

2
k k

k
α +

=
+ .

Set discount factor: scalar between 0 and 1γ ← (we used 0.8 in the algorithm).

Learning Phase:

In the learning phase the agent builds its state-action mapping table which can be

 used later to take decision (which phase to activate) in the implementation phase.

5.2.3 Algorithm
current state

Action Selection:
Choose action in state using behavior policy (one of the following):

) greeedy
b) Gibbs Soft-max
) -Soft-max

s

a s
a

c

ε

ε

←

−

 18

IF Off-policy Temporal difference (Q-Learning)

()

Reward and transition state:
Observe reward for choosing action and next state,
Update -values:

(,) (,) [max (,) (,)]k

a

r a s
Q

Q s a Q s a r Q s a Q s a

s s

α γ
′

′

′ ′← + + −

′←

IF On-policy Temporal difference (SARSA)

()

Reward and transition state:
Observe reward for choosing action and next state,
Choose an action in state using behavior policy and get (,)
Update -values:

(,) (,) [(,k

r a s
a s Q s a

Q

Q s a Q s a r Q s aα γ

′
′ ′ ′ ′

′ ′← + +) (,)]
;

Q s a
s s a a

−
′ ′← ←

Update :
1

Check termination:
IF , THEN STOP
ELSE, REPEAT

k
k k

k

← +

> Ν

5.3 R-MART (R-Markov Average Reward Technique) based algorithm.

5.3.1 Initialization

Set initial values for ρ , and (,)Q s a for all state-action pairs (,)s a .

() log (2)10
2

k k
k

α +
=

+

() , and are scalarsk A A B
B k

β =
+

 19

5.3.2 Learning phase algorithm
current state

Action Selection:
Choose action in state using behavior policy (one of the following):

) greeedy
b) Gibbs Soft-max
) -Soft-max

Reward and transition state:
Observe reward for choosin

s

a s
a

c

r

ε

ε

←

−

g action and next state, a s′

()

Update -values:

(,) (,) [max (,) (,)]

Update average reward:
IF (,) max (,), THEN

+ [r- max (,) max (,)]

k

a

a

a a

Q

Q s a Q s a r Q s a Q s a

Q s a Q s a

Q s a Q s a

s s

α ρ

ρ ρ β ρ

′

′

′ ′← + − + −

=

′ ′← + −

′←

Update :
1

Check termination:
IF , THEN STOP
ELSE, REPEAT

k
k k

k

← +

> Ν

 20

CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

The RL-based algorithms are implemented using VISSIM (VISSIM USER

MNAULA, 2011), a widely used commercial traffic simulation tool. The RL based

algorithms are coded in C++ and are being integrated with VISSIM through the COM

interface. FIGURE 1 shows the test network used for evaluating the RL-based

algorithms. The network consists of eight signalized intersections and 14 origin-

destination pairs. Three different congestion levels are used: low, medium, and saturated.

The results from RL-based algorithms are compared with the performance obtained for

fixed signal control. The fixed signal settings are determined using the Webster’s

equation (Webster, 1958). Average delay, average stopped delay at the intersection, and

average number of stops for the intersections are chosen as the measures of effectiveness

(MOE).

6.1 Congestion level variation at intersection level

The congestion level designed for experiments are in general at network level.

The trip rates for distinct origin-destination pairs are increased to create higher

congestion level. However, this is not the exact representation of the congestion

experienced by the intersections. Two intersections can experience varying level of

congestion state, even though the demand (network congestion level is same).

Intersection-3 and intersection-6 in FIGURE 1 experiences different patterns of

congestion, although the network congestion level is same. To illustrate TABLE 1 shows

the distribution of experienced states for these intersections. The average congestion state

is determined the definition provided in the methodology section. It can be observed that,

 21

intersection-3 experiences more congested states compared to intersection-6. As a result,

it is possible to different trends in the comparison of performance measures even though

the network congestion level remains the same.

Figure 1Test network for evaluating the signal control algorithms .

