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Agent-based Traffic Management and Reinforcement Learning in 
Congested Intersection Network  

Introduction 
This study evaluates the performance of traffic control systems based on reinforcement learning (RL), 
also called approximate dynamic programming (ADP). Two algorithms have been selected for testing: 1) 
Q-learning and 2) approximate dynamic programming (ADP) with a post-decision state variable. The 
algorithms were tested in increasingly complex scenarios, from an oversaturated isolated intersection, 
to an arterial in undersaturated conditions, to a 2x5 network in both undersaturation and 
oversaturation, and finally to a 4x5 network in oversaturation with even and uneven directional 
demands. Potential benefits of these algorithms include signal systems that not only quickly respond to 
the actual conditions found in the field, but also learn about them and truly adapt through flexible cycle-
free strategies. Moreover, these signal systems are decentralized, providing greater scalability and lower 
vulnerability at the network level. 

Findings 
Results showed that agents with RL algorithms (ADP and Q-learning) were able to manage the traffic 
signals efficiently in both undersaturation and oversaturation. This was observed in all the cases 
analyzed in this study. In a isolated intersection, the signals processed vehicles at short discharge 
headways and provided green times in a similar proportion to the actual demand for left-turns and 
through movements. Through phases were displayed more often, reducing lost times in frequent 
transitions to left-turning movements that had lower demands. For a arterial in undersaturation, the 
agents continuously provided green to approaches with demand at intersections with no opposing 
traffic and also favored coordination for the two adjacent intersections with conflicting volumes. 
Coordination was emphasized in the direction of heavier traffic, as expected, and performance was 
similar to that provided by signals optimized by TRANSYT7F. In a 2x5 network in undersaturation, the RL 
agents prevented queue spillbacks for through vehicles, but left-turn pockets were momentarily blocked 
due to the permitted nature of the turning movements. The total number of vehicles processed 
fluctuated around the total expected demand for this scenario, indicating no increase in residual queues 
at the end of the study period. In oversaturation, the agents were tested with and without 
communication capabilities to illustrate the need to provide information on adjacent intersections in 
order to prevent queue spillbacks. Results clearly showed that the performance of the network was 
improved with communication capabilities, in this case by informing of potential downstream blockages. 
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Lastly, in a realistic 4x5 network with oversaturated conditions and even and uneven directional 
demands, results from ADP and Q-learning were comparable to those obtained by optimizing the signals 
with TRANSYT7F. The addition of an explicit coordinating strategy using the max-plus algorithm showed 
benefits in terms of reduced average number of stops and throughput, but to a limited extent due to 
multidirectional coordination between neighboring intersections. 

Recommendations 
The use of reinforcement learning for traffic control applications is a growing field being pursued by an 
increased number of researchers. Applications are being improved constantly and it is expected that 
these will continue improving given their potential in this field. Further extensions to the 
implementations presented in this study for oversaturated conditions can be envisioned in the following 
aspects: restrictions to the max-plus algorithm to limit multidirectional coordination between adjacent 
intersections, alternate algorithms or alternate implementations of explicit coordinating strategies, 
improved coupling mechanisms to incorporate coordination to decentralized ADP and Q-learning 
strategies, and exploration of more efficient reward functions and state representations.  

The implementation of reinforcement learning strategies can also be explored in undersaturated 
networks (including coordinating mechanisms), to determine their performance in comparison with 
current state-of-practice signal timing. Furthermore, scenarios where a network transitions between 
undersaturated and oversaturated conditions could also be improved using reinforcement learning. 

A number of questions remain open in terms of enhancements in the performance with increased 
communication capabilities, including not only information passing (state and reward sharing), but also 
advice exchange and negotiating strategies suitable for real-time applications. 

Contacts 
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Rahim F. Benekohal 
University of Illinois at Urbana-Champaign 
Department of Civil and Environmental Engineering 
205 N. Mathews Ave., Urbana, IL, 61801 
(217)-244-6288 
(217)-333-1924 (fax) 
rbenekoh@illinois.edu 

NEXTRANS Center 
Purdue University - Discovery Park 
2700 Kent B-100 
West Lafayette, IN 47906 
 
nextrans@purdue.edu 
(765) 496-9729 
(765) 807-3123 Fax 
www.purdue.edu/dp/nextrans 
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CHAPTER 1.  INTRODUCTION 

 

Traffic control systems have evolved from traditional pre-timed isolated signals to actuated and 

coordinated corridors, and more recently to more complex “adaptive” signal control systems. 

These improvements go along with increases in traffic demands and urban congestion, which 

makes necessary to use as much of the available roadway capacity in the most efficient and 

economical way. Even though most advanced traffic control signals can, react to changes in 

traffic, to certain degree, unexpected variations in demands, oversaturation, the occurrence of 

incidents, and adverse weather conditions, among others, may significantly impact the traffic 

network operation.  

This study evaluates the performance of a traffic control system that diverges from 

traditional approaches. The proposed implementations make use of machine learning techniques, 

and more specifically of unsupervised learning through algorithms of reinforcement learning 

(RL), also called approximate dynamic programming (ADP) in some research communities 

(Gosavi, 2009). Potential benefits of this approach include signal systems that not only quickly 

respond to the actual conditions found in the field, but also learn about them and truly adapt 

through flexible cycle-free strategies. Moreover, these signal systems are decentralized, 

providing greater scalability and lower vulnerability at the network level.  

The RL algorithms have been implemented using a commercially available microscopic 

traffic simulation (VISSIM) that allows to operate the traffic signals in real time through a 

communications port that is accessed in running time. Thus, the potential for these systems can 

be tested practically in any scenario that can be simulated. This report includes the performance 

of two particular algorithms (Q-learning, and ADP with post-decision state variable) building on 

a case for a single intersection, and then moving onto two different arterials, to finally arrive to a 

realistic network of 20 intersections.  

A series of indicators or measures of performance are examined to determine how the 

algorithms behave in the proposed scenarios. The main focus of this study goes to oversaturated 

conditions, but some scenarios where the demand is lower than the capacity are also studied.  
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The remaining of the report is organized as follows. First, a review of current literature 

on agent-based approaches using reinforcement learning is provided. Then, Chapter 3 describes 

the methodology, the algorithms, as well as the implementation of real-time control in the 

simulation software. In Chapter 4, the results and analysis of the performance of the RL control 

is presented, as mentioned above, starting from a single intersection and moving to a mid-sized 

network. Lastly, Chapter 5 includes the conclusions and recommendations for future studies.  
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CHAPTER 2.  BRIEF ACCOUNT OF PAST RESEARCH ON AGENT-BASED TRAFFIC 

CONTROL 

 

Very broadly, today’s advanced traffic signal systems could be grouped as traffic responsive and 

traffic adaptive systems, following a classification proposed in the Traffic Control Systems 

Handbook (Gordon et al, 2005). Traffic responsive systems make use of vehicle detectors to 

determine the best gradual changes in cycles, splits, and offsets, for intersections within a 

predetermined sub-area of a network. Well known examples in this category are the SCOOT and 

SCATS systems. On the other hand, adaptive systems have more flexibility in the signal 

parameters and they do not make use of predetermined signal timing settings for their operation. 

In addition to sensor information, they also use prediction models to estimate traffic arrivals at 

intersections and adjust the signal settings to optimize an objective function, such as delay. 

Examples of adaptive systems are RHODES and OPAC, which optimize an objective function 

for a specified rolling horizon (using traffic prediction models) and have pre-defined sub-areas 

(limited flexibility) in which the signals can be coordinated.  

Alternative methods for real-time traffic signal control have been previously proposed 

based on developments from the field of machine learning. These strategies can solve stochastic 

optimization problems that are difficult to model (the expectation of the transition function is 

difficult to be computed), require sequential decision making, and have high dimensional 

decision and solution spaces, similar to the problem of finding optimal signal timings in a traffic 

network.  

In the 1980s, long-acknowledged limitations in the application of exact dynamic 

programming methods to solve large stochastic optimization problems prompted the search for 

alternative strategies. Different research communities including those from the operations 

research and artificial intelligence started developing a series of algorithms to solve Bellman’s 

optimality equation (at least approximately), finding near-optimal solutions for large scale 

problems. Among other methods, members of the artificial intelligence community proposed 

what is it known as a reinforcement learning (RL) approach by combining the concepts from 

classical DP, adaptive function approximations (Werbos, 1987) and learning methods (Barto el 

at, 1983).  
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Q-learning is one of such reinforcement learning strategies. After its initial publication 

(Watkins, 1989, 1992 – Watkins and Dayan, 1992), many studies have followed on the analysis 

of this and other algorithms based on similar principles. A good example is the analysis of 

reinforcement learning published by Sutton and Barto (1998) with their book “Reinforcement 

Learning: An Introduction”, which covers the reinforcement learning problem, a series of 

methods for solving it (dynamic programming, Monte-Carlo, and temporal difference methods), 

extensions, and case studies. Similar learning algorithms include Sarsa and actor-critic methods, 

but the focus here will be given to Q-learning, mostly giving its off-policy nature of doing 

temporal difference control.  

Q-learning has been the research topic of numerous practical applications, leading to 

enhancements in the algorithm and its learning structure. For example, a combination of Q-

learning and principles of temporal difference learning (Sutton, 1988 – Tesauro, 1992) resulted 

in the Q(λ) algorithm (Watkins, 1989 – Peng and Williams, 1991) for non-deterministic Markov 

decision processes. In Q(λ) – which implements an eligibility trace, the updates are allowed not 

only for the last visited state-action pair but also for the preceding predictions. The eligibility is 

based on a factor that decreases exponentially over time (given that the discount factor for 

delayed rewards is lower than one and that lambda is greater than zero). Thus, the original 

version of the Q-learning algorithm is equivalent to a Q(0)-learning, and on the other end the 

traces can extend the full extent of the episodes when Q(1)-learning is used. In terms of its 

performance and robustness, the Q(λ) algorithm has shown improvements over the 1-step Q-

learning (Pendrith, 1994 – Rummery and Nirajan, 1994 – Peng, 1993), and it is a viable option 

for the traffic control problem. Also, several other forms of Q-learning approaches have emerged 

with enhanced capabilities, such as W-learning (Humphrys, 1995, 1997), HQ-learning (Wiering, 

1997), Fast Online Q(λ) (Wiering, 1998), and Bayesian Q-learning (Dearden, et al, 1998).   

Thus, it could be said that the study and development of reinforcement learning has 

benefitted from a great number of approaches. The fields of classical dynamic programming, 

artificial intelligence (temporal difference), stochastic approximation (simulation), and function 

approximation have all contributed to reinforcement learning in one or other way (Gosavi, 2009).  

On the other hand, approximate dynamic programming (under such name) evolved based 

on the same principles as reinforcement learning, but mostly from the perspective of the 
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operations research. Also, in some sense, advances shown above for reinforcement learning are 

also advances in the approximate dynamic programming (ADP) field. As it is pointed by Powell 

(2007), the initial steps in finding exact solutions for Markov Decision Processes date back to the 

work by Bellman (1957) and Bellman and Dreyfus (1959), and even back to Robbins and Monro 

(1951), but it was not until the 1990s that formal convergence of approximate methods was 

brought to light mainly in the books by Bertsekas and Tsitsiklis (1996) and Sutton and Barto 

(1998) (even though this last one is focused from a computer science point of view). These two 

books are arguably the most popular sources for ADP methods, and quite a few significant works 

have followed, including the book by Powell (2007) itself, which covers in great detail some of 

the most common algorithms, and particularly the use of the post-decision state variable (which 

is widely used in this research). 

2.1 Traffic Control Using Learning Agents 

Specifically for traffic signal control, the study of reinforcement learning dates back 

about 15 years ago. One of the first of such studies was completed by Thorpe (1997), using the 

RL algorithm SARSA to assign signal timings to different traffic control scenarios. Later, 

Wiering (2000) discussed a state representation based on road occupancy and mapping the 

individual position of vehicles over time, and Bakker (2005) later extended this representation 

using an additional bit of information from adjacent intersections. This allowed communication 

between agents, trying to improve the reward structure and ultimately the overall performance of 

the system.  

Using a different approach, Bingham (1998, 2001) defined fuzzy rules to determine the 

best allocation of green times based on the number of vehicles that would receive the green and 

red indication. He presented a neural network to store the membership functions of the fuzzy 

rules, reducing memory requirements. It is noted that a Cerebellar Model Articulation Controller 

(CMAC) has also been used in the past to store the information learned (Abdulhai, 2003). 

Another application using fuzzy rules for traffic control was presented by Appl and Brauer 

(2000), where the controller selected one of the available signal plans based on traffic densities 

measured at the approaching links. Using a single intersection, their fuzzy controller 

outperformed learning from a controller with a prioritized sweeping strategy.  
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Choy et al. (2003) also used a multi-agent application for traffic control, but creating a 

hierarchical structure with three levels: intersection, zones, and regions. The three types of agents 

(at each level) made decisions based on fuzzy rules, updated their knowledge using a 

reinforcement learning algorithm, and encoded the stored information through a neural network. 

Agents selected a policy from a set of finite possible policies, where a policy determined 

shortening, increasing, or not changing green times. Experiments on a 25-intersection network 

showed improvements with the agents compared to fixed signal timings, mostly when traffic 

volumes were higher.   

Campoganara and Kraus (2003) presented an application of Q-learning agents in a 

scenario of two intersections next to each other, showing that when both of those agents 

implemented the learning algorithm, the systems performed significantly better than when only 

one of none of them did. The comparison was made with a best-effort policy, where the approach 

with longer queue received the green indication. Also, Medina et al. (2010) used Q-learning to 

manage the traffic signals of a 5-intersection arterial and showed emergent coordination along 

the corridor in scenarios with variable demands. A similar work by Medina and Benekohal 

(2011) showed the performance of the Q-learning algorithm in a 2x3 and a 3x3 network with 

loads near capacity, and found better results than using pretimed signals and more balanced 

operation in two-lane roadways.  

A study on the effects of non-stationary nature of traffic patterns using RL was proposed 

by De Oliveira et al. (2006b), who analyzed the performance of RL algorithms upon significant 

volume changes. They pointed out that RL may have difficulties to learn new traffic patterns, 

and that an extension of Q-learning using context detection (RL-CD) could result in improved 

performance.    

Ritcher et al (2007) showed results from agents working independently using a policy-

gradient strategy based on a natural actor-critic algorithm. Experiments using information from 

adjacent intersections resulted in emergent coordination, showing the potential benefits of 

communication, in this case, in terms of travel time. Xie (2007) and Zhang (2007), explored the 

use of a neuro-fuzzy actor-critic temporal difference agent for controlling a single intersection, 

and used a similar agent definition for arterial traffic control where the agents operated 

independently from each other. The state of the system was defined by fuzzy rules based on 
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queues, and the reward function included a linear combination of number of vehicles in queue, 

new vehicles joining queues, and vehicles waiting in red and receiving green. Results showed 

improved performance with the agents compared to pre-timed and actuated controllers, mostly in 

conditions with higher volumes and when the phase sequence was not fixed.  

Note that most of the previous research using RL has been focused on agents controlling 

a single intersection, or a very limited number intersections interacting along an arterial or a 

network. Most of the efforts have been on the performance of the agents using very basic state 

representations, and no studies focusing on oversaturated conditions and preventing queue 

overflows have been conducted. Additional research exploring the explicit coordination of agents 

and group formation in different traffic control settings will be reviewed in the next subsection, 

and will provide an important basis for the coordination of agents proposed in this study.   

Regarding the application of exact dynamic programming (DP), only a few attempts at 

solving the problem of optimal signal timings in a traffic network are found in the literature. This 

is not surprising because even though DP is an important tool to solve complex problems by 

breaking them down into simpler ones - and generating a sequence of optimal decisions by 

moving backward in time to find exact global solutions – it suffers from what is known as the 

curses of dimensionality. Solving Belman’s optimality equation recursively can be 

computationally intractable, since it requires the computation of nested loops over the whole 

state space, the action space, and the expectation of a random variable. In addition, DP requires 

knowing the precise transition function and the dynamics of the system over time, which can also 

be a major restriction for some applications. 

Thus, with these considerations, there is only limited literature for medium or large-sized 

problems exclusively using DP. The work of Robertson and Bretherton (1974) is cited as an 

example of using DP for traffic control applications at a single intersection, and the subsequent 

work of Gartner (1983) for using DP and a rolling horizon, also for the same application.  

On the other hand, Approximate Dynamic Programming (ADP) has increased potential 

for large-scale problems. ADP uses an approximate value function that is updated as the system 

moves forward in time (as opposed to standard DP), thus ADP is an “any-time” algorithm and 

this gives it advantages for real-time applications. ADP can also effectively deal with stochastic 
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conditions by using post-decision variables, as it will be explained in more detail in the 

subsequent Section.  

Despite the fact that ADP has been used extensively as an optimization technique in a 

variety of fields, the literature shows only a few studies in traffic signal control using this 

approach. Nonetheless, the wide application of ADP in other areas has shown that it can be a 

practical tool for real-world optimization problems, such as signal control in urban traffic 

networks. An example of an ADP application is a recent work for traffic control at a single 

intersection by Cai et al. (2009), who used ADP with two different learning techniques: 

temporal-difference reinforcement learning and perturbation learning. In their experiments, the 

delay was reduced from 13.95 vehicle-second per second (obtained with TRANSYT) to 8.64 

vehicle-second per second (with ADP). In addition, a study by Teodorvic et al. (2006) combined 

dynamic programming with neural networks for a real-time traffic adaptive signal control, 

stating that the outcome of their algorithm was nearly equal to the best solution. Lastly, 

Hajbabaie, Medina, and Benekohal (2011) used approximate dynamic programming and 

compared it to genetic algorithms and TRANSYT7F in an oversaturated network of 20 

intersections.  

2.2 Explicit Coordination of Agents and Group Formation  

Additional efforts have been conducted to incorporate explicit coordination to the 

behavior of groups of agents so that they can act together and form temporary coalitions. There 

is extensive research in this area for other applications other than traffic control, and most of the 

work has been originated from the artificial intelligent community. Given the focus of this study, 

review on this topic is centered on cooperative agents that share or exchange some information 

to achieve better system-wide performance, and where the communication is achieved in a 

completely decentralized way. 

Communication between agents, without mediation from agents with higher hierarchies, 

may allow the formation of (temporary) groups that can improve the overall performance of the 

system. For the traffic control domain, it is of outmost importance to maintain acceptable 

operational levels in the whole network, since queue spillbacks and traffic breakdowns may 

extend to greater areas and ultimately collapse the system. For the particular case of traffic signal 

control, researchers have explored some mechanisms to communicate agents and improve 
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performance. Nunez et al. (2002) included a feature for heterogeneous agents to request advice 

from agents with better performance index, similar to supervised learning. Agents exchanged 

their state, the best action for such state (as a means of advice), as well as their performance 

index. The effects of the advice exchange were tested using a series of individual intersections 

(not along an arterial) in a very simple simulation, each with an agent that had a different 

learning algorithm. Results showed that the advice exchange was likely to improve performance 

and robustness, but ill advice was also said to be a problem hindering the learning process. 