 22

Table 1Congestion variation in Intersection-3 and Intersection-6

Experienced
State

Q-learning SARSA RMART
Intesection-3 Intesection-6 Intesection-3 Intesection-6 Intesection-3 Intesection-6

Low
congestion
state (%)

45.74 45.74 22.87 37.67 27.81 78.92

Medium
congestion
state (%)

39.91 49.78 45.3 57.85 43.49 20.18

High
congestion
state (%)

14.35 4.48 31.83 4.48 2 0.90

6.2 Performance comparison: Average Delay

TABLE 2 shows the comparison of average delay for different RL-based

algorithms with different reward function at different congestion levels. At low

congestion, Q-learning exhibits best performance with Reward-1 and Reward-2, and

RMART performs better with Reward-3. The trend is same for both intersections. At

medium congestion, the trend is different for intersection-3 and intersection-6. For

intersection-3, Q-learning performs best with Reward-1 and Reward-3 and RMART

performs best with Reward-2. For intersection-6, Q-learning shows the least delay with

Reward-2 and Reward-3 and RMART exhibits best results with Reward-1. At high

congestion, RMART outperforms all other algorithms with all types of reward functions.

The trend is same for intersection-3 and intersection-6. The following conclusions can be

made:

 a) SARSA performs worse than the other two algorithms

 b) At low congestion, Q-learning is a good choice. Note that, residual

queue (Reward-3) is a more appropriate reward when the congestion level is higher

aiming at avoiding gridlock, however not directly related with delay. This might cause

the Q-learning to perform slightly worse than RMART at low flow with Reward-3.

 c) At high congestion, RMART is the best choice that yields the minimal
average delay. Table 2 Average delay comparison

 23

6.3 Performance comparison: Stopped Delay

TABLE 3 shows the comparison of stopped delay with percentage of

improvement compared to fixed signal control. At low congestion, Q-learning performs

best with Reward-1 and Reward-2 for both intersections, however RMART performs

better with Reward-3 for intersection-3 and SARSA performs better for intersection-6. At

high congestion, RMART yields the best results with all reward functions for both the

intersections. Similar to average delay comparison, RMART is the best choice to reduce

stopped delay at signalized intersection at high congestion level of the network.

6.4 Performance comparison: Number of stops

TABLE 4 exhibits the average number of stops at the intersections. It can be

observed that, only at higher congestion level RMART and Q-learning demonstrates

some improvement over the fixed control. Since, the reward functions here do not

account for number of stops, it is intuitive that the agents do not have the scope to learn

to choose their actions so that number of stops can be minimized.

 24

Table 2Average delay comparison

Reward definition Congestion level Fixed control Q-Learning SARSA RMART Fixed control Q-Learning SARSA RMART

Intersection-3 Intersection-6

Reward-1

Low 144 131 152 132 155 135 142 139
Improvement (%) 9.03 -5.56 8.33 Improvement (%) 12.90 8.38 10.32

Medium 203 156 209 182 236 193 191 179
Improvement (%) 23.15 -2.95 10.34 Improvement (%) 18.22 19.06 24.15

High 357 250 284 223 353 265 291 227
Improvement (%) 29.97 20.44 37.53 Improvement (%) 24.92 17.56 35.69

Reward-2

Low 144 141 164 149 155 136 149 145
Improvement (%) 2.083 -13.88 -3.47 Improvement (%) 12.25 3.87 6.45

Medium 203 172 207 166 236 171 187 195
Improvement (%) 15.27 -1.97 18.22 Improvement (%) 27.54 20.762 17.37

High 357 290 303 213 353 297 290 277
Improvement (%) 18.76 15.12 40.33 Improvement (%) 15.86 17.84 21.52

Reward-3

Low 144 137 162 132 155 140 148 139
Improvement (%) 4.86 -12.5 8.33 Improvement (%) 9.67 4.516 10.32

Medium 203 175 189 178 236 167 201 176
Improvement (%) 13.79 6.89 12.31 Improvement (%) 29.23 14.83 25.42

High 357 273 357 238 353 260 276 226
Improvement (%) 23.52 0 33.33 Improvement (%) 26.34 21.81 35.97

 25

Table 3 Stopped delay comparison

Reward definition Congestion level Fixed control Q-Learning SARSA RMART Fixed control Q-Learning SARSA RMART

Intersection-3 Intersection-6

Reward-1

Low
106 91 112 92 113 91 112 96
Improvement (%) 14.15 -5.66 13.20 Improvement (%) 19.46 0.88 15.04

Medium
154 108 156 130 183 137 156 123
Improvement (%) 29.87 -1.29 15.58 Improvement (%) 25.13 14.75 32.78

High
284 185 208 159 284 189 208 156
Improvement (%) 34.85 26.76 44.01 Improvement (%) 33.45 26.76 45.07

Reward-2

Low
106 101 121 108 113 94 105 104
Improvement (%) 4.71 -14.15 -1.88 Improvement (%) 16.81 7.07 7.96

Medium
154 122 153 115 183 118 131 140
Improvement (%) 20.77 0.64 25.32 Improvement (%) 35.51 28.41 23.49

High
284 224 229 150 284 216 207 201
Improvement (%) 21.12 19.36 47.18 Improvement (%) 23.94 27.11 29.22

Reward-3

Low 106 97 121 92 113 95 93 96

Improvement (%) 8.49 -14.15 13.20 Improvement (%) 15.92 17.69 15.04

Medium 154 122 138 127 183 110 118 121

Improvement (%) 20.77 10.38 17.53 Improvement (%) 39.89 35.51 33.87

High 284 205 280 174 284 182 216 151

Improvement (%) 27.81 1.40 38.73 Improvement (%) 35.91 23.94 46.83

 26

Table 4 Comparison metric: Average no. of stops

Reward definition Congestion level Fixed control Q-Learning SARSA RMART Fixed control Q-Learning SARSA RMART

Intersection-3 Intersection-6

Reward-1
Low 5.58 6.4 6.7 6.5 6.29 7.31 7.29 7.46
Medium 6.93 7.03 8.32 7.8 7.82 8.67 8.72 8.68
High 10.2 9.15 11.15 9.13 10.2 11.83 12.22 10.31

Reward-2
Low 5.58 6.78 7.22 6.96 6.29 7.01 7.43 7.03
Medium 6.93 7.45 7.61 7.62 7.82 8.15 8.66 8.98
High 10.2 8.84 12.02 9.17 10.2 13.17 14.38 12.1

Reward-3
Low 5.58 6.44 6.66 6.5 6.29 7.45 7.46 7.46
Medium 6.93 7.66 7.26 7.71 7.82 8.86 8.55 8.52
High 10.2 9.09 12.08 8.84 10.2 12.21 14.57 11.4

 27

6.5 Effect of variation in reward functions

FIGURE 2 and FIGURE 3 illustrate the performance rate of the learning

algorithms Q-learning and RMART with different reward functions. The change in

average delay at different congestion level is observed from the figures. For the Q-

learning, it can be seen that Reward-2 (delay averaged over updating steps) performs

better with time and this sustains for all congestion levels. Although at the beginning, the

delay is higher with Reward-2. However, it gets better with time.

 For RMART algorithm, we see the very similar pattern for Reward-2 and

Reward-3 (FIGURE 3). At low congestion, Reward-2 shows most desired trend and for

other cases, Reward-1 shows the most reduction of delay with time. It is interesting to see

that, RMART with Reward-1 initially performs better, however with time gets worse at

low level of congestion. The pattern is different for medium and high level congestion.

With these patterns, using queue length as reward function for RMART is expected to

yield better results with medium to high congestion.

 28

Figure 2 Performance rate of Q-learning with different reward functions.

 29

Figure 3 Performance rate of RMART with different reward functions.

 30

6.6 Comparison of the algorithms

FIGURE 4 and FIGURE 5 demonstrates the performance of different algorithms

with time at same congestion level with fixed reward function. There results show the

time varying performance of the algorithm Specific to Reward-2, FIGURE 4 shows that

SARSA does not improve over time at low congestion level and performs worse than

fixed control. At medium congestion level, initially it gets better with time. However, at

higher congestion it performs better than fixed control. Q-learning and RMART has

similar rate of improvement over time for low to medium congestion, however RMART

outperforms others at higher congestion level. It is interesting to see that the performance

of SARSA and Q-learning is close at high congestion level.

 Specific to Reward-1, FIGURE 5 exhibits that Q-learning has a better

trend for low to medium congestion level and RMART shows better rate of improvement

at higher congestion.

 31

Figure 4 Comparison of algorithms (Reward-2).

 32

Figure 5 Comparison of algorithms (Reward-1).