De Oliveira et al. (2006a) used a relationship graph as a support of the decision-making 

process. Related agents entered a mediation process to determine the best set of actions. Agents 

have priorities and the one with highest value will lead the mediation. Branch-and-bound was 

performed to find the best outcome of the sub-problem. The test was conducted on a 5x5 

network in a very simple simulation environment provided by a generic tool for multi-agent 

systems (not a traffic-specific environment). Temporary group formation was achieved and 

resulted in improved performance in terms of a cost function, compared to pre-timed coordinated 

signals. The agents regrouped (through a new mediation) when traffic patterns changed, adapting 

to new conditions.  

Kuyer (2008) also used coordination graphs and the max-plus algorithm to connect 

intersections close to each other. Networks having up to 15 intersections were tested, finding 

improved results compared to Wiering (1997) and Bakker (2005). Oliveira and Bazzan (2004, 

2006, and 2007) have made significant contributions using approaches based on swarm 

intelligence, where agents behave like a social insect and the stimuli to select one phase or plan 

is given by a “pheromone” trail with an intensity related to the number and duration of vehicles 

in the link.      

A different approach by Junges and Bazzan (2007) also studied a strategy using a 

distributed constraint optimization problem for networks of up to 9x9 intersections, but only for 

the task of changing the offset of the intersections given two different signal plans. A scenario 

without online capabilities to change the coordinated direction was compared another with the 

coordination scheme, showing improvements in the performance. However, for frequent action 

evaluations, and for bigger networks, the methodology may not be practical as the computation 

time increases exponentially with the number of agents. 
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A summary of past research using RL for traffic control is shown in Tables 2.1 and 2.2., 

where the state and the reward representation of the different approaches are described. The 

implementations presented in this report will be based on modifications and variations of 

previous work, with the addition of factors that may improve the system performance 

particularly in oversaturated conditions, including the explicit coordination of agents through the 

use of the max-plus algorithm.  



13 
 

 

 

Table 2.1 – Summary past research on RL for traffic control – States and Actions 

Author Algorithm State and actions
Communication Between 

Agents Application Loads Training

Thorpe SARSA with eligibil ity traces State: Number of vehicles (vehicles grouped in bins). Actions: unidimensional (direction to 
receive green)

No 4x4 network different loads Mutiple (undersaturation) On a single intersection, then use same training for network

Thorpe SARSA with eligibil ity traces
State: Link occupation (l ink divided in equal segments). Actions: unidimensional 

(direction to receive green) No 4x4 network different loads Mutiple (undersaturation) On a single intersection, then use same training for network

Thorpe SARSA with eligibil ity traces
State: Link occupation (l ink divided in unequal segments). Actions: unidimensional 

(direction to receive green) No 4x4 network different loads Mutiple (undersaturation) On a single intersection, then use same training for network

Thorpe SARSA with eligibil ity traces
State: Number of vehicles (vehicles grouped in bins), current signal status. Actions were 

represented by a minimum phase duration (8 bins) and the direction which receives green No 4x4 network different loads Mutiple (undersaturation) All  intersections shared common Q-values

Appl and Brauer Q-function approximated by fuzzy 
prioritized sweeping

State: Link density distribution for each direction. Actions: plan selection, total of three 
possible plans 

No Single intersection Not described, l ikely undersaturation Not described

Wiering Model-based RL (with Q values)
State: Number of vehicles in l inks. Actions: signal states/phases (up to 6 per intersection). 

Car paths are selected based on the minimum Q-value to the destination. This Is a car-
based approach. It uses values for each car and a voting approach to select actions

Yes (shared knowledge or 
"tables" in some scenarios). 
Also, included a look-ahead 

feature

2x3 network Multiple (undersaturation/likely oversat for 1 
case)

Not described

Bingham
Neurofuzzy controller with RL (using 
GARIC, an approach based on ANN)

State: Vehicles in approaches with green, and those in approaches with red (these are the 
inputs to the ANN). Actions: values of green extension: zero, short, medium, and long. Fuzzy 

rules depend on how many extensions have already been granted
No Single intersection

Multiple (undersaturation/likely oversat for 1 
case) Not described

Gieseler Q-learning
State: Number of vehicles in each of the approaches and a boolean per direction 

indicating if neighbors have sent vehicles "q" seconds earlier, quere "q" is the # of veh in 
queue. Actions: one of 8 possible actions at a single intersection

Yes, boolean variable showing if 
the signal was green "q" 

seconds earlier. Also shred 
information of the rewards

3x3 network Not described Not described

Nunes, Oliveira

Heterogeneous (some agents use Q-
learning, others hil l  cl imbing, 

simulated annealing, or evolutionary 
algorithms). Then, the learning process 

is RL + advice from peers

State: two cases: one is the ratio of vehicles in each l ink to the total number of vehicles in 
the intersection (4 dimentions), and the second is equal to the first plus an indication 

showing the time of the front vehicle in queue - this is the longest time a vehicle has been 
in the l ink (additional 4 dimentions). Action: percent of time within the cycle that green 

will  be given to N-S direction (the other direction receives the complement 

Yes (advice exchange): 
communicate state and the 

action that was taken by the 
advisor agent, the present and 

past score

Single intersection - each agent controls one 
intersection but they are not connected

Not described Boltzman distribution used for action selection (T factor between 
0.3 and 0.7); learning rate decreased over time for convergence

Abdulhai Q-learning (CMAC to store Q-values)
State: Queue length of each of 4 approaches and phase duration. Action: Two possible 

phases with bounded cycle length

No, but recommended by 
sharing info on state and on 
rewards from a more global 

computation

Single intersection
Not described but variable over time (l ikely 

undersaturated) E-greedy, Boltzman, and annealing (in separate experiments)

Choi et al
RL agents using fuzzy sets. Three 

hierarchies well  defined

State: Occupancy and flow of each l ink, and rate of change of flow in the approaches. 
These are measured when signal is green. Action: duration of green for a phase, with fixed 

phasing and cycle length between 60s and 120s, and offsets

Yes, but by using the 
hierarchies, not between 

neighbors
25-intersection network in Paramics

Not described but variable over time (l ikely 
undersaturated) Not described

Campoganara and Kraus Distributed Q-learning State: Number of vehicles in each approach. Action: al location of right of way, 2 phases Yes, a distributed Q-learning Two adjacent intersections connected Not described but fixed and undersaturated Not described

Richter et al Natural actor-critic with online 
stochastic gradient ascent

State: Very comprehensive state: phase, phase duration, cycle duration, duration of other 
phases in cycle, bit showing if there is a car waiting on each approach, saturation level (3 

posssible), and neighbor information (2 bits showing where traffic is expected from). 
Action: 4 possible phases, with the restriction that all  must be called at least once in the 

last 16 actions

Yes, 2 bits of info showing 
where is traffic expected from

2-intersection network and 9-intersection 
network, 10x10 network (not detailed results)

Not described but variable over time Not described

Zhang and Xie Neuro-fuzzy actor-critic RL State: Queue length and signal state. Action: duration of the phase for fixed phase 
sequence; for variable phase sequence actions included the phase to follow

No, but recommended for multi-
agent applications

4-intersection arterial in VISSIM Variable over time based on real data. 
Undersaturated

Not described

Kuyer et al
Model-based RL (with Q values) - and 

coordination graphs
State: Sum of all  states of blocks in the network (which represnets all  vehicles in the 

l inks). Action: assign right of way to a specific direction.
Yes, max plus algorithm but no 

RL
3-intersection, 4-intersection networks, and a 

15-intersection network

Not described, but experiments with different 
amount of "local" and "long route" 

percentages, to create improvements when 
coordination was added

Not described

Arel et al
Q-learning with function 

approximation. There are central and 
outbound agents

State: For each of the 8 lanes of an intersection, the state was the total delay of vehicles in 
a lane divided by the total delay of all  vehicles in all  lanes. The central agent has access 

to full  states of all  intersections. Action: any of 8 possible phases (an action is taken every 
20 time units)

Yes, all  intersections share the 
state with a central agent

5-intersection network with a central 
intersection that has the learning capabilities Variable, including oversaturation

10000 time steps before stats were collected. In operational mode 
the exploration rate was 0.02
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Table 2.2 – Summary past research on RL for traffic control – Rewards and MOEs 

 

 

Author Algorithm Reward Communication Application MOEs Analyzed

Thorpe SARSA with eligibil ity traces Negative values for each time step until  it processed all  vehicles in a time period No 4x4 network different loads

Thorpe SARSA with eligibil ity traces
Negative values for each time step until  it processed all  vehicles in a time period, positive 
values for every vehicle crossing the stop bar, and negative values for vehicle arriving at 

l inks with red
No 4x4 network different loads

Appl and Brauer Q-function approximated by fuzzy 
prioritized sweeping

Squared sum of average divdied by max density of l inks (the lower and the more 
homogeneous the better)

No Single intersection Total average density per day

Wiering Model-based RL (with Q values) If a car does not move, assing a value of 1, otherwise assing 0 (in sum, maximizing car 
movement/ or throughput). 

Yes (shared knowledge or 
"tables" in some scenarios). 
Also, included a look-ahead 

feature

2x3 network Throughput

Bingham Neurofuzzy controller with RL (using 
GARIC, an approach based on ANN)

Delay of vehicles + V value at time t - V value at time t-1 (V depends on the approaching 
vehicles in l inks with green plus those with red

No Single intersection Average vehicle delay

Gieseler Q-learning
A reward resulting from the difference in the activation times of vehicles being processes 
(headways) - the shorter headways the better. Also, a fraction of the rewards of adjacent 

intersections was added to the agent's reward

Yes, boolean variable showing if 
the signal was green "q" 

seconds earlier. Also shred 
information of the rewards

3x3 network Not described

Nunes, Oliveira

Heterogeneous (some agents use Q-
learning, others hil l  cl imbing, 

simulated annealing, or evolutionary 
algorithms). Then, the learning process 

is RL + advice from peers

Not described

Yes (advice exchange): 
communicate state and the 

action that was taken by the 
advisor agent, the present and 

past score

Single intersection - each agent controls one 
intersection but they are not connected

"Quality of service" as 1- sum(average time per 
l ink/average time in l ink of all  l inks)

Abdulhai Q-learning (CMAC to store Q-values) Delay between succesive actions. Combination of delay and throughput or emissions is 
recommended for future research. 

No, but recommended by 
sharing info on state and on 
rewards from a more global 

computation

Single intersection Average delay per vehicle

Choi et al RL agents using fuzzy sets. Three 
hierarchies well  defined

Based on previous state as follows: (factor*(current-previous))-(current-best). Therefore it 
is positive if current state is greater than previous and the first parenthesis is greater than 

the second. A critic in the system also evaluates the performance in terms of delay

Yes, but by using the 
hierarchies, not between 

neighbors
25-intersection network in Paramics Average delay per vehicle and time vehicles 

were stopped

Campoganara and Kraus Distributed Q-learning Not described Yes, a distributed Q-learning Two adjacent intersections connected Average number of waiting vehicles

Richter et al
Natural actor-critic with online 

stochastic gradient ascent Not described, but l ikely to be related with the number of cars in the l inks
Yes, 2 bits of info showing 

where is traffic expected from
2-intersection network and 9-intersection 

network, 10x10 network (not detailed results)

Normalized discounted throughput (to 
encourage vehicle discharge as soon as 

possible)

Zhang and Xie Neuro-fuzzy actor-critic RL Linear combination of vehicles discharged, vehicles in queue, number of new vehicles in 
queue, vehicles with green, and vehicles with red

No, but recommended for multi-
agent applications

4-intersection arterial in VISSIM Average delay, average stopped delay and 
average number of stops

Kuyer et al Model-based RL (with Q values) - and 
coordination graphs

Sum of changes in network blocks: zero value if state changed, and -1 if state did not 
change - or vehicles did not move

Yes, max plus algorithm but no 
RL

3-intersection, 4-intersection networks, and a 
15-intersection network

Average waiting time, ratio of stopped vehicles, 
and total queue length 

Arel et el
Q-learning with function 

approximation. There are central and 
outbound agents

Based on the change in delay between the previous time step and the current one, divided 
by the max of previous or current

Yes, all  intersections share the 
state with a central agent

5-intersection network with a central 
intersection that has the learning capabilities

Average delay per vehicle and percentage of 
time there was blocking

Number of steps to process demand, average 
wait time per vehicle, and number of stops
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CHAPTER 3.  METHODOLOGY 

 

The traffic signal control problem can be defined as a system that evolves over time 

based on a complex stochastic process. The system behavior depends on a wide variety of 

combination of driver and vehicle types that produces a series of stochastic trajectories 

for identical initial conditions. Driver characteristics such as reaction times, acceleration 

and deceleration rates, desired speeds, and lane changing behavior are examples of 

stochastic variables that directly affect the evolution of the system state over time.  

Thus, modeling the traffic state as a stochastic process, and more precisely as a 

stochastic process that follows the Markov property, the control of the traffic signals can 

be described as a Markov Decision Process (MDP) and there is potential for finding 

optimal or near-optimal solutions using RL strategies. In this study, two algorithms are 

used: Q-learning and ADP using a post decision state variable. These algorithms are very 

convenient to address processes with sequential decision making, do not need to compute 

the transition probabilities, and are well suited for high dimensional spaces (Powell, 

2010). 

Two separate systems were created, one for Q-learning and one for an ADP 

algorithm using the post-decision state variable, and the two were tested under the same 

conditions. Even though the formulation of the state representation and reward functions 

was similar for the two algorithms, the two were implemented separately.  

As opposed to more traditional adaptive approaches that rely on predictions from 

traffic models to estimate the state of the system over time, RL agents act and then 

observe the performance of the actions to create knowledge, thus the process is not a 

predictive one, but a learning one based on the past behavior of the system. In addition, 

communication between agents will be allowed, such that potential blockages due to 

downstream congestion can be avoided, and more explicit coordination mechanisms can 

also be adopted.  
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Assuming that the system state follows the Markovian memory-less property and 

that the values of all future states are given (based on discounted rewards) the Bellman 

equation shows that the value of a given state (s) can be expressed based on the value of 

the potential states following the immediate action and the cost to get there, as follows: 

𝑉𝜋(𝑠) = �𝜋(𝑠, 𝑥)
𝑥

�𝑃𝑠𝑠′𝑥
𝑠′

�𝐶𝑠𝑠′𝑥 + 𝛾𝑉𝜋(𝑠′)� 

where Vπ(s) is the value of state s following policy π (also known as the “cost-to-

go”), x is an action drawn from a finite set of possible actions, 𝑃𝑠𝑠′𝑥  is the probability of 

transitioning to state s’ given that the current state is s and the action taken is x, 𝐶𝑠𝑠′𝑥  is the 

cost of such transition, and 𝛾 is a discount factor for the value of the next state 𝑉𝜋(𝑠 ′) 

(Sutton and Barto, 1998). Note that in the first summation π(s,x) is simply the probability 

of taking action x given that the current state is s, and that the second summation is also 

commonly expressed as an expectation (instead of the sum of weighted values) for taking 

action x.  

Thus, based on this representation of the state value, it is possible to formulate an 

optimization problem in order to find optimal state values, which in turn represents the 

problem of finding an optimal policy (𝑉∗(𝑠)):  

𝑉∗(𝑠) =  𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 , or  

𝑉∗(𝑠) = max
𝑥

�𝑃𝑠𝑠′𝑥
𝑠′

�𝐶𝑠𝑠′𝑥 + 𝛾𝑉∗(𝑠′)� 

However, since the true discounted values of the states are not known (otherwise 

finding optimal policies would not be a problem) some algorithms have been used to 

solve this problem both in an exact and an approximate fashion. The most well known 

exact strategy is the traditional dynamic programming (DP) approach originally proposed 

by Richard Bellman, and approximate methods emerged well after (in 1980s), including 

temporal difference methods (TD).  

Traditional DP is a very powerful tool that can be used to solve the Bellman 

equation and guarantees the optimality of the solution. However, the number of required 
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computations using a standard DP algorithm grows exponentially with a linear increase in 

the state space, the output space, or the action space, deeming it intractable for real-sized 

problems. This is known as the curse of dimensionality of DP, and can be described as 

the need to perform nested loops over the state and action space as the algorithm finds the 

state values in a backward recursion.  

To illustrate the curse of dimensionality in a centralized signal system, consider 

the task of finding the optimal signal timings for a period of 15 minutes (assuming the 

control is evaluated every 10 seconds, which is a very coarse approximation) in a 

network with only 10 intersections, and each of them can display up to four different 

phases (through and left-turn movements for E-W and N-S directions). Also assume that 

the demand for each movement can be categorized in 20 levels, thus if the capacity of the 

link is 60 vehicles some loss of resolution is allowed. This leaves us with a combination 

of 204 states per intersection (assuming 4 links, thus a combination of 20x20x20x20) and 

2040 (204 combined for the 10 intersections, thus 204*10) for the whole system at a single 

point in time. If the signals are re-evaluated every 10 seconds, a total of 90 decisions 

points are required. This makes any backward recursion intractable, as looping through 

the state space at every decision point is clearly unfeasible in practice.      

Moreover, DP algorithms need a complete model of the systems dynamics (or 

transition function) in order to perform a backward recursion and estimate the optimal 

state values. However, the precision of traffic model predictions decrease as the 

prediction horizon increases, indicating that if DP is used the solutions will be built 

backwards starting from the least accurate end of the horizon.  

On the other hand, compared to other methods to solve RL problems (i.e. dynamic 

programming and Monte-Carlo methods), TD learning methods are well suited for real-

time traffic control applications since they combine the following features: a) Learning 

can be performed without knowing the dynamics of the environment, b) estimates are 

based on previous estimates (bootstrapping) so there is a solution for every state at every 

point in time (i.e. any-time algorithm), and c) they use forward-moving algorithms than 

can make use of real-time inputs as the system evolves. These are precisely some of the 
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main reasons why algorithms using TD methods are practical for the problem of 

managing traffic signals in a traffic network.  

Standard TD algorithms are designed to learn optimal policies for a single agent, 

given their perceived state of the system. However, since the perceived states are 

typically confined to the immediate surroundings of the agent (e.g. vehicles in the 

approaches of the agent’s intersection), changes in the dynamics of neighboring agents 

could make the learned policies no longer optimal. These characteristics emphasize the 

importance of a precise state representation to capture the dynamics of the environment, 

allowing for adequate learning and communication between agents in order to promote 

signal coordination. 

Depending on the coverage of a single agent and its perception limits, several RL 

traffic control structures can be defined including three obvious cases: a) a single agent 

that directly controls all intersections of a traffic network (completed centralized); b) few 

agents, each controlling a group of intersections (partially decentralized); and c) one 

agent per intersection (completely decentralized). Options a and b may suffer from 

prohibitive number of states per agent, in addition to the increased vulnerability of the 

system in case of an agent failure. On the other hand, option c seems more appropriate, it 

may have better scalability properties for large systems, is less vulnerable, and (not 

surprisingly) it has actually been pursued by most researchers using RL techniques for 

traffic control.  

Out of a handful of TD algorithms, Q-learning and ADP with the post-decision 

state variable will be used to find near optimal signal timings in traffic networks. The 

selected algorithms move forward in time to improve the updates of the values of being 

in each state (or “cost-to-go”), which then are used as a decision-making tool.  

A more detailed description of Q-learning and ADP with the post-decision state 

variable are provided next. 
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3.1  The Q-learning Algorithm 

As described above, the RL problem can be thought as the problem of finding the 

policy that guarantees maximum expected rewards:  

𝑉∗(𝑠) =  𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆  

This maximization problem can also be described in terms of the value of state-

action pairs (called Q-values), and therefore the goal will be to find a policy with action-

value functions (𝑄𝜋(𝑠, 𝑎)) leading to maximum expected total rewards: 

𝑄∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎) 

The advantages of having values of state-action pairs, as opposed of only states, 

are mostly observed in systems where the dynamics are not completely known (the 

algorithm is model-free) or the random information received over time is not precisely 

determined in advance. The reason for such advantage is that there is no need to estimate 

the full expectation of the transition function to perform an update of the Q estimates (as 

opposed to the standard Bellman equation):  

𝑞�(𝑠, 𝑥) = 𝑐𝑠𝑠′𝑥 + 𝛾max
𝑥′

𝑄(𝑠′, 𝑥′) 

as opposed to   

𝑄(𝑠, 𝑥) = 𝐶𝑠𝑠′𝑥 + 𝛾�𝑃𝑠𝑠′𝑥
𝑠′

max
𝑥′

𝑄(𝑠′, 𝑥′) 

Since the learning process is done gradually and based on experiencing sampled 

information from the system, the estimates can be updated using the following standard 

rule: 

𝑄(𝑠, 𝑥) = (1 − 𝛼)𝑄(𝑠, 𝑥) + 𝛼𝑞� 

Where α is the learning rate.  

The general algorithm for Q-learning can be formulated as shown in Figure 3.1 

below. 
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Figure 3.1. Pseudo-code for the Q-learning algorithm 

Q-learning has shown good performance for a variety of practical problems under 

stationary conditions, even though the convergence of Q-values has only been proven if 

the states are visited an infinite number of times (Watkins, 1989, 1992). This is because 

practical decision making does not require full convergence of Q-values as long as they 

are “sufficiently” different for the agent to commit to the best choice. Unfortunately, 

precise boundaries of the Q-learning algorithm for decision-making purposes only are not 

well defined and require further research. 

3.2 The ADP Algorithm with Post-decision State Variable 

Unlike standard DP, which finds the best policy from exact values of the states, 

ADP uses approximate state values that are continuously being updated. Estimates of 

state values are available at any point in time (thus, the algorithm is suitable for real-time 

control), and bootstrapping is used for closing the gap between approximate estimates 

and the true value of a state (similar to Q-learning). Also, since ADP does not require a 

model of the dynamics of the system over time, the system moves step by step following 

a transition function (that does not need to be known) provided by a simulation 

environment or by incoming real-world data.  

There are a series of variants to the basic ADP algorithm, but for this research it 

was decided to adopt an ADP algorithm that uses the “post-decision” state variable; more 
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precisely, the formulation described by Powell (2007). This algorithm provides a series of 

computational advantages, as it is explained below.  

The post-decision state variable formulation uses the concept of the state of the 

system immediately after an action is taken. This will be described based on the 

expression that represents the transition function of our problem: 

  

 

Where the state changes from St to St+1 in a transition that starts at time t and ends 

at t+1. Wt+1 represents the exogenous (or random) information that influences the 

transition from state St to St+1, after executing action xt. Specifically for our system, the 

exogenous information is the combination of different driver and vehicle characteristics 

that ultimately translates in the (stochastic) behavior of vehicles in the traffic stream. 

Note that the transition shown above can be also described by the following 

sequential steps:  

1) The system has just arrived at time t and the state (St) has been updated 

based on the transition from the last time step: 

 

 

2) Also at time t, the state of the system (St) is modified immediately after the 

action xt is taken (St
x), but no exogenous information from time t to t+1 has been received 

(in other words, the signal has just changed but vehicles have not reacted to it): 

 

 

3) At time t+1, the exogenous information (Wt+1) has been received and the 

transition from St
x to St+1 has been completed (this is, after the vehicles have reacted to 

the signal): 
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Similarly, the process to update the value of a state from one time step to the next 

can be decomposed as follows:  

1) The value of state 𝑆𝑡−1 at time t-1 after committing to action x, 𝑆𝑡−1𝑥 , can 

be expressed as a function of the expected value of the next state 𝑉𝑡(𝑆𝑡), following the 

Markov property: 

 

 

2) In addition, the value of the next state (at time t) can be expressed based 

on the maximum value of the state after taking the optimal action Xt (this is, 𝑉𝑡𝑥(𝑆𝑡𝑥)) and 

the cost to get there Ct: 

 

 

3) Analogous to the expression in step 1, the sequence repeats for the value 

of state 𝑆𝑡, but at time t and after committing to a new action x: 

 

 

As explained in Powell (2007), the standard optimality equation could be obtained 

by combining the equations in steps 2 and 3. However, if the first two equations (steps 1 

and 2) are combined instead, a new expression using the “post-decision” state variable is 

obtained as follows:  
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Note that this expression is very different from the traditional optimality equation 

mainly because the expectation is outside of the optimization problem.  

Similar to Q-learning, this provides an important computational advantage and 

allows the algorithm to provide better approximate solutions as the number of iterations 

increases. It also allows for the use of a forward algorithm so that it is no longer needed 

to loop though all possible states. However, it is required to approximate the expectation 

of the value function. Thus, as long as the states are visited with some frequency, it is 

possible to have “good enough” estimates for adequate decision making support.  

The value function using the post-decision variable can be updated using a similar 

equation as the one from the traditional update rule for temporal difference learning, as 

follows: 

 

   

Where 𝑉�𝑡−1𝑛 (𝑆𝑡−1𝑛 ) is the approximated value of the state 𝑆𝑡−1𝑛  at iteration n, and α 

is the step size or learning rate. The step size determines the weighted value of the current 

direction pointed out by 𝑣�𝑡𝑛  in relation to the approximation of the state value at the 

current iteration.  

It is pointed out that since it is necessary to have a value of 𝑉�𝑡𝑛(𝑆𝑡𝑛) for each state 

𝑆𝑡𝑛 , the problems do not reduce their dimensionality when using ADP, but rather the 

number of computations needed to find an approximate solution. 

The general algorithm for the ADP using the post-decision state variable is shown 

in Figure 3.2. 

n
tn

n
t

n
tn

n
t

n
t vSVSV ˆ)()1()( 11

1
1111 −−
−

−−−− +−= αα



24 
 

 

Figure 3.2. Pseudo-code for the ADP algorithm using the post-decision state variable 

To achieve convergence, the learning rate should decrease over time. Rules for 

the algorithms to converge require the same typical rules for stochastic gradient 

algorithms: 1) the step size should not be negative, 2) the infinite sum of step sizes must 

be infinite, and 3) the sum of the square of the step sizes must be finite.  

3.3 An algorithm for signal coordination – The Max-Plus 

A shortcoming of learning agents acting separately is that each of them will strive 

to take actions that maximize their local payoff without considering the global payoff of 

all agents together. For the problem of managing the traffic signals, agents will take 

actions to improve one or a combination of measures of performance such that their own 

set of indicators is improved over time. These measures may include throughput, delay, 

number of stops, or any other traffic related indicators.  

Traffic networks with high demands may evolve into states that are not able to 

process traffic at their capacity due to oversaturation and possibly into de-facto red and 

gridlocks. Under these conditions, agents operating solely on the basis of their 

approaching links may take decisions that could degrade the performance of adjacent 

intersections and ultimately its own. For example, an intersection at the edge of a network 

may allow vehicles to enter at a rate that is higher than the rate that can be processed 



25 
 

downstream due to high conflicting volumes. This situation will eventually create queue 

overflows inside the network and a gridlock, which may translate into a great decrease in 

the network throughput.  

The scenario described above can be easily encountered when demands are high, 

and particularly in situations where the conflicting volumes are also high. Therefore, if 

the traffic system is controlled by agents operating individual intersections, they should 

be able to communicate with each other at least to a certain degree.  

A series of communication capabilities can be thought to be important. A first 

level of communication could be the transmission of information regarding the current 

state of neighboring intersections. In this way, for example, an agent could prevent queue 

overflows in downstream links or even create green waves to reduce the number of stops 

of oncoming platoons. As it can be imagined, this simple mechanism can create emergent 

coordination, as it was explored by Medina et al. (2010) for the case of an arterial.  

A second level could be related to not only the transmission of the neighboring 

states, but also of knowledge stored in the form of learned policies (e.g. Q or V values). 

The communication in this case can be perceived as an advice exchange from agents with 

similar characteristics and geometry.  

In addition, a more explicit mechanism can be implemented such that the 

exchange is not limited to information-passing only, but is extended to the actual 

decision-making process. For example, a coordination strategy can be devised for agents 

to take decisions as a team or a coalition considering network-wide implications. A series 

of algorithms have been proposed to obtain “negotiated” actions using either hierarchy of 

agents (given assigned priorities) or through message passing among agents at the same 

level of influence, with “variable elimination” being one of the most widely known 

because it is guaranteed to converge, however it is not an any-time algorithm and 

solutions are not available until all iterations have been completed.  

On the other hand, in this category of explicit mechanisms for coordination the 

max-plus algorithm (Vlassis et al., 2004; Kok and Vlassis, 2005 and 2006) emerges as a 
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viable option for controlling the traffic signals in a traffic network. The max-plus 

algorithm uses a message-passing strategy that is based on the decomposition of the 

relations in a coordination graph as the sum of local terms between two nodes at the time. 

This allows the interchange of messages between neighboring intersections, such that in a 

series of iterations the agents will reach a final decision based on their own local payoff 

function as well as the global payoff of the network.  

Thus, the max-plus is an algorithm that propagates the combination of local and 

global payoffs among the agents that are interconnected in a coordination graph. Locally 

optimized messages 𝑈𝑖𝑗�𝑎𝑗� are sent by agents i to neighbor j over the edges that connect 

them and with respect to the action executed by agent j (𝑎𝑗). For tree structures, the 

algorithm converges to a fixed point after a finite number of iterations (Pearl, 1988; 

Wainwright et al., 2004). However, proof of convergence is not available for graphs with 

cycles, and there is no guarantee on the quality of the solution of max-plus in these cases. 

Nonetheless, as pointed out by Kok and Vlassis (2006), the algorithm has been 

successfully applied in practice in graphs with cycles (Murphy et al., 1999; Crick and 

Pfeffer, 2003; Yedidia et al., 2003). 

Kok and Vlassis (2006), describe the algorithm and some considerations when it 

is applied to graphs with cycles. For the traffic signal problem, and in particular for grid 

scenarios, the intersections are interrelated by connections in all their approaches and 

create a series of cycles between neighboring intersections. The algorithm and the 

considerations for graphs with cycles are described next.  

Let’s suppose that the traffic network is a graph with |V| vertices (or intersections) 

and |E| edges (or links). To find the optimal action in the network (a*), agent i repeatedly 

sends the following message 𝑢𝑖𝑗 to its neighbors j: 
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Where Γ(i)\j are all neighbors of i except j, and 𝑐𝑖𝑗  is a normalization value. 

Message 𝑢𝑖𝑗 , as explained by Kok and Vlassis (2006), is an approximation of the 

maximum payoff agent i can achieve with every action of j, and it is calculated as the 

sum of the payoff functions 𝑓𝑖,  𝑓𝑖𝑗, and all other incoming messages to agent i, except 

that from agent j. Messages 𝑢𝑖𝑗 are exchanged until they converge to a fixed point or until 

the agents are told to stop the exchange due to an external signal, for example after the 

time available to make a decision is over. It is noted that the messages only depend on the 

incoming messages of an agent’s neighbors based on their current actions, thus there is 

no need to have these messages optimized, nor evaluated over all possible actions. 

On the other hand, the normalization value 𝑐𝑖𝑗 is very useful specially for graphs 

with cycles since the value of an outgoing message 𝑢𝑖𝑗 eventually becomes part of the 

incoming message for agent i. Thus, in order to prevent messages to grow extremely 

large, it is proposed to subtract the average of all values in 𝑢𝑖𝑘 using: 

   

 

For this study, given that the agents are implemented in a microscopic traffic 

simulator where the states are updates in a synchronous fashion, the centralized version 

of the max-plus algorithm was implemented. This version has been taken from Kok and 

Vlassis (2006) and it is shown in Figure 3.3. 
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Figure 3.3. Pseudo-code for the centralized max-plus algorithm from Kok and Vlassis 

(2006) 

3.4  Implementation of the algorithms for real-time traffic control 

The proposed traffic control is completely decentralized and relies on independent 

agents with communication capabilities. The general structure of an agent and its 

interaction with the traffic environment is represented schematically in Figure 3.4. As it 

is typical of an agent-based application, the only direct input from the environment to the 

agent is in the form a “perceived” state, which in this particular case comes from static 

traffic sensors and the state of the traffic signals, in addition to an indirect input of the 

environment through communication with other agents. Conversely, the only mechanism 

for the agent to impact the traffic environment is through actions that modify the status of 

the traffic signals and the actions of other agents.  
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Figure 3.4. Schematic Representation of Agent and Environment Structures 

Inside the agent structure, there is close interaction among all elements. The 

structure is standard of an agent using a RL algorithm, with exception of the COM 

module (for achieving explicit coordination and signal progression), and can be described 

in general using Figure 3.4 as follows. 

Information from the environment is received by the agent and recognized as the 

current state of system. The state is used in these internal tasks: 1) estimation of the 

reward of the previous action, 2) determination of potential actions from a pool of all 

possible actions, 3) estimation of the value of the previous state (or state-action pair), and 

4) communication with other agents. The estimation of the reward requires a comparison 

between previous state(s) and the current one (to determine the goodness of the action), 

and the execution of a model to determine changes in the desired measures of 

performance (e.g. delay or amount of carbon emissions). The value of being in a given 
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state (for Q-learning the value is also associated to the action) uses the reward estimation 

and previous knowledge on the value of the state. A value function provides estimates of 

the “true” or discounted value of a state (or a state-action pair), which is also known as 

the “cost-to-go”.  

It is noted that the agent determines the best action and the learning is based on 

the optimal choice, but the algorithm does not force the agent to commit to such action. 

This is the reason why Q-learning and the selected ADP algorithm are called “off-policy” 

- since the learning process is optimal even though the policy may continuously change, 

for example by following an exploration strategy instead of always using an e-greedy 

criterion.  

Finally, the agent commits to a decision based on the learned policy. This step 

may be influenced by the results of the value function and the information exchange with 

other agents, provided that the action selected belongs to the set of valid actions; The 

selected actions are sent to the traffic signals for their execution, which in turn will affect 

the vehicular traffic (and the state of the system) and the cycle starts again by the agent 

observing a new state. 

The RL agents were coded and tested in a C++ computer environment and 

coupled with the traffic simulator VISSIM, produced by PTV AG. This simulator is able 

to provide the desired undersaturated and oversaturated traffic conditions and allows for 

the state of the traffic signals to be manipulated in running time based on user-defined 

rules. This is done through a communications interface in VISSIM, and the access to the 

simulation is accomplished using a dynamic linked library (DLL), generated by the 

custom C++ code. 

As described earlier, each intersection is operated by a single agent. Therefore, 

each agent has its own separate set of state values and keeps track of its own gained 

knowledge independently. Each agent in VISSIM sequentially calls the DLL every 

simulation second, thus all variables accessible to the user can be tracked with the same 

frequency. The current implementation updates the agents every two seconds, given that 

this is the typical time needed to process a single vehicle through an intersection at 
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saturation flow rate. In addition, a 2-second window for evaluating the next signal 

response is expected to provide very accurate results, also leaving more time available to 

other functions that may be needed, such as communication between agents and conflict 

resolution for group formation.   

Currently, default driver behavior parameters from VISSIM have been used in the 

simulations, since at this point the objective was to determine the feasibility of the 

methodology, not the precise representation of a particular network in the real world. 

Nonetheless, some work has been done to calibrate VISSIM parameters and compare 

results obtained by the agents with other commercially available traffic signal optimizers 

such as TRANSYT7F implemented in a different simulation package (CORSIM).  

The information that agents receive about the state of the system is collected via 

vehicle detectors placed along the roadway. This allows for calculations of the number of 

vehicles in the links, queues, density, and speeds in all approaches, which the agents can 

use to make the control decisions (in addition to information received from other agents).  

Recall that the agents can operate with complete flexibility in terms of timing 

parameters, thus the operation of the signals is not restricted by pre-specified cycle 

length, splits, or offsets. Furthermore, restrictions such as maximum green times or phase 

sequence, are not an issue in this implementation. Nonetheless, a minimum green time of 

8 seconds was deemed reasonable and was imposed in all experiments in this study.  

3.5  Experimental Setup 

Different experimental scenarios were defined and created in VISSIM to 

determine the performance of the algorithms. The analysis of the algorithms is focused on 

both undersaturated and oversaturated conditions and a series of measures of 

performance were used to evaluate the effects of using variations of Q-learning and ADP 

parameters. 

Experiments were defined such that the level of complexity was increased, 

starting from a single intersection, followed by two scenarios with arterials, and finally 

evaluating a medium-sized network with 20 intersections, as described below. Figures for 
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all the scenarios are shown in the next chapter, immediately before the analysis of their 

results.    

- Single intersection, oversaturation: this scenario required the algorithms to 

control a single intersection with four phases (exclusive through and left-turn 

movements), where the demands for all approaches and phases is very high. The 

intersection was assumed to be isolated and had long entry links (2000 ft) and long left-

turn lanes (1000 ft), all of which had a single lane. The traffic signal controlling the 

intersection could display up to four phases, two for the through movements and two for 

the left movements. The phase sequence did not have any restrictions. Traffic demands 

ensured oversaturation, with 1000 vphpl for each of the four entry links and 20% of such 

demand turning left. The schematic representation of the single intersection is shown in 

the following Chapter, Figure 4.1. 