 33

6.7 Comparison of multi-reward algorithms

TABLE 5 compares the results for algorithms using multi-reward structure and

single reward structure. The results from the multi-reward case are compared with the

best and worst cases from single reward algorithms. For instance, the best case of a single

reward Q-learning algorithm is the algorithm-reward combination that yields the

minimum delay. The multi-reward structure requires comprehensive analysis before

reaching any insightful conclusion. TABLE 5 presents a single test case only. TABLE 5

shows that, the multi-reward scheme performs better than the worst case in single reward

in most cases. Only exception is the RMART with high demand where it performs worst.

Only SARSA at intersection-3, is the case where multi-reward performs better than the

single reward scheme.

Next, we tested the algorithms for different probability values of action choosing.

As we decrease the probability for choosing a random action (i.e., the algorithm becomes

greedier and chooses the action with the previously obtained maximum reward value),

the performance improves in terms of average delay and stopped delay. However after a

certain value of probability the algorithms start to decline in the performance. TABLE 6

shows a sample test result for Off-policy Q-learning at high congestion level.

 34

Table 5 Comparison with multi-reward algorithms

Algorithm Congestion Average delay
(Multi-reward)

Average delay
(Best-single
reward)

Change from best
case(%)

Average delay
(Worst-single
reward)

Change from worst
case(%)

 Intersection 3
Q-Learning Low 137 131 -4.58 141 2.84

Medium 174 156 -11.54 175 0.57
High 259 250 -3.6 290 10.69

SARSA Low 136 152 10.52 164 17.1
Medium 175 189 7.41 209 16.27

High 278 284 2.11 357 22.31
RMART Low 152 132 -15.15 149 2.01

Medium 176 166 -5.68 178 1.12
High 315 213 -47.88 238 -32.35

 Intersection 6
Q-Learning Low 140 135 -3.7 140 0

Medium 171 167 -2.39 193 11.39
High 338 260 -30 297 -11.11

SARSA Low 149 148 -0.67 149 0
Medium 201 187 -7.48 201 0

High 352 276 -27.53 291 -20.96
RMART Low 140 139 -0.72 145 3.45

Medium 159 176 9.66 179 11.17
High 233 226 -3.1 277 15.88

 35

Table 6 Sensitivity of Multi-Reward algorithms with action selection probability
(Case: Q-Learning at Intersection 3 with High congestion)

Random action selection probability Average delay (seconds) Stopped delay
1/3 246 181
1/6 224 160
1/8 205 144
1/10 378 309
1/15 251 188

 36

6.8 Comparison with adaptive signal control algorithms

The reinforcement learning based algorithms are compared with the longest-

queue-first (LQF)algorithm. The LQF algorithm based on a concept similar to a well

established routing algorithm in communication network and has been implemented by

researchers in the context of traffic signal control (Wunderlich et al., 2008 and Arel et al.,

2010). Wunderlich et al.(2008) proposed a variant of the LQF algorithm by introducing

user defined weight to certain vehicle classes. For the test purpose, we modified the

algorithm to make it more efficient. The changes include provision for minimum and

maximum green in the signal timing plan and adjusting for repetitive phase for the case

when a particular approach is highly congested compared to all other approaches. The

LQF algorithm also uses real time information to make signal control decision. The key

concept is to allocate the green towards the approach with longest queue size. Queue size

is defined as the number of stopped vehicles.

TABLE 7 reports the comparison of RL algorithms with LQF algorithm. The RL

algorithms perform better than the LQF algorithm in terms of both average delay and

stopped delay statistics. The results are similar for both intersection-3 and intersection-6.

One should note that both algorithms use real time traffic information to make signal

control decision. The key difference is that, the RL based algorithm have learning feature

with which signal controllers learn to make the better decision with time. Therefore, we

can conclude from these testing scenarios using VISSIM that learning offers better

performance compared to adaptive algorithms in the context of traffic signal control.

 37

Table 7 Comparison with adaptive signal controllers (Longest-Queue-First
algorithm)

Congestion Level
Average Delay (seconds)

Fixed Timing Plan Adaptive (LQF) Off-Policy
 Q-Learning RMART

Intersection-3

Low 144 177 132 132

Medium 203 207 160 175

High 357 294 270 232

Intersection-6

Low 155.13 198.338 145.86 134.53

Medium 236.42 223.947 176.79 177.42

High 353.47 279.32 263.95 228.06

 38

6.9 Value of information sharing among neighborhood signal controllers in RL

algorithms

Sharing traffic information among neighborhood controllers is mentioned as one

of the distinct feature in the proposed RL algorithms in this research. To justify the

impact of information sharing we compare the results from two test cases: one case

considers the information sharing and the other does not. TABLE 8 shows the

comparison results. For Q-Learning, we see improvements at all congestion levels. For

R-MART, we see improvement for higher congestion and for SARSA negligible

deterioration is observed at higher congestion level. Previous results show that Q-

Learning and R-MART have superior performance compared to fixed control and also

adaptive learning. It can be observed that, inclusion of neighborhood information helps to

improve the performance in most cases.

 39

Table 8 Value of information sharing in RL algorithms

Test Case

Average Delay Stopped Delay

With
Neighborhood.
Information

Without
Neighborhood.
Information

Benefit
With
Neighborhood.
Information

Without
Neighborhood.
Information

Benefit

Off-
policy

(Q-
Learning)

Low 132.39 132.39 0.00% 92.80 92.80 0.00%

Medium 160.13 168.56 5.26% 111.30 118.29 6.28%

High 270.12 270.37 0.09% 204.70 204.06 -0.31%

R-mart

Low 131.89 131.89 0.00% 93.09 93.09 0.00%

Medium 174.98 172.52 -1.41% 123.81 121.31 -2.02%

High 231.55 284.15 22.72% 168.42 218.03 29.45%

On
Policy

(SARSA)

Low 152.78 152.78 0.00% 111.43 111.43 0.00%

Medium 184.55 192.88 4.51% 133.75 140.46 5.01%

High 320.82 319.31 -0.47% 247.58 245.92 -0.67%

 40

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH

The research presents and evaluates reinforcement learning based Signal control

algorithms that adapts with the traffic dynamics. Learning offers an efficient way to

optimize the signal control settings and the multi agent based distributed structure

performs has many advantages over the centralized system. We proposed RL algorithms

that account for the neighborhood congestion information within the framework and

evaluated different techniques. The R-Markov Average Reward Technique (RMART)

shows superior performance at high level of congestion. Some of the insights can be

drawn from our results are as follows:

 a) Different RL algorithms perform better at different congestion level

and also with different reward functions. It is important to choose the right combination

of learning algorithm and reward structure at a particular congestion level to maximize

the performance.

 b) Analysts should consider both average cumulative metrics and time

varying performance to evaluate the algorithms. For instance, the queue-length seems to

be the best reward structure to reduce the average delay when cumulative metrics are

compared (TABLE 2). However, the improvement rates from time varying performance

plot (FIGURE 3) indicate that using delay averaged over time steps will perform better in

future.

 Further, the complexity of the algorithm should be tested more

comprehensively. The learning rate parameter and discount factor are assumed arbitrarily

and a sensitivity analysis can provide us with useful information. We plan to implement

 41

the algorithm on a larger network to show the benefit of the learning different traffic state

information in improving the performance of traffic networks.

 The RMART algorithm as illustrated in the results has shown higher

potential to reduce delay at highly congested states. In addition, this research proposes

the multi-reward structure that is expected to capture the stochastic nature of the traffic

arriving at intersections.

 42

REFERENCES

Abdulhai, B. and L. Kattan (2003), Reinforcement learning: Introduction to theory and

potential for transport applications, Canadian Journal of Civil Engineering, vol. 30, no. 6,

pp. 981–991.

Abdulhai,B. R. Pringle, and G. J. Karakoulas (2003), Reinforcement Learning for True

Adaptive Traffic Signal Control, Journal of Transportation Engineering, vol. 129, no. 3,

pp. 278–285.

Adam, Z. M., M. M. Abbas, and P. F. Li (2009), “Evaluating Green-Extension Policies

with Reinforcement Learning and Markovian Traffic State Estimation, In Transportation

Research Record: Journal of the Transportation Research Board, No. 2128,

Transportation Research Board of the National Academies, Washington, D.C., pp. 217-

225.

Arel, I., C. Liu, T. Urbanik, and A. G. Kohls (2010). Reinforcement learning-based

multi-agent system for network traffic signal control, Intelligent Transport Systems, IET,

vol. 4, no. 2, pp. 128–135.