- Four-intersection arterial, undersaturation: this second scenario was 

designed to test the potential coordination of four closely spaced intersections along a 

corridor. Two of the intersections did not have conflicting demand, therefore the agents 

should learn not to provide green time to the unused approaches. In addition, the other 

two intersections had demand in all approaches and were next to each other, thus it was 

possible to coordinate their actions to improve the performance of the arterial. The 

arterial had two lanes per direction and short left-turn pockets of approximately 140 ft. 

The distance between intersections 1 and 2, and between 3 and 4 was close to 400 ft, and 

there was a link 790 ft long between intersections 2 and 3. The entry links on the arterial 

were about 500 ft long and the approaches in the opposite direction had 3 or 1 lane per 

direction. Entry volumes were 1000 vphpl in the north and south bounds at both ends of 

the arterial, and one third (333 vphpl) for the conflicting movements in intersections 1 

and 2.   

- Two parallel arterials: this scenario contains a total of 10 intersections 

where two two-way streets run parallel to each other and intersect streets with high 

conflicting demands. This is a step up in the complexity level for finding traffic signal 

timings compared to the previous scenario, as there is interaction between intersections in 
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both directions of traffic. Both undersaturated and oversaturated conditions were 

analyzed in two separate cases. Demands for the oversaturated case were at similar levels 

than in previous scenarios, with 1000 vphpl, and for the undersaturated case they were 

1000 vphpl in the direction with high demand and about one third of this amount (333 

vphpl) for the opposing direction.  

- Medium-sized, realistic network in undersaturation and oversaturation: a 

network of 20 intersections was created based on a section of downtown Springfield, Il. 

This network is an expansion of the previous scenarios, and the intersections are 

distributed in a 4x5 grid-like configuration. This scenario is highly complex, as there are 

combinations of one-way and two-way streets, as well as different number of lanes. This 

scenario can be regarded as a realistic one, where the potential for ADP and Q-learning 

can be observed in challenging conditions in terms of traffic control. Both undersaturated 

and oversaturated conditions were analyzed.  
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CHAPTER 4.  ANALYSIS OF RESULTS 

 

As described above, a series of experiments were designed to determine the performance 

of the reinforcement learning algorithms in scenarios with increased complexity, 

beginning with a single isolated intersection, then for two different arterials, and lastly 

using a mid-sized realistic network. This section describes the results and presents an 

analysis of the algorithms in these scenarios in terms of a series of a performance 

measures or indicators including: vehicle throughput, delay, number of stops, signal 

timings, queues, and average discharge headways.  

This set of indicators provides a clear understanding of the behavior of traffic 

when the intersections were controlled by the algorithms. The case of the single 

intersection is presented next, followed by the remaining cases in order of complexity.  

4.1 Single Intersection -  Oversaturated Conditions 

As described above, a single intersection with one lane per approach and 

exclusive left-turn lanes was created for the first scenario. A sample image of the single 

isolated intersection in VISSIM is shown in Figure 4.1.  
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Figure 4.1. Schematic representation of single isolated intersection 

The agents were trained during 160 replications of 15 minutes each, where they 

accumulated experience and improved their performance based on the feedback received 

through the reward function. The number of replications was chosen after observing the 

learning curve of the agents, peaking near the 100th replication, so that the performance 

measures were obtained after the training was in its final stages. Results from the last 20 

replications were used to estimate the performance of the already-trained agents.  

A total of four variations of the ADP algorithm and four more of the Q-learning 

algorithms were implemented by incorporating different state and reward functions. 

Results are presented for the ADP implementation first, followed by those using Q-

learning. 

4.1.1 ADP implementations 

Four variations were tested in this scenario to explore different state and reward 

representations, and their potential effects on the intersection performance. The following 

implementations were evaluated: 
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- ADP 1: The state was represented by a five-dimensional vector with one 

dimension for the demand of each phase and an additional dimension for the status of the 

current phase. The reward for displaying a given phase was also very simple and 

calculated as the total demand present in the approach served by this phase. A penalty for 

changing phases was imposed to account for the lost time in the yellow-red transitions 

and it was a value proportional to the demand being served by the new phase.  

- ADP 2: This application used a similar state and reward representation to 

that in ADP 1, but included an additional component in the state that indicated the 

duration of the current phase being displayed. The rationale behind this additional 

information was to serve as a proxy for the delay of vehicles in the phases not being 

served. The reward structure used in ADP 1 was maintained unchanged. 

- ADP 3: Instead of using the phase duration as a proxy for the delay of 

competing demands, this implementation used an estimation of the time that vehicles 

have spent in the link. This value was  then combined with the actual number of vehicles 

to determine the state of each of the demands in the four phases. The time vehicles have 

been in the link was accumulated using a dynamic table that kept track of vehicles as they 

entered and left the link, assuming no lane changes. This information can be easily found 

in the field with the use of entry and exit detectors. The reward structure remained 

unchanged, thus the effects in the performance will reflect only those of the added 

information. For this implementation, phase duration was not included as a dimension in 

the state space.  

- ADP 4: This implementation is similar to that used in ADP 3, with the 

exception that the phase duration was added to the state representation. The reward 

structure was the same as the one used in the implementations above. 

4.1.2 Performance 

In oversaturated conditions it is common practice to maximize the number of 

vehicles processed by an intersection, or vehicle throughput. For the case of a single 
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intersection, this may be the case because upon demands that exceed capacity, it is often 

desired to meet as much of such demand so that the remaining number of vehicles is as 

low as possible. The learning curve for the agents running the four ADP implementations 

is shown in Figure 4.2., where it is observed how the performance of the signal was 

improved over time as the agents continued accumulating experience. For the two 

algorithms that had the best performance (ADP 1 and 3), the throughput reached about 

700 vehicles in 15 minutes for the four phases combined. This translates to about 1400 

vphpl of vehicles processed by a single approach. Note that along with the actual 

throughput for each replication, a 10-point moving average is also displayed in Figure 

4.2. for each implementation. 

 

 

Figure 4.2. Learning curve for throughput of ADP algorithms in a single intersection 

Additional analysis to determine how efficiently was the green time utilized in 

each phase was conducted by taking into account the signal timings. The total green time 

of the last 20 replications was used for this analysis in order to take into account the 

internal variation of the simulation software and the data when the agents had the most 

accumulated training time.  
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The average duration of each phase and their throughput for the last 20 

replications is shown in Table 4.1. This allowed an estimation of the average discharge 

headways for each phase, which can be easily translated into green time utilization. It is 

observed that the lowest discharge headways were obtained using ADP 3, which makes 

use of the time vehicles have spent in the link as part of the state and did not include the 

phase duration in the state space. It is also noted that the total throughput found with 

ADP 3 was also the highest, confirming that this implementation had a favorable 

performance compared to the others, as it can also be observed in Figure 4.2. above.     

 

 

Table 4.1. Signal timings and average discharge headway for ADP in a single intersection 

Even though the number of vehicles processed and efficiency in the utilization of 

green time are important indicators of the signal performance, other indicators such as 

queue lengths and quality of service for all users should also be considered. For example, 

it would be useful knowing how fair the service is for a driver turning left compared to a 

Green EW Left Green EW Thru Green NS Left Green NS Thru Total Througput

Ave green time (s) 8.23 10.07 8.37 9.8

Total phase frequency 402 1206 429 1220

Total green time (s) 3308 12144 3591 11956

Throughput (veh) 3284 13476 3410 13281

Ave. discharge headway 
(s) 2.01 1.80 2.11 1.80

Ave green time (s) 8.19 9.36 8.1 9.24

Total phase frequency 294 1168 759 1181

Total green time (s) 2408 10932 6148 10912

Throughput (veh) 2632 12130 3089 12186

Ave. discharge headway 
(s) 1.83 1.80 3.98 1.79

Ave green time (s) 8.18 10.32 8.31 10.08

Total phase frequency 385 1216 385 1216

Total green time (s) 3149 12549 3199 12257

Throughput (veh) 3306 13834 3352 13682

Ave. discharge headway 
(s) 1.91 1.81 1.91 1.79

Ave green time (s) 8.1 9.19 8.01 9.14

Total phase frequency 264 1250 632 1269

Total green time (s) 2138 11488 5062 11599

Throughput (veh) 2378 12794 3313 12964

Ave. discharge headway 
(s) 1.80 1.80 3.06 1.79

ADP 4

IndicatorImplementation Phase

33451

30037

34174

31449

ADP 1

ADP 2
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driver continuing straight through the intersection. In this regard, from Table 4.1., it is 

observed that the frequency with which the left-turn and the through phases were 

displayed was very different for all implementations, with through phases being around 3 

or 4 times more frequent and with higher average duration. Recall that the demands for 

the left-turn phases were 20% of the total incoming traffic, thus the actual allocation of 

green time actually reflected the demand distribution. 

Figure 4.3. shows the average vehicle delays for the four ADP implementations. 

Moving averages for each of the implementations help the reader observe trends for the 

four cases. It is noticed that the lowest average delays were obtained using ADP 1 (which 

had the second highest throughput), followed by those using ADP 3 which had the 

highest throughput. On the other hand, similar to the results from Figure 4.2. 

(throughput), the performance of ADP 2 and ADP 4 was (which included the phase 

duration) was not on par to the other two cases.  

In addition, in order to determine the fairness and quality of service for left and 

through movements, a detailed analysis was performed on the delay of vehicles for each 

phase. The average and variance of the last 20 replications for left-turning and through 

drivers is shown in Table 4.2. for the four ADP implementations. Table 4.2. also shows 

the relative delay of left-turners compared to those continuing through the intersection. 

This can also be seen as a measure of fairness for all users.  
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Figure 4.3. Learning curve for average delay of ADP algorithms in a single intersection 

 

Table 4.2. Delay per phase for ADP implementations in a single intersection 

The lowest delay per phase was obtained with ADP 3 for the through movements, 

but the most balanced service was provided using ADP 1, where the mean waiting time 

for both left and through movements was practically the same. Other implementations 

(ADP 2 and ADP 4) were highly unstable and provided longer delays  for both left and 

through movements, and significantly higher variances for the left-turn phases.  

At this point a tradeoff is observed between providing more balanced service 

(ADP 1) and favoring the phases with higher demands (ADP 3) but achieving the highest 

throughput. It is also noted that even though the differences in the average signal timings 

between ADP 1 and ADP 3 were very small, this resulted in significant changes in the 

ratio of delay between drivers in left and through phases and the throughputs. 
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Lastly, the average speed of all vehicles in the network is shown for the four ADP 

implementations. ADP 1 had the highest average speeds, which combined with the 

lowers average delays and the second highest throughput, provides a favorable 

performance along with ADP 3 which has the highest throughput. Similar to previous 

Figures, Figure 4.4. shows a 10-point average speed shows the learning curve as the 

agents gain and accumulate experience. 

 

Figure 4.4. Learning curve for average speed of ADP algorithms in a single intersection 

4.1.3 Q-learning implementations 

A series of signal controllers were created for Q-learning algorithms, following 

similar implementations to those used for ADP. Thus, there were four analogous cases 

with Q-learning that use the same state and reward definitions as explained for ADP 1 

through 4. The reader is directed to the ADP definitions in the previous subsection for 

details. The analysis of the performance of these implementations is described below.  

4.1.4 Performance 

The first indicator to determine the performance of the algorithms was the 

intersection throughput. The learning curve for the Q-learning implementations is shown 
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in Figure 4.5., where there was a distinctive improvement using Q1 and Q3, compared to 

those that had the phase duration as part of the state representation (Q2 and Q4). This 

trend is similar to that observed for ADP implementations. 

 

Figure 4.5. Learning curve for throughput of Q-learning algorithms in a single 

intersection 

A direct comparison between ADP and Q-learning is also possible given that the 

algorithms make use of the same information from the simulation and share the source 

code for data collection and processing. In addition, the same random seeds were used for 

the two algorithms, allowing for a paired comparison. Figure 4.6. shows the two most 

favorable implementations for both ADP and Q-learning are implementations 1 and 3. It 

is easily observable that performance of the two algorithms is comparable at the end of 

the 160 training runs, especially for Q3 and ADP 3, reaching the highest throughput 

levels for the two series of implementations. 
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Figure 4.6. Learning curve for throughput of best Q-learning and ADP in a single 

intersection 

The signal timings and the throughput per phase were also examined for the Q-

learning implementations. From this, the average discharge headway was obtained and 

used as a measure of the efficiency green time utilization. Results of this analysis are 

shown in Table 4.3. below. 
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Table 4.3. Signal timings and average discharge headway for Q-learning in a 

single intersection 

From Table 4.3., the highest throughput was found with Q3, showing that for both 

Q-learning and ADP, an implementation using an estimate for the time vehicles have 

spent in the link in the state of the system resulted in improved results.  

In terms of signal timings, the through phases were displayed more often than the 

left-turn phases with a ratio of about 2:1, and in the case of Q3 the duration of the 

through phase was about double the duration of the left-turn phase. This mimics the 

actual traffic distribution, with about 20% of the green time dedicated to left-turn phases 

and the remaining time for through movements. In comparison with ADP, Q-learning 

phases for the through movements were longer and generated fewer phase changes, and 

therefore reduced the lost time. The effect of having these longer phases in terms of delay 

is examined for each movement, as follows.  

The average delay for all vehicles in the system is shown in Figure 4.7. for the 

four Q-learning implementations. At the end of the 160 runs the four implementations 

seem to converge to the same lower delay level, with faster learning rates for the 

Green EW Left Green EW Thru Green NS Left Green NS Thru Total Througput
Ave green time (s) 8 13.43 8.14 13.49

Total phase frequency 488 889 555 905
Total green time (s) 3904 11939 4518 12208

Throughput (veh) 3267 13058 3443 13430
Ave. discharge headway 

(s) 2.39 1.83 2.62 1.82

Ave green time (s) 8.01 10.88 8.09 10.93
Total phase frequency 505 1046 581 1026

Total green time (s) 4045 11380 4700 11214
Throughput (veh) 3075 12601 3167 12382

Ave. discharge headway 
(s) 2.63 1.81 2.97 1.81

Ave green time (s) 8.01 15.19 8.14 15.2
Total phase frequency 433 844 501 867

Total green time (s) 3468 12820 4078 13178
Throughput (veh) 3347 13844 3718 14245

Ave. discharge headway 
(s) 2.07 1.85 2.19 1.85

Ave green time (s) 8.01 10.54 8.04 10.33
Total phase frequency 535 1013 641 1058

Total green time (s) 4285 10677 5154 10929
Throughput (veh) 3229 13454 3497 13333

Ave. discharge headway 
(s) 2.65 1.59 2.95 1.64

Q 2 31225

Q 3 35154

Q 4 33513

Implementation Indicator Phase

Q 1 33198
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algorithms that made use of the time vehicles have spent in the link as part of the state 

(Q1 and Q3). 

  

 

Figure 4.7. Learning curve for average delay of Q-learning algorithms in a single 

intersection 

In comparison with ADP, Figure 4.8. shows the implementations with the lowest 

delay for both Q-learning and ADP, which in this case were implementations Q3 and 

ADP 1. It is clear that the performance of the two implementations is similar in terms of 

delay and this is also reflected in their similar average discharge headway, however they 

yielded different throughputs (Tables 4.1. and 4.3.).  
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Figure 4.8. Learning curve for average delay of best Q-learning and ADP in a single 

intersection 

In a more detailed examination of the delay of Q-learning, the individual phases 

are observed to obtain the data shown in Table 4.4., analogous to Table 4.2. for ADP. It is 

observed that the lowest overall delays were observed for left-turning drivers using Q2, 

but causing a significant unbalance with delays of through vehicles. The delay of through 

movements was more predictable, with variances significantly lower than those of left-

turn vehicles. Better balance of service for both directions was achieved by Q4 and Q3.  

Given that the demand for through movements is 4 times greater than that of left 

turns, it is not surprising that Q3 had the lowers overall delay for the whole intersection 

together, as seen in Figure 4.7.  

 

Table 4.4. Delay per phase for Q-learning implementations in a single intersection 
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Regarding the average speed of vehicles, a summary of the performance of the 

four Q-learning implementations is shown in Figure 4.9.. Similar to the curve for delay, 

the speed of the four cases approach a similar speed level by the time they reach the last 

of the 160 replications in the learning stage. 

 

Figure 4.9. Learning curve for average speed of Q-learning algorithms in a single 

intersection 

 

4.2 Four-intersection Arterial, undersaturated conditions 

As mentioned above, the second case study used to evaluate the algorithms was 

an arterial with four intersections. Conflicting volumes in the first two intersections 

create the need to continuously change phases, and open the opportunity to observe if 

there is any emergent coordinated behavior between them. The remaining two 

intersections do not have conflicting volumes and the signals should learn not to provide 

green time to those approaches. Entry volumes on the north and south end of the arterial 

are 2000 vph for the two lanes combined, and one third of the per-lane volume was input 
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at intersections 1 and 2, for a total of 1000 vph in the three lanes combined. A schematic 

representation of the arterial is shown in Figure 4.10. 

 

Figure 4.10. Schematic representation of arterial, where “x” indicates no traffic in the 

approaching links 

This section presents the results of multiple implementations, in a similar format 

to that used for the single intersection case. The analysis of ADP will be described next, 

followed by the analysis of Q-learning and some contrasts between the two approaches. 

4.2.1 ADP Implementations 

A total of four implementations were created for this scenario using ADP 

algorithms. The implementations will be numbered using the letter “a” to create a 
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distinction between this scenario and the others. This will be followed by the next 

scenarios as well, using letters to prevent confusion between implementations.  

The first two implementations (ADP1a and ADP2a) are analogous to 

implementations ADP1 and ADP3 from the previous scenario (the single intersection). 

Thus, in ADP1a the state was represented only by the number of vehicles in each link and 

the current phase, and in ADP2a the state incorporates a measure of the time the vehicles 

have spent in the link together with the number of vehicles. It is noted that the state space 

does not change from ADP1a to ADP2a, but only the variables involved in the estimation 

of the current state.  

The remaining two implementations (ADP3a and ADP4a) included the following 

communication capabilities: 1) it was known to an agent if the receiving links of the 

neighboring intersections were near capacity (implemented as a dimension in the state), 

and 2) the agent will receive an incentive for providing green to incoming vehicles from 

adjacent intersection (implemented as a reduction in penalties). In addition to these 

capabilities, ADP4a used a modified reward function that included potential downstream 

blockages, so that penalties were created if green time was given to approaches that could 

result in these situations. More specifically, penalties were gradually increased if the 

downstream link was occupied between 0 and 40%, between 40 and 60%, or higher than 

60%, as a function of the opposing traffic.   

The potential for blockage in ADP3a and ADP4a was included as an additional 

dimension in the state space in the form of up to two levels of potential blockage per 

direction. The additional information included in ADP4a did not affect the size of the 

state space, but the calculation of the reward.  

Recall that this scenario was studied in undersaturated conditions, thus 

performance indicators such as total throughput should be maintained approximately 

stable for all implementations unless their performance is significantly subpar compared 

to the others. A similar set of the indicators used in the case of a single intersection will 

be shown in this case as well, in combination with other indicators that are appropriate 

for multiple intersections such as the number of stops for the vehicles in the system. 
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4.2.2 Performance 

The analysis begins with the average delay of all vehicles in the network, as 

shown in Figure 4.11. It is observed that the performance of the four implementations 

varied significantly, including the last replications of the training curve. ADP3a achieved 

the lowest average delays and ADP1a the highest. Recall that ADP3a included an 

incentive for incoming vehicles from adjacent intersections, but so did ADP4a using a 

different reward function. 

 

Figure 4.11. Learning curve for average delay of ADP algorithms in an arterial 

Differences between the four implementations were, for the most part, the result 

of not completely eliminating phase changes for the two intersections that did not have 

conflicting volumes. The signals at these locations were not stable enough using ADP1a 

and ADP4a and the green phase was at times assigned to the E-W direction. A closer 

view of the signals in these two intersections showed that ADP1a provided green to the 

opposite direction for about one fourth of the total green time at intersection 4 and only a 

negligible portion of the green at intersection 3 (about 1% of the time). On the other 

hand, using ADP4a about one sixth of the green time was allocated to the E-W direction 
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at intersection 4, and about 5% to the E-W direction at intersection 3. The remaining two 

implementations did not provide green time to approaches without demand.    

On the other hand, an inspection of the delay was also conducted for each of the 

phases at the two intersections with conflicting volumes. These results are shown in 

Table 4.5.  

 

Table 4.5. Delay per phase for ADP implementations in an arterial 

Overall, from Table 4.5. the average delays between the four implementations are 

similar, indicating limited effects of the additional features for ADP3a and ADP4a. This 

may not come as a surprise as the undersaturated conditions were not expected to 

generate blockages. However, the incentives and provide green times for oncoming 

traffic could have had an impact in the operation in terms of delay, but this did not seem 

to be the case.  

Additional information about the signal timings for each of the two directions of 

traffic in these two intersections is shown in Table 4.6. 

 

Me a n (s) Va ria nce  (s ) Me a n (s) Va ria nce  (s )
ADP1a 15.4 269.6 25.0 2.1
ADP2a 18.8 225.8 17.3 0.8
ADP3a 16.3 280.3 23.3 2.4
ADP4a 16.0 284.7 23.1 2.3
ADP1a 10.3 81.5 20.7 1.4
ADP2a 11.7 117.8 18.0 0.6
ADP3a 11.5 125.6 20.8 2.4
ADP4a 11.1 116.9 21.5 2.4

Intersection 1

Intersection 2

Inte rse ctio n Imp le me nta tio n
N-S p ha se E-W p ha se
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Table 4.6. Signal timings and average discharge headway for ADP in arterial 

From Table 4.6., the signal timings from ADP2a and ADP3a provided longer 

green times for the traffic direction along the arterial compared to the other 

implementations. Likewise, the average discharge headway was slightly longer for 

ADP2a and ADP3a.  

In addition, the average green times for intersection 1 were longer than for 

intersection 2 along the arterial. This is explained by the more continuous arrival of 

vehicles at intersection 1 given that the demand on the northbound is reduced to about 

72% of the original entry volume due to right and left turn movements, and the demand 

southbound to about 95%. This is also an indication that, given the greater demand 

E-W N-S Total Througput E-W N-S Total Througput
Ave green 

time (s)
8.07 24.89 8.3 20.77

Total phase 
frequency

877 876 974 977

Total green 
time (s) 7082 21810 8092 20294

Throughput 
(veh) 9912 34402 9994 33964

Ave. 
discharge 

headway (s)
2.14 2.54 2.43 2.39

Ave green 
time (s)

8.01 30.42 8.04 21.67

Total phase 
frequency

769 777 952 956

Total green 
time (s) 6164 23640 7654 20716

Throughput 
(veh) 9919 34375 9939 34010

Ave. 
discharge 

headway (s)
1.86 2.75 2.31 2.44

Ave green 
time (s)

8.07 26.57 8.06 22.71

Total phase 
frequency

850 849 930 931

Total green 
time (s) 6860 22558 7496 21143

Throughput 
(veh) 10008 34315 9999 33948

Ave. 
discharge 

headway (s)
2.06 2.63 2.25 2.49

Ave green 
i  ( )

8.11 23.42 8.15 21.52
Total phase 
frequency

907 908 953 953

Total green 
time (s)

7360 21270 7766 20508

Throughput 
(veh)

9907 34392 9956 34033

Ave. 
discharge 

headway (s)
2.23 2.47 2.34 2.41

ADP 2a 44294 43949

ADP 3a 44323 43947

Implementation Indicator

ADP 1a 43958

Intersection 1 Intersection 2

44314

ADP 4a 44299 43989
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southbound, coordination should have been provided in this direction. The offsets 

between the beginning of green time at intersections 1 and 2 on the southbound and on 

the northbound were explored to determine if the coordination occurred as expected.  

For the southbound, the offsets of the last 20 replications (at the end of the 

training period) were found to be shorter than those for northbound and closer to an ideal 

offset given the distance between intersections. The ideal offset assuming no initial queue 

was around 10 seconds in free-flow speed, but closer to 15 seconds with the assigned 

demands. For example, a plot of the cumulative distribution of the offsets using ADP3a 

showed that 70% of the offsets in the southbound direction were lower than 22 seconds, 

whereas in the southbound the 70% of the cumulative distribution was located at 34 

seconds. This is a clear indication of better coordination in the southbound, as expected. 

Another example without the coordination features (using ADP2a) showed that 70% of 

the offsets were slightly longer in both directions, with the southbound direction at 24 

seconds and for the northbound at 38 seconds.  

Another measure of the coordination of traffic along the arterial is the average 

number of stops per vehicles. Even though this indicator does not account for vehicles 

slowing down, it may show when coordination was significantly different between the 

implementations. This is shown in Figure 4.12, where ADP2a and ADP3a, following the 

same trend observed for the delay, and closely linked to the signal operation in 

intersections 3 and 4. 
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Figure 4.12. Learning curve for average number of stops of ADP algorithms in an arterial 

4.2.3 Q-learning Implementations 

Four implementations similar to those explained above for ADP where used to 

test the performance of Q-learning in the arterial scenario, named Q1a through Q4a. 

There is correspondence between the labeling used in this subsection and the 

characteristics of the implementations for ADP, thus for example the implementation for 

Q1a had the same state and reward definitions of ADP1a.  

However, unlike the results for ADP all four cases using Q-learning had similar 

performance at the end of the 80 training runs and reached the same levels of the best 

ADP cases.  

4.2.4 Performance 

The first indicator used in this analysis was the average delay per vehicle in the 

system, as shown in Figure 4.13. The four Q-learning implementations converged to a 

similar delay value and produced similar variations on the replications. An examination 

of the delays per intersection showed that in one of the implementations (Q1a) the signals 

provided momentarily the right of way to the approaches with no demand, delaying 

vehicles unnecessarily. In Q1a the signals provided on average about 5% of the total 
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green time to the approaches with no demand, which accounts for some of the increased 

total delay of Q1a compared to the other algorithms in Figure 4.13. Additional 

reinforcement from adding an estimate of delay in the state, as well as incentive from 

adjacent intersections had a better effect in preventing switching phases upon no demand 

in the Q-learning implementations compared to ADP. 

 

    Figure 4.13. Learning curve for average delay of Q-learning algorithms in an arterial 

 Delay values for the two intersections with opposing demands are shown in 

Table 4.7. Delays for the N-S direction were in general lower than for the E-W direction, 

which may be at first counterintuitive given the greater demand on the N-S direction, but 

it can be mainly explained by the greater number of vehicles that could be processed 

without stopping due to increased pressure to hold the green light. The larger variance of 

the delay for the N-S direction also explains this situation, where some vehicles may have 

been processed by the intersection without stopping but some others had to wait at least 

the minimum green time and yellow-red transition of the E-W direction. On the other 

hand, vehicles in the E-W direction were likely to wait for the duration of the N-S 

direction (a great portion of a typical cycle) to be processed in the next green light, 

having a more constant delay. Lastly, a slight decrease in the delay of the intersections on 

the N-S direction (along the arterial) can be observed when using Q4a (which accounted 
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for incentive upon arrival of platoons) but at the expense of greater delay for the E-W 

direction.  

Similar comments to those mentioned for the ADP implementations apply to 

these cases with Q-learning in relation to the magnitude of the mean and variance of the 

delay. 

 

Table 4.7. Delay per phase for Q-learning implementations in an arterial 

The characteristics of the signal timings and the average discharge headway for 

the four implementations are shown in Table 4.8. As expected, given the undersaturated 

conditions, all four algorithms processed a very similar number of vehicles. Slightly 

different discharge headways were observed using Q3a and Q4a compared to Q1a and 

Q2a, favoring the N-S direction (larger headways) and also signal progression.  

 

Me a n (s) Va ria nce  (s ) Me a n (s) Va ria nce  (s )
Q1a 17.1 267.4 21.4 1.2
Q2a 17.1 208.1 17.6 1.0
Q3a 17.5 284.6 19.6 1.7
Q4a 16.0 284.7 23.1 2.3
Q1a 13.3 156.4 15.5 0.4
Q2a 13.4 150.5 15.2 0.7
Q3a 12.3 136.3 18.1 1.1
Q4a 11.1 116.9 21.5 2.4

Intersection 1

Intersection 2

Inte rse ctio n Imp le me nta tio n
N-S p ha se E-W p ha se
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Table 4.8. Signal timings and average discharge headway for Q-learning in arterial 

Different from ADP, the average phase duration for both N-S and E-W directions 

are more similar between intersections 1 and 2, creating a better probability of 

coordination in both directions due to common cycle length. If this is true, the offsets in 

both directions should be similar to each other. Therefore, an examination of the offsets 

for the implementation of Q4a was examined to determine the similarity of the offsets. 

Results showed a closer agreement between the two distributions, with the 70% of them 

being 22 seconds or lower for the N-S direction and 26 seconds or lower for the E-W 

direction. A sample image of the two distributions is shown in Figure 4.14, and indicates 

that the offsets varied in a very similar way throughout the 20 last replications, favoring 

coordination in the two directions of traffic. 

 

E-W N-S Total Througput E-W N-S Total Througput

Ave green time (s) 8.14 23.47 8.16 20.73

Total phase 
frequency

906 904 979 977

Total green time (s) 7375 21217 7989 20253

Throughput (veh) 9957 34347 10013 33939

Ave. discharge 
headway (s)

2.22 2.47 2.39 2.39

Ave green time (s) 8.23 21.17 8.24 19.63

Total phase 
frequency

962 967 1008 1003

Total green time (s) 7917 20471 8306 19689

Throughput (veh) 9929 34404 10026 33993

Ave. discharge 
headway (s)

2.39 2.38 2.49 2.32

Ave green time (s) 8.28 23.05 8.46 22.05

Total phase 
frequency

912 917 932 935

Total green time (s) 7551 21137 7885 20617

Throughput (veh) 9922 34328 9980 34026

Ave. discharge 
headway (s)

2.28 2.46 2.37 2.42

Ave green time (s) 8.32 26.7 8.48 26.56
Total phase 
frequency

841 838 834 833

Total green time (s) 6997 22375 7072 22124

Throughput (veh) 9968 34341 9992 33974

Ave. discharge 
headway (s) 2.11 2.61 2.12 2.60

Q3a 44250 44006

Q4a 44309 43966

Intersection 1 Intersection 2

Q1a 44304 43952

Q2a 44333 44019

Implementation Indicator
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Figure 4.14. Cumulative distribution of offset durations for NB and SB in intersections 1 

and 2 using Q4a 

The total number of stops per vehicle was also monitored for the whole system, 

and it is shown in Figure 4.15. The four implementations converged to a value of about 

0.7 stops per vehicle, with an edge for the Q4a implementation. This was also expected 

given the longer average green time for the N-S direction in Q4a compared to the other 

implementations and the similar timings for the two intersections with conflicting 

movements, as shown above.  

 

 

Offset (s) 

Cumulative 
Probability 
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Figure 4.15. Learning curve for average number of stops of Q-learning algorithms in 

arterial 

In comparison with the best ADP, the learning curve of the Q-learning 

implementation was very similar, with slight benefits in terms of the number of stops for 

Q-learning. This can be observed in Figure 4.16, showing ADP3s and Q4a. 
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Figure 4.16. Comparison of learning curves for average number of stops of Q4a and 

ADP3a  

The performance of the best ADP and Q-learning algorithms was also compared 

to the results of the traffic signal optimization performed by the commercial software 

package TRANSYT7F, which uses a search in the solution space through a genetic 

algorithm. The traffic environment for TRANSYT7F was provided by CORSIM, a well 

known microscopic simulator.  

The arterial was coded in CORSIM with the exact same characteristics as in 

VISSIM. In addition, calibration had to be performed to ensure that the vehicle 

characteristics, the discharge headways and speeds were the same in the two simulation 

environments. The following variables were modified in VISSIM to attain the desired 

calibration: desired speed, vehicle types were limited to two, with the same dimensions 

and similar operational characteristics, the additive part of the desired safety distance in 

the car-following model (to obtain similar discharge headways), and the standstill 

distance of vehicles (to match the number of vehicles that a link could store). It is noted 

that the decision to perform this comparison was made before obtaining VISSIM results 

presented in this report; therefore all data presented up to this point and onward was 

obtained in VISSIM after this calibration was performed.  

The comparison of ADP and Q-learning with TRANSYT7F was performed in 

terms of average delay per vehicle, average vehicle speeds, and total system throughput. 

The last 40 replications of the training for ADP and Q-learning were used in the 

comparison whereas 40 replications were obtained from CORSIM using the signal timing 

settings after the optimization process was completed. Results of the comparisons are 

shown below in Figure 4.17.  
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19a – Throughput 

 

19b – Total vehicle delay 
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19c – Average vehicle speed 

Figure 4.17. Comparison performance of Q4a, ADP3a and TRANSYT7F in 

undersaturated arterial 

Figure 4.17. shows similar average values for all three methods for the three 

indicators. However, higher variation between different replications was obtained in 

VISSIM compared to CORSIM. It is important to observed that while the same random 

seeds where used for ADP and Q-learning, this was not possible with CORSIM, as the 

simulation packages had a different car following model, and therefore different use of 

random numbers. This variation can be better observed in 19a, where the vehicle 

throughput is shown for the different replications.   

These results indicate that the ADP and Q-learning implementations were as 

effective as current commercial solutions in finding the signal timings of the arterial 

studied in this study, with undersaturated conditions. Results can also be seen as a 

building block for more complex scenarios described in the following subsections.  

 

4.3 5x2 Network, Undersaturated Conditions 

The third scenario included in this study was a small network of ten intersections 

in a 5x2 configuration. As described above, there were single-lane links along the 5 

contiguous intersections in the E-W direction, and a combination of 3-lane and 2-lane 
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intersecting streets on the N-S direction. This particular set of experiments had demands 

that were slightly below saturation, with higher inputs per lane in the E-W direction. All 

entry links in the E-W direction received 1000 vphpl whereas all links in the N-S 

direction received one third of this volume per lane (333 vphpl). A schematic 

representation of the network is shown in Figure 4.18.  

 

 

Figure 4.18. Schematic representation of 5x2 network 

4.3.1 Implementations 

Similar to the previous two scenarios, a set of implementations were tested to 

determine their performance. The following are the descriptions of the implementations, 

which include either and ADP approach or a Q-learning approach: 

- ADP1b: The definition of the state for this implementation includes a 

component for each direction of traffic that is estimated using both the number of 

vehicles and the time they have already spent in the link. This is a similar implementation 

to that used in previous scenarios, such as ADP3 and ADP2a.   

1000 vph 

1000 vph 1000 vph 666 vph 

666 vph 

666 vph 

666 vph 

1000 vph 

1000 vph 

1000 vph 

1000 vph 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1
 

500 ft 365 ft 365 ft 760 ft 740 ft 500 ft 

500 ft 

375 ft 

790 ft 



64 
 

- ADP2b: This implementation included a factor to account for potential 

blockages due to downstream congestion. This factor was represented in the state as an 

additional dimension, thus one dimension for each direction was created. This factor also 

affected the rewards by increasing the relative weight of the link without potential 

blockage, therefore favoring the green light in that direction. The reward is analogous to 

that used in ADP4a. 

- Q1b: In this case, an application using Q-learning was created not only 

including the blockage factor from ADP2b, but also some incentives for anticipating 

vehicles from adjacent intersections. This incentive was in the form of added weight to 

the direction expecting the vehicles. Even though this feature is expected to produce 

better results with very low traffic in one of the traffic direction, it was included in this 

scenario to determine if it had any impact in the network. 

- Q2b: This implementation had the same state definition as Q1b, but the 

calculation of the rewards was estimated using the same definition from ADP4a, 

therefore the blockages and incentives have a significant impact in the rewards for each 

action. 

4.3.2 Performance 

The performance of the implementations is analyzed next, beginning with the 

delay for all vehicles in the network as the agents trained (shown in Figure 4.19). An 

improvement in the average delay of all vehicles in the network is observed as the agents 

trained. It is noted, however, that the change in performance between the initial portion of 

the training and the last of the replications was in the order of 10% or less.  
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Figure 4.19. Learning curve for average delay of RL algorithms in 2x5 network 

An analysis of the queue lengths in all links in the network, and for all 

implementations, showed that the only points that eventually had queues near their 

capacity (>85%) were left-turn lanes and the eastbound link of intersection 4. Therefore 

the signals prevented queue spillbacks on the through movements but due to the 

permitted operation of the left-turns (as opposed to using an exclusive phase), these 

eventually created queues that reached the main line. Given that only a few links were 

likely to be blocked, it is not surprising that the total throughput of the network was 

similar for all implementations and fluctuated around the expected number of vehicles to 

be processed in each of the 15-minute replications, which in this scenario was around 

2400 vehicles (Figure 4.20). 
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Figure 4.20. Learning curve for network throughput of RL algorithms in 2x5 network 

Then, the actual signal timings were examined to determine how green times were 

utilized at each intersection. The direction of traffic with greatest volume was monitored 

in detail (E-W) since the main problematic areas were observed along these links. In 

addition, the discharge of left-turning vehicles was more critical on the E-W links given 

that there was only one through lane and it could be easily blocked by left-turning 

vehicles overflowing the turning lane.  