Balaji, P. G., X. German, and D. Srinivasan (2010). Urban traffic signal control using

reinforcement learning agents,” IET Intelligent Transport Systems, vol. 4, pp. 177–188.

Bazzan, Ana L. C (2009). Opportunities for multiagent systems and multiagent

reinforcement learning in traffic control. Autonomous Agents and Multi-Agent Systems,

Vol. 18, No. 3, pp. 342-375.

http://www.springerlink.com/content/?Author=Ana+L.+C.+Bazzan
http://www.springerlink.com/content/j1j0817117r8j18r/
http://www.springerlink.com/content/j1j0817117r8j18r/
http://www.springerlink.com/content/1387-2532/
http://www.springerlink.com/content/1387-2532/18/3/

 43

Bazzan, Ana. L.C., D. de Oliveira, and B. C. da Silva (2010), Learning in groups of

traffic signals, Engineering Applications of Artificial Intelligence, vol. 23, no. 4, pp. 560–

568.

Bingham, E.(2001), Reinforcement learning in neurofuzzy traffic signal control,

European Journal of Operational Research, vol. 131, no. 2. pp. 232–241.

Boillot, F., Blosseville, J. M., Lesort, J. B., Motyka, V., Papageorgiou, M., and Sellam, S

(1992). Optimal signal control of urban traffic networks. Proceedings of the sixth IEE

international conference on road traffic monitoring and control, London, England, pp.

75–79.

Diakaki, C., M. Papageorgiou, and K. Aboudolas (2002), A multivariable regulator

approach to traffic-responsive network-wide signal control, Control Engineering Practice,

vol. 10, no. 2, pp. 183–195.

El-Tantawy, Samah and Abdulhai, Baher (2012). Neighborhood-Coordinated Multi-

Agent Reinforcement Learning for Networked Adaptive Traffic Signal Control.

Presented at 91st Annual Meeting of the Transportation Research Board, Washington,

D.C.

Farges, J.-L., Henry, J.-J., and Tufal, J (1983). The PRODYN real-time traffic algorithm.

Proceedings of the fourth IFAC symposium on transportation systems, Baden-Baden,

Germany, pp. 307–312.

Gartner, N (1983). OPAC: a demand-responsive strategy for traffic signal control. In

Transportation Research Record: Journal of the Transportation Research Board, No. 906,

Transportation Research Board of the National Academies, Washington, D.C., pp. 75-84.

Gosavi, A (2003). Simulation-Based Optimization: Parametric Optimization Techniques

& Reinforcement Learning. Springer.

Hoar Rr, J. Penner, and C. Jacob (2002). Evolutionary swarm traffic: if ant roads had

 44

traffic lights. In Proceedings of the 2002 Congress on Evolutionary Computation.

CEC’02 (Cat. No.02TH8600), vol. 2, pp. 1910–1915.

Houli, D., L. Zhiheng, and Z. Yi (2010). Multiobjective Reinforcement Learning for

Traffic Signal Control Using Vehicular Ad Hoc Network. In EURASIP Journal on

Advances in Signal Processing, vol. 7 pages.

Hu, T. and L. Chen (2011). Traffic Signal Optimization with Greedy Randomized Tabu

Search Algorithm. Presented at 90th Annual Meeting of the Transportation Research

Board, Washington, D.C.

Hunt, P. B., Robertson, D. L., Bretherton, D., and Royle, M. C.(1982). The SCOOT on-

line traffic signal optimisation technique. Traffic Engineering and Control, vol.23,

pp.190–199.

Ishihara, H. and T. Fukuda (2001). Traffic signal networks simulator using emotional

algorithm with individuality. In ITSC 2001 IEEE Intelligent Transportation Systems.

Proceedings (Cat. No.01TH8585), pp. 1034–1039.

Li, Yining, and J. Mueck (2010). A Recurrent Neural Network Approach to Network-

wide Traffic Signal Control. Presented at 89th Annual Meeting of the Transportation

Research Board, Washington, D.C.

Kuyer, L. Whiteson, S., Bakker, B. and Vlassis, N (2008). Multiagent Reinforcement

Learning for Urban Traffic Control using Coordination Graphs. In Proc. 19th European

Conference on Machine Learning, Antwerp, Belgium.