The percentage of green time given to the E-W direction for all intersections was 

between 57% and 74% of the total green time. Based on the total demand per link, and 

assuming the same number of lanes for all approaches, the proportion of green time given 

to the E-W direction should have been about 50% for intersections 1 to 6, and about 66% 

for intersections 7 to 10. However, given that there is a single through lane on the E-W 

direction, it is necessary to give additional green time in order to process the same 

number of vehicles. Therefore, there is a tradeoff between two objectives in the network: 

providing equal service rates for the two directions of traffic and processing more 

vehicles per unit of time.  

For the network to be more efficient, it is preferred to provide green time to the 

approaches with greater number of lanes (e.g. the N-S direction), as more vehicles will be 
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processed per unit of time. However, approaches in the E-W can develop long queues and 

this may result in eventual blockages, even during the green phase in the N-S since there 

are incoming vehicles to the E-W links from right- and left-turning movements.  

From the analysis of the signal timings, it was observed that the lowest and 

highest ratios of green times for the E-W direction were located at intersections 2 and 4, 

respectively. This explains the relatively long queues found in the eastbound direction of 

intersection 4, as mentioned above. Incoming vehicles in the eastbound direction entered 

the link using 74% of the green time at intersection 2, but only had 57% of the green at 

intersection 4 to be processed.  

Lastly, the average speed of vehicles in the network improved also in a similar 

proportion than the delay during the training period (see Figure 4.21). It is noted that the 

improvements in the system as training progresses should be observed by looking at the 

throughput, delay, and speed simultaneously. In this case delay decreased and speed 

increased while maintaining constant throughput (which was equal to the total demand), 

but in oversaturation delays may increase and speed decrease while the throughput is 

improved. This situation is examined in the next subsection.   

 

Figure 4.21. Learning curve for average vehicle speed of RL algorithms in 2x5 network 
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4.4 5x2 Network, Oversaturated Conditions 

This scenario was evaluated to provide an indication of the performance of the RL 

algorithms in oversaturated conditions. As opposed to single intersections, where 

oversaturation may create long queues but without preventing the intersection to service 

vehicles at the front of the queue, in a network the occurrence of gridlocks can 

completely prevent the intersections to discharge vehicles, collapsing the system without 

recovery for the agents to learn improved strategies. 

The same network used in the previous subsection is used here, but with 

additional demands in the N-S direction. In total, entry volumes were modified such that 

there were 1000 vphpl at all entry points, thus for example in a three-lane approach the 

total entry volume was 3000 vph. These inputs ensured oversaturation and increased the 

complexity of the scenario. For the traffic signals, a key issue is to prevent blockages in 

the inner links of the network due to queue spillbacks.  

Two algorithms were tested under this condition to illustrate the need of 

communication between neighboring intersections. The first implementation used Q-

learning without communication between intersections or any other form to identify 

potential blockages downstream, and it was called Q1c. The second implementation was 

called C2c. It allowed communication between neighboring agents and added the 

potential for blockages to the state and reward representation, similar to implementations 

described in the above subsections such as Q2b. 

The analysis is focused on the total network throughput and queues rather than 

speed or number of stops, given the oversaturated conditions of this case. Results of the 

learning curves for the total network throughput are shown in Figure 4.22., where it is 

observed that the performance of the agents without communication is clearly lower than 

those with communication. The number of vehicles processed with communications 

reached an average of 3870 vehicles processed, which is about 74% of the total number 

of vehicles that represent the demand at all entry links. A more realistic measure of the 
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efficiency of the network, however, it is necessary to recognize the existence of signals 

and therefore a lost time for the yellow-red transitions.  

As a rough estimate, the demand per intersection is 2000 vphpl and if it is 

assumed that about 1600 vphpl can be processed (with an average discharge headway of 

2 seconds and subtracting about 10% of lost time), the capacity should be about 1600 vph 

per exiting lane, or 80% of the total demand. The total number of vehicles trying to enter 

the network is 5250, therefore the capacity should be about 5250*0.8=4200. If this is the 

case, the network is currently operating at over 90% efficiency in terms of throughput 

using the agents with communication.  

 

Figure 4.22. Learning curve for network throughput of RL algorithms with and without 

communication in oversaturated 2x5 network 

An examination of the performance of both algorithms showed that the main 

concern in this scenario was downstream blockages and gridlocks, often created by 

turning vehicles. Without communication, intersections will strive to process as many 

vehicles as possible disregarding the available capacity of the receiving links, increasing 

the potential of gridlocks. 
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Lastly, the average delay per vehicle for the same implementations is shown in 

Figure 4.23. As expected delays without communication were significantly higher and 

did not reach the lower levels as with communication. Also, it is noted that for both 

algorithms, as the learning occurred, throughput had a tendency to increase while the 

average vehicle delay decreased.  

 

Figure 4.23. Learning curve for average delay of RL algorithms with and without 

communication in oversaturated 2x5 network 

 

4.5 4x5 Network, Oversaturated Conditions 

In this section, a more challenging scenario is used to test the Q-learning and 

ADP algorithms. A portion of downtown Springfield, IL, was coded in VISSIM for this 

purpose. Vehicle demands ensured oversaturation in all directions, with 1000 vphpl in all 

directions, and there is a combination of one-way and two-way streets as well as different 

number of lanes. Left-turn movements are completed from left-turn pockets that have 

very limited capacity and tend to block through movements given the oversaturation 

conditions. Also, the left-turn movements do not have an exclusive phase, but are allowed 

upon traffic gaps in the oncoming traffic flow. In fact, this network encompasses the two 

previous scenarios - the arterial with four intersecting streets, and the 2x5 network from 

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200

Av
er

ag
e 

De
la

y 
(s

/v
eh

)

Replication

Q1c - No Communication
Q2c - Communication between agents
10 per. Mov. Avg. (Q1c - No Communication)
10 per. Mov. Avg. (Q2c - Communication between agents)



71 
 

the section above - and expands on their boundaries to form a 4x5 network. A schematic 

representation of the network is shown in Figure 4.24. 

One implementation using ADP and one using Q-learning were tested in this 

network. The implementations included features to identify potential blockages and to 

promote flow of incoming platoons from adjacent intersections. These features are 

similar to those used in previous scenarios. It is highlighted that without elements to 

identify blockages, the implementations may not be able to learn since the system will 

not evolve past gridlocks, as it was pointed out in a previous scenario.  

An additional implementation using the max-plus algorithm described in the 

Methodology section was also tested in this scenario. The max-plus algorithm identifies 

potential actions that may favor coordination based on the occupation level of all links. 

This is done by quantifying the benefits of selecting the phase in the E-W and the N-S 

direction for each intersection, and finding an optimal solution for the whole network.  

There are a number of ways to implement these benefits in the reward and/or in 

the state representation. As described in the brief literature review provided in Chapter 2, 

previous studies have used the results of the max-plus algorithm as the major factor to 

select the phases in a traffic network and it has not been incorporated within other 

methodologies such as learning algorithms.  

In this study, it was decided to incorporate the results of the max-plus algorithm 

as a factor to the standard reward values obtained for the E-W and N-S actions. This was 

implemented by finding the ratio between the max-plus benefits of E-W and N-S and this 

value is applied as a multiplication factor to the cost of taking one of the two actions. For 

example, if the max-plus benefit of selecting E-W is measured as 10 and the benefit of 

selecting N-S is 7.5, then the value of E-W is increased by a factor of 10/7.5=1.33, and 

the value of N-S is not modified.  

Using this procedure the max-plus results can be combined with RL algorithms, 

and it is possible to bias the agent actions towards improved coordination, in combination 

with other elements of the reward structure, such as potential blockages. 
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Figure 4.24. Schematic representation of 5x4 network 

Similar to the scenario with an arterial in Section 4.2, results from this scenario 

are compared to TRANSYT7F through the use of similar measures of performance, 

providing a valid and commercially available reference point. It is noted that as described 

in Section 4.2., calibration efforts were conducted in order to have meaningful 

comparisons between results from the RL algorithms in VISSIM and results from 

TRANSYT7F using CORSIM.  

The total network throughput for the four algorithms is shown in Figure 4.25. It 

can be observed that by the end of the 60th replication all four implementations have 
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reached a similar number of vehicles that can be processed in the whole network. A series 

of observations can be drawn from Figure 4.25 as follows: 

- Even though the RL algorithms and TRANSYT7F use mechanisms that 

are very different, they show similar performance in terms of throughput. 

- There is a sudden improvement in the performance of ADP past the initial 

training period, reaching a point where it is comparable to the other strategies. This 

occurred when the action selection changed from the Boltzman distribution to an e-

greedy strategy. The action selection changed when a given state has been experienced 

“enough” times (in this case each action at least 5 times), so that a more robust estimate 

of the value of the states exists. Also, e-greedy strategies were used exclusively in the 

operational mode of the agents, leaving the Boltzman distribution for the training periods.  

- The addition of the max-plus algorithm had marginal improvements in the 

learning at the beginning of the learning stages, but ultimately converged to similar 

values by the end of the last replication. This could be case due to the nature of the 

current max-plus implementation itself, where multidirectional coordination may result 

between neighboring intersections, promoting immediate localized benefits but not 

necessarily network-wide improvements at the end of the time period.   

- Fluctuation in the performance in the last replications is in the order of 

10% depending on the initial random seed. This was true for all solutions including 

TRANSYT7F.   
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Figure 4.25. Learning curve for network throughput of RL algorithms and TRANSYT7F 

in oversaturated 4x5 network 

Figure 4.26 shows the total delay of vehicles in the network for the 15-minute 

analysis period. Delay levels seem to be similar for the three implementations using ADP 

or Q-learning and somewhat larger for the implementation from TRANSYT7F. In 

addition of the delay, the total number of vehicles in the network was observed to 

determine if delay for the four implementations could be compared. On average, the total 

number of vehicles in the network was very similar for the different implementations: 

1433 for Q learning, 1511 for Q-learning with max-plus, 1534 for ADP, and 1565 for 

TRANSYT7F; this indicates that approximately the same number of vehicles was 

included in the calculation of the total delay.    
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Figure 4.26. Learning curve for total vehicle delay of RL algorithms and TRANSYT7F in 

oversaturated 4x5 network 

More detailed analysis of the max-plus algorithm was conducted in terms of the 

combination of total network throughput and the average number of stops per vehicle, as 

seen in Figure 4.27. This rather particular view of the effects of the max plus algorithm in 

the Q-learning implementation, it is seen that there is a tendency for the average number 

of vehicles processed to be higher and the number of stops to be lower when the 

algorithm is added. This is desirable and shows that there could be improvements in 

performance by incorporating an active coordinating strategy in the learning mechanism.   
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Figure 4.27. Effects of Max-plus algorithm on the Q-learning implementation in the 

oversaturated 4x5 network 

In addition, an evaluation of the queue levels inside the network was conducted to 

determine the most likely locations of blockages and gridlocks. Using the last 10 

replications from both the ADP and Q-learning implementations, it could be observed 

that all of the queue backups occurred on the lower portion of the network, this is, where 

a single lane encounter two or three intersecting lanes. Note that this is area is the same 

used for the 2x5 network in the previous case. 

Most of the movements where queue exceeded the capacity were left-turns, as 

shown in Figure 4.28. In Figure 4.28., short red lines and long black lines show areas of 

queue overflow for the left-turn pockets and through links, respectively. It is also 

observed that even though the upper corridors carried the highest volumes per link 

because they had two and three lanes, queues did not create significant blockages. The 

issue of having permitted left-turn movements from a pocket with very limited capacity 

and a single through lane in oversaturated conditions seemed to be the main constraint in 

the operation of the network.  
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Figure 4.28. Location of queue backups for ADP and Q-learning in oversaturated 4x5 

network 

4.6 4x5 Network, Oversaturated Conditions - Uneven Demands 

In this case, the same network used in the previous scenario is tested with reduced 

demands in one of the directions of traffic. The objective of this experiment was to 

determine if under less demanding loads, the max-plus algorithm is also able to improve 

the performance of a RL implementation. It is expected to have increased benefits when 

using a strategy to group agents in scenarios with heavier demands in one direction of 

traffic. Two implementations were compared: one using the Q-learning implementation 

from the previous case, and one that is analogous but also has the max-plus algorithm.  
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The demands were reduced in the E-W direction to about one third of their 

demands in the previous case, thus the heavier traffic will be in the N-S direction and will 

carry very high volumes that may also result in blockages if not managed properly.  

The resulting network throughput for the two implementations is shown in Figure 

4.29. The max-plus algorithm resulted in a similar learning curve than in the case without 

it. However, the early learning stages favored max-plus showing faster discovery of 

useful solutions to increase throughput. This can be observed in the first 100 replications, 

where the moving average is slightly higher for the max-plus implementation. 

 

 

Figure 4.29. Learning curve for network throughput with and without Max-plus 

algorithm in the oversaturated 4x5 network with uneven demands 
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the network. The number of stops was reduced by 5%, or 0.13 fewer stops per vehicles, 

for a total of more than 600 fewer stops in the network. Similarly, the average throughput 

was increased with max-plus by 34 vehicles, which corresponds to a 1% increase. It is 

also noted that the effects with uneven demands seemed to be in similar proportion to 

those observed in the case with even demands. 

 Thus, with uneven demands, coordination due to an external algorithm coupled to 

the learning strategies also resulted in benefits for the network as a whole. However, the 

current max-plus implementation may result in competing coordination between adjacent 

intersections, thus indicating that there is potential for improved implementations where a 

given coordinating direction should be emphasized over an extended area without 

overloading the links. This may result in significant network-wide improvements as the 

coordination directions will be explicitly decided over corridors instead of immediate 

neighbors.  

 

Figure 4.30. Effects of Max-plus algorithm on the Q-learning implementation in the 

oversaturated 4x5 network – uneven demands 
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CHAPTER 5.  CONCLUSIONS AND FUTURE WORK 

 

This study explores the utilization of reinforcement learning (RL) agents for traffic signal 

control in a variety of scenarios, with emphasis on oversaturated conditions. The 

algorithms of choice for this study were Q-learning and an approximate dynamic 

programming (ADP) with a post-decision state variable. These strategies were 

implemented using a commercially available microscopic traffic simulator (VISSIM) and 

its communication interface, which allowed for the manipulation of the traffic signals in 

real time. In addition, an explicit coordinating mechanism (the max-plus algorithm) was 

included in one of the RL algorithms to determine its benefits with high traffic demands.   

A series of scenarios were created to test the RL agents. Their complexity 

increased from an oversaturated isolated intersection, to an arterial in undersaturated 

conditions, to a 2x5 network in both undersaturation and oversaturation, and finally to a 

4x5 network in oversaturation with even and uneven directional demands. 

Results showed that agents with RL algorithms (ADP and Q-learning) were able 

to manage the traffic signals efficiently in both undersaturation and oversaturation. This 

was observed in all the cases analyzed in this study. In the isolated intersection, the 

signals processed vehicles at short discharge headways and provided green times in a 

similar proportion to the actual demand for left-turns and through movements. Through 

phases were displayed more often, reducing lost times in frequent transitions to left-

turning movements that had lower demands. Also, improved performance was found if 

the state of the system not only considered the number of vehicles in the links, but also an 

estimate of the time vehicles have spent in the link.  

For the arterial in undersaturation, the agents continuously provided green to 

approaches with demand at intersections with no opposing traffic and also favored 

coordination for the two adjacent intersections with conflicting volumes. Coordination 

was emphasized in the direction of heavier traffic, as expected, and performance was 
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similar to that provided by signals optimized by TRANSYT7F. Implementations that 

included features such as incentives for providing green to oncoming vehicles from 

neighboring intersections showed benefits over those that did not. 

In a 2x5 network in undersaturation, the RL agents prevented queue spillbacks for 

through vehicles, but left-turn pockets were momentarily blocked due to the permitted 

nature of the turning movements. The total number of vehicles processed fluctuated 

around the total expected demand for this scenario, indicating no increase in residual 

queues at the end of the study period. In oversaturation, the agents were tested with and 

without communication capabilities to illustrate the need to provide information on 

adjacent intersections in order to prevent queue spillbacks. Results clearly showed that 

the performance of the network was improved with communication capabilities, in this 

case by informing of potential downstream blockages. 

Lastly, the RL agents were tested in a realistic 4x5 network in oversaturation with 

even and uneven directional demands. In the first case, scenarios with ADP and Q-

learning were implemented separately, in addition to a scenario using a Q-learning 

strategy with an explicit coordination strategy using the max-plus algorithm. The 

performance of the three implementations was similar, with improvements for the case 

with the max-plus algorithm. These results were comparable to those obtained by 

optimizing the signals with TRANSYT7F. Analysis of the queues in the network showed 

that most problematic areas occurred at intersections with only one through lane, 

especially where left-turn lanes had long queues and blocked the through movement. An 

additional scenario with heavier demands in one direction of traffic (N-S) was created to 

determine if the max-plus algorithm could offer additional benefits to the network. 

Results showed a trend to obtain increased throughput and reduced number of stops when 

the outcome of the max-plus algorithm was added to the reward structure such that the 

coordinated direction of traffic was emphasized. This indicates that there is potential 

benefits using explicit mechanisms to coordinate agents, and opens the discussion for 

additional exploration of such mechanisms and how to incorporate them into the RL 

process.  
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In summary, results presented in this study shows that reinforcement learning 

agents can efficiently control the traffic signals in realistic networks and oversaturated 

conditions when implemented with communication capabilities designed to prevent 

queue spillbacks and promote signal coordination. Oversaturation is especially 

challenging for the agents to manage queues, but results indicate that even in this 

conditions the traffic signals prevented spillbacks and gridlocks and at a level comparable 

to state-of-practice traffic optimization software.  

Future work includes further experimentation to expand the use of agents in larger 

networks and varying traffic demands. Special attention should also be given to alternate 

algorithms or alternate implementations of explicit coordinating strategies in order to 

increase the efficiency of the network, including other implementations of the max-plus 

algorithm and its coupling to ADP and Q-learning strategies. Additional restrictions to 

the max-plus algorithm to limit multidirectional coordination between adjacent 

intersections may result in significant improvements and will be pursued in future 

applications.  

The implementation of these strategies to undersaturated networks (including a 

coordinating mechanism) could also result in benefits compared to current state-of-

practice signal timing, mostly due to their flexibility to face unexpected changes in 

demands. Furthermore, scenarios where a network transitions between undersaturated 

and oversaturated conditions could also be improved using reinforcement learning. 

Lastly, a number of questions remain open in terms of further enhancements in 

the performance with increased communication capabilities, including not only 

information passing (state and reward sharing), but also advice exchange and negotiating 

strategies suitable for real-time applications.   
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Agent-Based Traffic Management and Reinforcement Learning in 

Congested Intersections 

Introduction 

The advancement in the Information Technology (IT) infrastructure, Advanced Traveler 
Information System (ATIS), and overall communication and data systems, is now allowing 
transportation systems to effectively use real time data to optimize the operation and improve 
the travel experience of the system users. Optimizing the traffic signals has been a challenge for 
academic researchers and practitioners in the traffic engineering arena for the last few 
decades. Along with the traditional approaches researchers from the machine learning and 
computational intelligence have also applied intelligent algorithms like neuro-fuzzy network 
(Srinivasan et al, 2006), neural networks (Li et al, 2010), Tabu search (Hu and Chen, 2011), Self-
organizing maps (Li et al, 2011), emotional algorithm (Ishihara and Fukuda, 2001), genetic 
algorithms (Sanchez et al, 2004; Stevanovic et al, 2012), ant-colony based optimization (Hoar et 
al, 2002) and so on. Since traffic environment is inherently dynamic and changes over time, 
there is a scope to learn in the context of signal control through interaction with the 
environment and accordingly adjust the actions towards optimality of the system. Among 
different learning techniques, reinforcement learning (RL) is one of the widely used sample 
based control optimization techniques applied to solve the vehicular traffic signal control by 
many researchers (Balaji et al, 2010; Medina et al, 2011; Abdulhai and Kattan, 2003; Abdulhai et 
al, 2003; E1-Tantawy et al, 2012). 

Further, the RL based approaches overcome the limitations arise generally in the centralized 
system for signal control at network level. The signal controllers can operate independently 
without any central entity and still can optimize the operation to a desired level. The key 
advantages of RL-based algorithms are: (1) the ability to learn from the environment to adapt 
with the dynamics in it; (2) ease of implementation (no direct optimization involvement), and 
(3) continuous learning procedure that is appropriate for the problems where environment can 
change suddenly (e.g., due to some events occurrence of high demand for some arterials that 
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have low demand otherwise, in the context of signal control). This research applies 
reinforcement-learning (RL) algorithms (Q-learning, SARSA, and RMART) for signal control at 
the network level within a multi agent framework. In addition, we define the state of the 
system accounting for not only local information but also information from the adjacent 
signalized intersections and use different reward functions specific to congestion level 

Findings 

• Q-learning and R-MART algorithms perform better than the fixed signal timing plans in 
all cases. The SARSA algorithm does not exhibit a consistent better performance 
compared to fixed signal timing plans when tested with different levels of congestion. 

• In terms of average delay, Q-learning exhibits the best performance with Reward-1 and 
Reward-2, and RMART performs better with Reward-3 at low congestion level. RMART 
algorithm outperforms the other two algorithms at high congestion level. In terms of 
stopped delay, Q-learning exhibits better performance at low congestion level and 
RMART performs better at higher congestion level. 

• The algorithms exhibit different patterns of performance with different reward 
functions. Section 6.5 summarizes the results. The patterns suggest to use queue length 
as reward function for RMART in order to yield better results at medium to high 
congestion. 

• The multi reward based algorithms are found to be sensitive to the action selection 
probability used in the ε-greedy algorithm. Initially we observe improvement when the 
action selection strategy with greedy action probability, however the performance gets 
worse after a certain range of probability values. 

• The RL-based algorithms perform better than the Longest-Queue-First algorithm, which 
is an adaptive control algorithm that uses real time information. This implies that, 
learning is a useful and potential feature in the real time signal control algorithms and 
can improve the performance of the controllers. 

• The inclusion of neighborhood sharing in the RL algorithms is found to improve the 
performance in most cases for the RL algorithms. 

Recommendations 

• Reinforcement learning based signal controllers can be implemented in real world 
networks to improve overall network performance 
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• The choice of any particular algorithm in the context of reinforcement learning highly 
depends on the traffic characteristics (vehicle arrival patterns and congestion level) of 
the intersection of interest.  

• Multi-reward algorithms are a new direction for reinforcement learning algorithms and 
more research is necessary before any implementation. 

• As a future research, multi agent signal controller system with coordination should be 
explored and investigated. In such a system the signal controller agents collaborate and 
share information to improve the performance of the network. 
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CHAPTER 1.  INTRODUCTION 

1.1 Background and motivation 

Traffic congestion is ubiquitous in the 439 urban areas of the United States and is 

responsible for 1.9 billion gallons of additional fuel consumption in 2010 (Schrank et al, 

2011). The net congestion cost is 101 billion (in 2010 dollars) with about 4.8 billion 

hours of delay. The contribution of delay due to traffic signals is about 5 to 10 percent of 

the net delay (Report card, 2012). Further, the stops made at the intersection are potential 

sources for air pollutants (e.g., COx, NOx, volatile organics, particulate matters, etc.). 

National Traffic Signal Report Card (2012) reports C grade for the current traffic signal 

operations and signal timing practices and emphasizes on optimized and efficient signal 

scheme implementation. Optimizing the traffic signals to allow for safe and efficient 

movements of the vehicles through the road intersections has been a challenge for traffic 

engineers for a long time. With increased demand and varying demand patterns, 

deterministic offline approaches like fixed control using Webster’s formula (Webster, 

1958) to optimize traffic signals do not ensure the maximum efficiency of the traffic 

network. As found by many previous research, in the current day with the availability of 

real-time traffic data, adaptive signal control have been shown to have better performance 

over actuated and pre-timed signal control systems (Mirchandani and Head, 1998; Balaji 

et al, 2010; Arel et al, 2010; Medina et al, 2011). 

SCOOT(Hunt et al, 1982), SCATS(Lowrie et al, 1982), PRODYN(Farges et al, 

1983), OPAC(Gartner et al, 1983), RHODES (Mirchandani and Head, 1998), 

UTOPIA(Manro et al, 1989), CRONOS (Boillot et al, 1992),  and TUC (Diakaki et al, 

2002) are few of the well recognized adaptive signal control systems. However, most of 
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them are model based and none of them adaptively learn from the environment. These 

control systems are centralized systems based on real time traffic data. However, the 

feature of real time adaptability with traffic situation is not available. Some of them 

(OPAC and RHODES) use dynamic optimization to obtain the signal settings and the 

complexities increase exponentially with network expansion. Researchers from the 

machine learning and computational intelligence have also applied intelligent algorithms 

like neuro-fuzzy network (Srinivasan et al, 2006), neural networks (Li et al, 2010), Tabu 

search (Hu and Chen, 2011), Self-organizing maps (Li et al, 2011), emotional algorithm 

(Ishihara and Fukuda, 2001), genetic algorithms (Sanchez et al, 2004; Stevanovic et al, 

2012), ant-colony based optimization (Hoar et al, 2002) and so on. Two common 

limitations tied with these algorithms are: requirement of large data for the training to 

calibrate the parameters and exponential complexity of the problem for large scale 

applications (Balaji et al, 2010). In addition, most of these approaches are applicable only 

to isolated intersections. 

Since traffic environment is inherently dynamic and changes over time, there is a 

scope to learn by means of interaction with the environment and accordingly adjust the 

actions towards optimality of the system.  Among different learning techniques, 

reinforcement learning (RL) is one of the widely used sample based control optimization 

techniques applied to solve the vehicular traffic signal control by many researchers 

(Balaji et al, 2010; Medina et al, 2011; Abdulhai and Kattan, 2003; Abdulhai et al, 2003; 

E1-Tantawy et al, 2012). In any RL-based schemes an agent (e.g., signal controller) 

learns from the interaction with environment which is modeled as Markov Decision 

Process (MDP). The key advantages of RL-based algorithms are: (1) the ability to learn 

from the environment to adapt with the dynamics in it; (2) ease of implementation (no 

direct optimization involvement), and (3) continuous learning procedure that is 

appropriate for the problems where environment can change suddenly (e.g., due to some 

events occurrence of high demand for some arterials that have low demand otherwise, in 

the context of signal control). 
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This research applies R-Markov Average Reward Technique (RMART) based 

reinforcement-learning (RL) algorithm for signal control at the network level within a 

multi agent framework (however, joint action space is not considered). In addition, we 

define the state of the system accounting for not only local information but also 

information from the adjacent signalized intersections and use different reward functions 

specific to congestion level.  

1.2 Study objectives 

• To apply reinforcement learning technique in the context of signal control 

• To implement algorithms suitable for multi-agent decentralized  system 

• To compare the performance of RL algorithms with fixed signal timing plans 

• To compare of performance of different RL algorithms with different reward 

functions and to investigate the sensitivity of RL algorithms with variation in 

congestion level, algorithm parameters, etc. 

1.3 Organization of the research 

The remainder of the research is organized as follows. Chapter 2 provides a 

comprehensive review of the existing works related to applying reinforcement learning 

based algorithms to optimize traffic signals. Chapter 3 defines the problem and describes 

the solution approach. Chapter 4 defines and describes different elements of the 

reinforcement learning based signal control algorithms. In chapter 5 the signal control 

algorithms are discussed and chapter 6 discusses the results from test networks. Finally, 

chapter 7 summarizes findings of the research  and discusses about the future research 

directions. 
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CHAPTER 2.  RELATED WORK 

This chapter describes recent works that apply reinforcement learning based 

control algorithms to improve the performance of traffic signals. At the end, we 

summarize the specific contributions of this research. 

. 

2.1 Literature review 

The implementation of RL in signal control area has been well studied in the last 

decade. Thorpe (1997) used a neural network to predict waiting time and applied on-

policy RL (SARSA) for signal control. Miakami and Kakazu (1994) proposed 

cooperative signal control scheme with a combination of evolutionary algorithm and 

reinforcement learning techniques. Bingham (2000) proposed rules based on fuzzy-logic 

that allocates green times based on the number of vehicles.  

Abdulhai et al. (2003) applied off policy (Q-learning) algorithm to optimize signal 

control in an isolated intersection. These works are mostly for isolated intersections and 

not suitable for large networks due to exponential increase  in the number of states due to 

the consideration of joint state-action space for reinforcement learning. Later Wiering 

(2000) and Wiering et al. (2004) proposed co-learning algorithms at network level 

accounting for the waiting time for the vehicles and used car-based value function that 

reduced the state space to a reasonable number. However, the prediction of waiting time 

is not accurate and the traffic model they used cannot capture the inherent traffic 

dynamics of real world (e.g., no lane changing or dynamic route choice). Kuyer et al. 
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(2008) used coordination graph along with max-plus algorithm to handle the state 

complexity issue, however only a network with 15 intersections can be solved. 

Cooperative multi agent system for urban traffic control has also been studied by 

the researchers (Oliveira et al, 2005; Bazzan, 2009; and Bazzan et al, 2009). More 

recently, El-Tantawy and Abdulhai (2012) proposed neighborhood coordinated RL based 

signal control, however joint decision framework has not been used. Although Q-learning 

and SARSA are most widely used temporal difference techniques, researcher also applied 

other algorithms like actor-critic temporal difference (Xie, 2007; Zhang, 2007), Q-

learning with function approximation (Prashanth and Bhatnagar, 2011), action dependent 

adaptive dynamic programming (Li et al, 2008) and so on. Although common in the 

machine learning area, the authors do not find any traffic signal control application using 

the R-Markov Average Reward Technique (RMART) which is implemented in this 

research. 

The reinforcement algorithms applied for signal control vary greatly with the 

definitions of state and reward. El-Tantawy and Abdulhai (2012) discuss about the 

variations of state representation and reward functions in the context of signal control. 

The most common definitions of state include (but not limited to) number of arriving 

vehicles, queue lengths, average delay, etc. and most of them do not include the 

information from neighboring intersections. Further, rewards are commonly defined as a 

measure of improvement for the intersection (e.g., no. of stops made, intersection delay, 

throughput, etc.). In a similar manner, the action in the RL algorithm can be switching 

phases (El-Tantawy and Abdulhai, 2012), extending the green (Adam et al, 2009), 

sequencing the phase, adjusting phase duration (Balaji et al, 2010) and so on. Current 

literature applying RL algorithms for signal control lacks two important attributes: 

sharing of neighborhood information in the representation of state and considering 

varying reward structure adapting the demand variation of traffic. 

Neighborhood information in the context of traffic signal is an important factor 

since it provides us with congestion status of the neighborhood signals. Including this 

information will help the controller to learn better. Consider a case when the adjacent 
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intersections are heavily loaded and in near future this intersection will experience heavy 

load. Using only local information the agent does not have any idea of the immediate 

congestion that will appear in the network. On the other hand, when the state definition 

includes congestion status of the adjacent intersections the agent learns to adjust signal 

settings when the nearby intersections are congested. Based on this idea, this research 

adds congestion information of the adjacent intersections to the definition of state in the 

RL algorithm. This idea is different from the multi-agent coordination research (El-

Tantawy and Abdulhai, 2012; Bazzan, 2009; Bazzan et al, 2010)  because multi agent 

cooperative learning deals with the joint state-action space optimality and this research 

aims to add neighborhood information in the state definition without any coordination 

mechanism in the algorithm. 

Further, the reward function is fixed in most of the cases in RL-based algorithms. 

With different congestion levels, different reward functions become appropriate (Houli et 

al, 2010). Houli et al. (2010) defined different reward functions (stops, delay, etc.) for 

different congestion levels (free flow, saturated condition, etc.). The approach is static in 

the sense that, the congestion level is known beforehand and reward is predefined. Our 

study aims to address these issues and to make a significant contribution of in the signal 

control algorithm literature. 

2.2 Research contribution 

This research applies congestion level specific reward structure within the RL 

algorithm, however in both static and dynamic manner (based on the perceived state the 

algorithm dynamically determines the appropriate reward). To summarize, the 

contributions of this research are as follows: 

a) Development of RMART based signal control algorithm that incorporates 

neighborhood congestion information to improve the learning of the agents.  

b) Using R-Markov Average Reward Technique (RMART) in the algorithm 

c) Build a multi reward structure that accounts for the dynamic variation of traffic 

 demand 

 



 7 

The off-policy (Q-learning) and on-policy (SARSA) algorithms are compared 

with the performance of advanced off-policy (RMART 
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CHAPTER 3.  SIGNAL CONTROL AS REINFORCEMNET LEARNING PROBLEM 

This chapter defines the problem and describes the signal control problem as 

Markov Decision Process (MDP). Next, the reinforcement learning based algorithm is 

explained as an efficient approach to solve the MDP.  

3.1 Reinforcement learning for optimal control 

Reinforcement learning techniques have been effectively applied to solve 

practical problems involving optimal control and optimization in different disciplines of 

science and engineering. In general, any method applying the sampling based techniques 

to solve the optimal control problems or its variants can be defined as reinforcement 

learning (RL). The agent (the controller in the context of optimal control problem) 

interacts with the environment (the system or any representative model) by taking some 

actions and the environment reacts to that action through changing its state. In addition, 

the environment also tells the agent how much reward it gained by performing that 

action. The reward gives a measure of the effectiveness of the actions taken by the agent 

to reach its optimization goals. In the context of vehicular traffic control problem the 

signal controller is the agent and the traffic network (which is dynamic and random) is 

the environment. 

3.2 Markov Decision Problem (MDP) 

Markov decision problems (or processes) can be expressed as a model of 

sequential environments (Bellman, 1957). The essential elements of MDP are state, 

action, transition probability, time of transition, reward, policy, and performance metric. 

State of a system refers to the set parameters describing it. In the context of RL, the state 
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should contain enough information so that the agent is able to choose a certain action. 

The controller or the agent in MDP can choose a particular action from a finite set of 

actions permissible in the corresponding state of the environment in order to reach its 

optimal goal. The actions are predefined and specific to the problems. Transition 

probability denotes the probability of going from one state to another state after taking 

any particular action by the agent. Transition period is generally assumed to be same for 

the MDP. However, in the context of semi-Markov decision process (SMDP), the 

transition time is an essential element and the general structure for reward takes a slightly 

different form. We define rewards as the immediate outcome from the environment 

(because of the action taken by the controller). The policy maps the states of the system 

to specific action that yields the maximal award for the agents. For any MDP policy one 

needs to evaluate the effectiveness of the policy. Performance metrics are necessary to 

assess the success of the algorithm. In the context of RL, two common measures of 

performance are the long term expected average reward and the average discounted 

reward. 

3.3 Signal control problem as MDP 

Optimization of vehicular traffic signal control requires the determination of 

optimal signal timing parameters. The controller has to allocate green time to specific 

movements (a set of movements is defined as phase) at the intersection so that its 

optimization goal is attained. The controller takes decision at specific  intervals that is 

determined beforehand by the signal-timing planner. The traffic network is the 

environment and the traffic controllers act as agents in this context. The action of an 

agent is defined as to activate any particular phase (predefined) at the decision interval. 

Note that, the transition time from one state to another state after activating any of the 

allowed phases is unity (or same for all cases). Thus, the traffic signal control problem 

has all the elements of MDP. Each time the agent takes an action that impacts the current 

environment, the state of the environment changes. The problem is to find the optimal 

policy (mapping between the phase activations and traffic states) that gives the maximum 
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reward  in the context of traffic it can be measured in terms of average delay, number of 

stops, etc.) in the long term. 

 
3.4 Using Reinforcement Learning (RL) to solve MDP 

One should note that there exist numerous techniques other than RL to solve the 

MDP. Dynamic programming (DP) is one of most extensively used methods to solve 

MDP. The key idea of RL comes from DP and AI based learning techniques. A detail 

description can be found in Sutton and Barto (1998) and Gosavi (2003). The two key 

elements of MDP are the reward and state transition probability. The RL technique is 

most appropriate when these elements are not deterministic. The solution methodology 

should have some components that determine the transition probabilities and rewards as a 

feedback from the environment. However, a simulator of the real environment can solve 

this problem. The simulator of the environment can provide us with the reward and one 

can observe the transition of the states. A simulator of the environment can give the state, 

reward and the action permissible. This research uses VISSIM (2011) as a traffic 

simulator that represents the environment in the context of MDP. Further, traffic lights in 

the network act as agents and take actions (activating the phase). The rewards and other 

performance metrics are obtained directly from the VISSIM (2011) simulator. Details 

about the components of VISSIM (e.g., car-following, lane-changing, traffic light control, 

etc.) can be found in (VISSIM, 2011). 
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CHAPTER 4.  ELEMENTS OF REINFORCEMENT LEARNING (RL) BASED SIGNAL 

CONTROL 

Chapter 4 describes the elements of RL based control algorithms applied in this 

research. The elements are defined and explained in the context of traffic signal control. 

Reinforcement learning (RL) system has some specific components: the state, action, and 

reward. The following sections define the state, action, and reward for the proposed RL 

algorithm. 