Li, T., D. B. Zhao, J. Q. Yi, and I. L (2008). A.- English. Adaptive Dynamic

Programming for Multi-intersections Traffic Signal Intelligent Control. In proceedings of

the 11th International Ieee Conference on Intelligent Transportation Systems, pp. 286–

291.

Li, Y., J. Yang, G. Xiuchang, and M. M. Abbas (2011). Urban Traffic Signal Control

 45

Network Partitioning Using Self-Organizing Maps. Presented at 90th Annual Meeting of

the Transportation Research Board, Washington, D.C.

Lowrie, P. R(1982). SCATS:The Sydney coordinated adaptive traffic system principles,

methodology, algorithms. Proceedings of the IEE international conference on road traffic

signaling, London, UK, pp. 67–70.

Mauro, V., and Di Taranto, C (1989). UTOPIA. Proceedings of the sixth

IFAC/IFIP/IFORS symposium on control, computers, communications on transportation.

Paris, France, pp. 245-252.

Medina, J. C. and R. F. Benekohal(2011). Reinforcement Learning Agents for Traffic

Signal Control in Oversaturated Networks. T&DI Congress 2011: Integrated

Transportation and Development for a Better Tomorrow, vol. 398, no. 41167, pp. 14–14.

Mikami, S. and Y. Kakazu (1994). Genetic reinforcement learning for cooperative traffic

signal control. In Proceedings of the First IEEE Conference on Evolutionary

Computation. IEEE World Congress on Computational Intelligence, pp. 223–228.

Mirchandani, P., and Head, L. (1998). RHODES: a real-time traffic signal control

system: Architecture, algorithms, and analysis. TRISTAN (Triennal symposium on

transportation analysis) II, San Juan, Puerto Rico.

Oliveira, D., Bazzan, A. L. C., Lesser, V (2005). Using Cooperative Mediation to

Coordinate Traffic Lights: a Case Study. In: Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems, Utrecht. New York : ACM, 2005.

Prashanth, L.A., and S. Bhatnagar (2011). Reinforcement Learning With Function

Approximation for Traffic Signal Control. Intelligent Transportation Systems, IEEE

Transactions on, Vol. 12, No. 2, pp. 412-421.

Report Card, (2012). The National Transportation Operations Coalition (NTOC). 2012

National Traffic Signal Report Card - Executive Summary.

 46

Schrank, D., T. Lomax, and S. Turner. (2011). TTI’s 2011 Urban Mobility Report. Texas

A&M University System.

Srinivasan, D. M. Choy, and R. Cheu (2006). Neural Networks for Real-Time Traffic

Signal Control. IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 3,

pp. 261–272.

Sanchez J. J., M. Galan, and E. Rubio (2004). Genetic algorithms and cellular automata:

a new architecture for traffic light cycles optimization. In Proceedings of the 2004

Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), pp. 1668–1674.

Stevanovic, Aleksandar, J. Stevanovic, D. Jolovic, and V. Nallamothu (2012). Retiming

Traffic Signals to Minimize Surrogate Safety Measures on Signalized Road Networks.

Presented at 91st Annual Meeting of the Transportation Research Board, Washington,

D.C.

Sutton, R. S. and A. G. Barto (1998), Introduction to reinforcement learning. Cambridge

Mass.: MIT Press.

Thorpe, T. (1997), Vehicle traffic light control using sarsa. Master’s Project Rep.,

Computer Science 27 Department, Colorado State University, Fort Collins, Colorado.

VISSIM Version 5.30-04 User Manual. Innovative Transportation Concepts. PTV

Planung Transport Verkehr AG, Karlsruhe, Germany, Feb. 2011.

Wunderlich, R., Cuibi, L., Elhanany, I., & Urbanik, T. (2008). A Novel Signal-

Scheduling Algorithm With Quality-of-Service Provisioning for an Isolated Intersection.

Intelligent Transportation Systems, IEEE Transactions on, 9(3), 536-547.

Webster, F.V. Traffic signal settings. Road research technical paper. No 39. 1958:

HMSO.

Wiering, M (2000). Multi-Agent Reinforcement Learning for Traffic Light Control. In:

 47

Proc. 17th International Conf. on Machine Learning, pp. 1151–1158

Wiering, M (2004). Intelligent traffic light control. Tech. Rep. UU-CS-2004-029,

University Utrecht.

Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis, University of

Cambridge, 1989, England.

Watkins, C. and P. Dayan, Q-learning (1992). Machine learning, Vol. 8, No.3, pp. 279-

292.

Xie, Y (2007). Development and evaluation of an arterial adaptive traffic signal control

system using reinforcement learning, Dissertation in Civil Engineering. Texas A&M

University: College Station.

Zhang, Y., Y. Xie. and Z.,Ye (2007). Development and Evaluation of a Multi-Agent

Based Neuro-Fuzzy Arterial Traffic Signal Control System, Technical Report, Texas

A&M University, (SWUTC #473700- 00092-1).

	CHAPTER 1. INTRODUCTION
	CHAPTER 2. Brief Account of Past Research on Agent-based Traffic Control
	2.1 Traffic Control Using Learning Agents
	2.2 Explicit Coordination of Agents and Group Formation

	CHAPTER 3. Methodology
	3.1 The Q-learning Algorithm
	3.2 The ADP Algorithm with Post-decision State Variable
	3.3 An algorithm for signal coordination – The Max-Plus
	3.4 Implementation of the algorithms for real-time traffic control
	3.5 Experimental Setup

	CHAPTER 4. Analysis of Results
	4.1 Single Intersection - Oversaturated Conditions
	4.1.1 ADP implementations
	4.1.2 Performance
	4.1.3 Q-learning implementations
	4.1.4 Performance

	4.2 Four-intersection Arterial, undersaturated conditions
	4.2.1 ADP Implementations
	4.2.2 Performance
	4.2.3 Q-learning Implementations
	4.2.4 Performance

	4.3 5x2 Network, Undersaturated Conditions
	4.3.1 Implementations
	4.3.2 Performance

	4.4 5x2 Network, Oversaturated Conditions
	4.5 4x5 Network, Oversaturated Conditions
	4.6 4x5 Network, Oversaturated Conditions - Uneven Demands

	CHAPTER 5. Conclusions and Future Work
	CHAPTER 6. References
	Final Report Cover and Technical Summary Page - RL agents RFB Rev.pdf
	Agent-based Traffic Management and Reinforcement Learning in Congested Intersection Network
	Introduction
	Findings
	Recommendations
	Contacts

	Agent-Based Traffic Management and Reinforcement Learning in Congested Intersections report 2.pdf
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1 Background and motivation
	1.2 Study objectives
	1.3 Organization of the research

	CHAPTER 2. RELATED WORK
	2.1 Literature review
	2.2 Research contribution

	CHAPTER 3. SIGNAL CONTROL AS REINFORCEMNET LEARNING PROBLEM
	3.1 Reinforcement learning for optimal control
	3.2 Markov Decision Problem (MDP)
	3.3 Signal control problem as MDP
	3.4 Using Reinforcement Learning (RL) to solve MDP

	CHAPTER 4. ELEMENTS OF REINFORCEMENT LEARNING (RL) BASED SIGNAL CONTROL
	4.1 State of the system
	4.1.1 Residual queuing (RQ) state for lanes
	4.1.2 Residual queuing (RQ) state of the intersection
	4.1.3 System state for RL algorithm

	4.2 Actions
	4.2.1 Action selection strategy

	4.3 Reward functions

	CHAPTER 5. ALGORITHMS
	5.1 Framework
	5.2 Q-learning and SARSA
	5.2.1 Terminologies
	5.2.2 Initialization
	5.2.3 Algorithm

	5.3 R-MART (R-Markov Average Reward Technique) based algorithm.
	5.3.1 Initialization
	5.3.2 Learning phase algorithm

	CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS
	6.1 Congestion level variation at intersection level
	6.2 Performance comparison: Average Delay
	6.3 Performance comparison: Stopped Delay
	6.4 Performance comparison: Number of stops
	6.5 Effect of variation in reward functions
	6.6 Comparison of the algorithms
	6.7 Comparison of multi-reward algorithms
	6.8 Comparison with adaptive signal control algorithms
	6.9 Value of information sharing among neighborhood signal controllers in RL algorithms

	CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH
	REFERENCES
	SummaryVISSIM-RL_ NEXTRANS_Final_Report_v2.0.pdf
	UAgent-Based Traffic Management and Reinforcement Learning in Congested Intersections
	Introduction
	Findings
	Recommendations
	Contacts