4.1 State of the system 

First, we define the residual queuing state for each lane group served by the signal 

phases at the intersection 

4.1.1 Residual queuing (RQ) state for lanes 

Residual queuing state for lane i, is defined as: 

1t
t i
i

i

q
J l

ω = ×
 

where, 

Residual queuing state for lane  at step t.t
i iω =  

queue length (in terms of PCE units) for lane  at step t
iq i t=  

Jam density (190 PCE per lane-mile)J =  

Length of lane (in miles)il =  
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Now, the residual queuing state for the lane group served by phase 1 can be 

estimated by taking the average over all the lanes. 

lane group,

 lane group,

i
i pt

p

i p

i

ω
π ∈

∈

=
∑
∑

 

where, 

Averate residual queing state for the lane group serving phase,  at step .t
p p tπ =  

It can be seen that 
t
pπ is continuous in nature and can take any value between 0 

and 1. 

Next, the average residual state for a particular phase, p is labeled as low, high or 

medium using the following conditions: 

,if 0.4

,if  0.4 0.7 ; low,  = high, medium.

,if 0.7

t
p

t t
p p

t
p

L

M L H M

H

π

π

π

 <
  Π = ≤ < = = 
 ≥    

Where, label of .t t
p pπΠ =  

4.1.2 Residual queuing (RQ) state of the intersection 

The RQ state of the intersection is computed using the RQ states of the phases. 

Different values are assigned to the labels of RQ state of a particular phase. 

 

1,if 

3,if 

5,if 

t
p

t t
p p

t
p

L

M

H

µ

 Π =
  = Π = 
 Π =    

Now, the labels for RQ states of the intersection are defined as follows: 
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Phases

Phases

Phases

Free flow;if 10

Average flow;if 10 16  

Saturated flow;if  16

t
p

p

t t
j p

p

t
p

p

µ

µ

µ

∈

∈

∈

 
< 

 
 

Ω = ≤ < 
 
 ≥ 
 

∑

∑

∑
 

4.1.3 System state for RL algorithm 

At any step of the RL algorithm, the state of the system is represented by three 

elements: 

a) The average label of RQ states of the phases in signal timing plan 

b) The phase number with maximum queue length for the intersection 

c)The adjacent intersection number with maximum queue length. 

The state at step t for signal controller j can be represented as: 

( )
( )
( )

average ,

max ,

max , ( )

t
p

t t
j p

t
j

p P

s p P

j j

 Π ∀ ∈
 
 = Π ∀ ∈ 
 

Ω ∀ ∈Γ  


 

Where,  

Set of phases in the signal timing plan for int er sec tion .P j=  

( ) The set of adjacent intersection for intersection .j jΓ =   

4.2 Actions 

The agent’s action is to switch on any of available phases in the signal timing 

plan. One should note that, there is no restriction on the sequence of the phases. Flexible 

sequence in signal timing plan has been used by previous researchers and also has been 

implemented in real world signalized intersections. However, the algorithm also follows 

the minimum and maximum green constraints. Currently, the thresholds for these 

parameters are assumed. 
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4.2.1 Action selection strategy 

Reinforcement learning algorithms in general require a balance between 

exploitation and exploration in the strategies for selecting optimal action. The simplest 

action rule is to select the action (or one of the actions) with the highest estimated state-

action value (complete greedy behavior). In other words, the agent always tries to 

maximize the immediate reward using the immediate knowledge without any attempt to 

explore other possible actions. To balance between exploitation and exploration Sutton 

and Barto (1998) suggests two methods: 

(i) greedyε −  method: 

In this method, the agents behaves greedily by choosing the action that gives the 

maximum state-action value in most cases except at some cases it chooses a random 

action. The probability of this random behavior is ε and the probability of selecting the 

optimal action converges to greater than 1 ε− . One should note that, the advantage of 

greedyε − methods over the greedy methods is highly dependent on the type of problem. 

For instance, with higher variance in the reward values the greedyε − methods might 

perform better. 

(ii) Softmax method: 

One limitation with the greedyε − method is that it gives equal priority to all 

actions while exploring. It is possible to choose the worst action instead of choosing the 

next best action. To resolve this, Softmax algorithms vary the action probabilities as a 

graded function of estimated value. Although, the greedy action has the highest selection 

probability the other are ranked and weighted according to the value estimates. In 

general, Gibbs or Boltzman distribution is used to define the probability. The probability 

for choosing action a in state s, 

all actions

1

( , )exp( )
( | state )

( , )exp( )
b

Q s a

P a s
Q s b
τ

τ=

= =

∑
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Positive parameter called the temperatureτ =  

 Higher values for the temperature can make the probability of choosing 

any of the actions nearly equal. On the other hand, lower value of the temperature will 

create a higher difference in the action selection probabilities. 

 Another commonly used action strategy is the combination of the above 

mentioned strategies that is referred to as Softmaxε − (Sutton and Barto, 1998; El-

Tantawy and Abdulhai, 2012). The agent behaves greedily with the probability of (1 ε− ) 

and the rest of the cases it selects an action using the probability computed from Softmax 

selection process. 

4.3 Reward functions 

Three separate reward functions have been used: Reward-1(Queue length), 

Reward-2(average delay experienced by the intersection since previous action), and 

Reward-3(Residual Queue). In addition, we propose the multi reward structure that 

defines queue length as reward at free flow, average delay as reward over the time 

interval at medium level congestion, and residual queue as reward at near saturated 

condition. 
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CHAPTER 5.  ALGORITHMS 

This chapter describes the algorithms applied in this research. We implemented an 

off-policy Temporal Difference (TD) control algorithm which is also known as Q-

learning (Watkins, 1989; Watkins and Dayan, 1992). We applied three specific temporal-

difference techniques: 

a) Off-policy TD control (Q-Learning) 

b) On-policy TD control (SARSA) 

c) Advanced off-policy TD (R-MART) ( 41, 42) 

5.1 Framework 

Like most RL based schemes, each algorithm has two phases: learning phase and 

implementation phase. The learning takes place before the implementation. The key 

difference in the techniques stated above is the process of updating the state-value 

function. During the learning phase the agents update the state-action value through 

interacting with the environment. Balancing the exploration and exploitation is important 

at this phase. Initially, the algorithm starts with greedyε − using higher ε value. Then, 

gradually the ε value is decreased and at the end of the learning phase we implement the 

Softmax method. During the implementation period, the algorithm emphasizes on 

exploitation  with very small ε  value following the Softmaxε −  action strategy. 

5.2 Q-learning and SARSA 

 First, we describe the off-policy Q-learning and the On-policy SARSA 

algorithms. Since only change from the learning to implementation phase is the action 
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selection strategy only the learning phase algorithms are described. Moreover, Q-learning 

and SARSA have the almost same framework, therefore we use a single algorithm 

separating out the update phase. 

5.2.1 Terminologies 

The average reward per time step.ρ =  

( , ) The value of state-action pair ( , ).Q s a s a=  

( , , ) Observed reward when the agent takes action  in state , and moves to state .r s a s a s s′ ′=

 
( ) Learning rate for the values (scalar) at  iteration.k Q k thα = − −  

( ) Learning rate for the average reward at step, .k kβ =  

Maximum number of iterations allowed in the learning phase.Ν =  

Discount factor for reward value.γ =  

5.2.2 Initialization 

Set initial values for ( , )Q s a for all state-action pairs  ( , )s a . 

Set learning rate: 
( ) log ( 2)10

2
k k

k
α +

=
+ . 

Set discount factor: scalar between 0 and 1γ ← (we used 0.8 in the algorithm). 

Learning Phase: 

In the learning phase the agent builds its state-action mapping table which can be 

 used later to take decision (which phase to activate) in the implementation phase. 

5.2.3 Algorithm 
current state

Action Selection:
Choose action  in state  using behavior policy (one of the following):

) greeedy
b) Gibbs Soft-max
) -Soft-max

s

a s
a

c

ε

ε

←

−
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IF Off-policy Temporal difference (Q-Learning) 

( )

Reward and transition state:
Observe reward  for choosing action  and next state, 
Update -values:

( , ) ( , ) [ max ( , ) ( , )]k

a

r a s
Q

Q s a Q s a r Q s a Q s a

s s

α γ
′

′

′ ′← + + −

′←  

IF  On-policy Temporal difference (SARSA)  

( )

Reward and transition state:
Observe reward  for choosing action  and next state, 
Choose an action  in state  using behavior policy and get ( , )
Update -values:

( , ) ( , ) [ ( ,k

r a s
a s Q s a

Q

Q s a Q s a r Q s aα γ

′
′ ′ ′ ′

′ ′← + + ) ( , )]
;

Q s a
s s a a

−
′ ′← ←  

Update :
1

Check termination:
IF ,  THEN STOP
ELSE, REPEAT

k
k k

k

← +

> Ν

 

 

5.3 R-MART (R-Markov Average Reward Technique) based algorithm.  

5.3.1 Initialization 

Set initial values for ρ , and ( , )Q s a for all state-action pairs  ( , )s a . 

( ) log ( 2)10
2

k k
k

α +
=

+  

( ) ,   and  are scalarsk A A B
B k

β =
+  
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5.3.2 Learning phase algorithm 
current state

Action Selection:
Choose action  in state  using behavior policy (one of the following):

) greeedy
b) Gibbs Soft-max
) -Soft-max

Reward and transition state:
Observe reward  for choosin

s

a s
a

c

r

ε

ε

←

−

g action  and next state, a s′  

( )

Update -values:

( , ) ( , ) [ max ( , ) ( , )]

Update average reward:
IF ( , )  max ( , ),  THEN

+ [r- max ( , ) max ( , )]

k

a

a

a a

Q

Q s a Q s a r Q s a Q s a

Q s a Q s a

Q s a Q s a

s s

α ρ

ρ ρ β ρ

′

′

′ ′← + − + −

=

′ ′← + −

′←  

Update :
1

Check termination:
IF ,  THEN STOP
ELSE, REPEAT

k
k k

k

← +

> Ν
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CHAPTER 6.  IMPLEMENTATION AND NUMERICAL RESULTS 

 

The RL-based algorithms are implemented using VISSIM (VISSIM USER 

MNAULA, 2011), a widely used commercial traffic simulation tool. The RL based 

algorithms are coded in C++ and are being integrated with VISSIM through the COM 

interface. FIGURE 1 shows the test network used for evaluating the RL-based 

algorithms. The network consists of eight signalized intersections and 14 origin-

destination pairs. Three different congestion levels are used: low, medium, and saturated. 

The results from RL-based algorithms are compared with the performance obtained for 

fixed signal control. The fixed signal settings are determined using the Webster’s 

equation (Webster, 1958). Average delay, average stopped delay at the intersection, and 

average number of stops for the intersections are chosen as the measures of effectiveness 

(MOE). 

6.1 Congestion level variation at intersection level 

The congestion level designed for experiments are in general at network level. 

The trip rates for distinct origin-destination pairs are increased to create higher 

congestion level. However, this is not the exact representation of the congestion 

experienced by the intersections. Two intersections can experience varying level of 

congestion state, even though the demand (network congestion level is same). 

Intersection-3 and intersection-6 in FIGURE 1 experiences different patterns of 

congestion, although the network congestion level is same. To illustrate TABLE 1 shows 

the distribution of experienced states for these intersections. The average congestion state 

is determined the definition provided in the methodology section. It can be observed that, 
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intersection-3 experiences more congested states compared to intersection-6. As a result, 

it is possible to different trends in the comparison of performance measures even though 

the network congestion level remains the same. 

 
Figure 1Test network for evaluating the signal control algorithms . 
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Table 1Congestion variation in Intersection-3 and Intersection-6 

Experienced 
State 

Q-learning SARSA RMART 
Intesection-3 Intesection-6 Intesection-3 Intesection-6 Intesection-3 Intesection-6 

Low 
congestion 
state (%) 

45.74 45.74 22.87 37.67 27.81 78.92 

Medium 
congestion 
state (%) 

39.91 49.78 45.3 57.85 43.49 20.18 

High 
congestion 
state (%) 

14.35 4.48 31.83 4.48 2 0.90 

  
6.2 Performance comparison: Average Delay 

TABLE 2 shows the comparison of average delay for different RL-based 

algorithms with different reward function at different congestion levels. At low 

congestion, Q-learning exhibits best performance with Reward-1 and Reward-2, and 

RMART performs better with Reward-3. The trend is same for both intersections. At 

medium congestion, the trend is different for intersection-3 and intersection-6. For 

intersection-3, Q-learning performs best with Reward-1 and Reward-3 and RMART 

performs best with Reward-2. For intersection-6, Q-learning shows the least delay with 

Reward-2 and Reward-3 and RMART exhibits best results with Reward-1. At high 

congestion, RMART outperforms all other algorithms with all types of reward functions. 

The trend is same for intersection-3 and intersection-6. The following conclusions can be 

made: 

 a) SARSA performs worse than the other two algorithms 

 b) At low congestion, Q-learning is a good choice. Note that, residual 

queue (Reward-3) is a more appropriate reward when the congestion level is higher 

aiming at avoiding gridlock, however not directly related with delay. This might cause 

the Q-learning to perform  slightly worse than RMART at low flow with Reward-3. 

  c) At high congestion, RMART is the best choice that yields the minimal 
average delay. Table 2 Average delay comparison 
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6.3 Performance comparison: Stopped Delay 

TABLE 3 shows the comparison of stopped delay with percentage of 

improvement compared to fixed signal control. At low congestion, Q-learning performs 

best with Reward-1 and Reward-2 for both intersections, however RMART performs 

better with Reward-3 for intersection-3 and SARSA performs better for intersection-6. At 

high congestion, RMART yields the best results with all reward functions for both the 

intersections. Similar to average delay comparison, RMART is the best choice to reduce 

stopped delay at signalized intersection at high congestion level of the network. 

6.4 Performance comparison: Number of stops 

TABLE 4 exhibits the average number of stops at the intersections. It can be 

observed that, only at higher congestion level RMART and Q-learning demonstrates 

some improvement over the fixed control. Since, the reward functions here do not 

account for number of stops, it is intuitive that the agents do not have the scope to learn 

to choose their actions so that number of stops can be minimized. 
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Table 2Average delay comparison 

Reward definition Congestion level Fixed control Q-Learning SARSA RMART Fixed control Q-Learning SARSA RMART 

 
Intersection-3 Intersection-6 

Reward-1 

Low 144 131 152 132 155 135 142 139 
Improvement (%) 9.03 -5.56 8.33 Improvement (%) 12.90 8.38 10.32 

Medium 203 156 209 182 236 193 191 179 
Improvement (%) 23.15 -2.95 10.34 Improvement (%) 18.22 19.06 24.15 

High 357 250 284 223 353 265 291 227 
Improvement (%) 29.97 20.44 37.53 Improvement (%) 24.92 17.56 35.69 

Reward-2 

Low 144 141 164 149 155 136 149 145 
Improvement (%) 2.083 -13.88 -3.47 Improvement (%) 12.25 3.87 6.45 

Medium 203 172 207 166 236 171 187 195 
Improvement (%) 15.27 -1.97 18.22 Improvement (%) 27.54 20.762 17.37 

High 357 290 303 213 353 297 290 277 
Improvement (%) 18.76 15.12 40.33 Improvement (%) 15.86 17.84 21.52 

Reward-3 

Low 144 137 162 132 155 140 148 139 
Improvement (%) 4.86 -12.5 8.33 Improvement (%) 9.67 4.516 10.32 

Medium 203 175 189 178 236 167 201 176 
Improvement (%) 13.79 6.89 12.31 Improvement (%) 29.23 14.83 25.42 

High 357 273 357 238 353 260 276 226 
Improvement (%) 23.52 0 33.33 Improvement (%) 26.34 21.81 35.97 
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Table 3 Stopped delay comparison 

Reward definition Congestion level Fixed control Q-Learning SARSA RMART Fixed control Q-Learning SARSA RMART 

 
Intersection-3 Intersection-6 

Reward-1 

Low 
106 91 112 92 113 91 112 96 
Improvement (%) 14.15 -5.66 13.20 Improvement (%) 19.46 0.88 15.04 

Medium 
154 108 156 130 183 137 156 123 
Improvement (%) 29.87 -1.29 15.58 Improvement (%) 25.13 14.75 32.78 

High 
284 185 208 159 284 189 208 156 
Improvement (%) 34.85 26.76 44.01 Improvement (%) 33.45 26.76 45.07 

Reward-2 

Low 
106 101 121 108 113 94 105 104 
Improvement (%) 4.71 -14.15 -1.88 Improvement (%) 16.81 7.07 7.96 

Medium 
154 122 153 115 183 118 131 140 
Improvement (%) 20.77 0.64 25.32 Improvement (%) 35.51 28.41 23.49 

High 
284 224 229 150 284 216 207 201 
Improvement (%) 21.12 19.36 47.18 Improvement (%) 23.94 27.11 29.22 

Reward-3 

Low 106 97 121 92 113 95 93 96 

 
Improvement (%) 8.49 -14.15 13.20 Improvement (%) 15.92 17.69 15.04 

Medium 154 122 138 127 183 110 118 121 

 
Improvement (%) 20.77 10.38 17.53 Improvement (%) 39.89 35.51 33.87 

High 284 205 280 174 284 182 216 151 

 
Improvement (%) 27.81 1.40 38.73 Improvement (%) 35.91 23.94 46.83 

 

 



 26 

Table 4 Comparison metric: Average no. of stops 

Reward definition Congestion level Fixed control Q-Learning SARSA RMART Fixed control Q-Learning SARSA RMART 

 
Intersection-3 Intersection-6 

Reward-1 
Low 5.58 6.4 6.7 6.5 6.29 7.31 7.29 7.46 
Medium 6.93 7.03 8.32 7.8 7.82 8.67 8.72 8.68 
High 10.2 9.15 11.15 9.13 10.2 11.83 12.22 10.31 

Reward-2 
Low 5.58 6.78 7.22 6.96 6.29 7.01 7.43 7.03 
Medium 6.93 7.45 7.61 7.62 7.82 8.15 8.66 8.98 
High 10.2 8.84 12.02 9.17 10.2 13.17 14.38 12.1 

Reward-3 
Low 5.58 6.44 6.66 6.5 6.29 7.45 7.46 7.46 
Medium 6.93 7.66 7.26 7.71 7.82 8.86 8.55 8.52 
High 10.2 9.09 12.08 8.84 10.2 12.21 14.57 11.4 
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6.5 Effect of variation in reward functions 

FIGURE 2 and FIGURE 3 illustrate the performance rate of the learning 

algorithms Q-learning and RMART with different reward functions. The change in 

average delay at different congestion level is observed from the figures. For the Q-

learning, it can be seen that Reward-2 (delay averaged over updating steps) performs 

better with time and this sustains for all congestion levels. Although at the beginning, the 

delay is higher with Reward-2. However, it gets better with time.  

 For RMART algorithm, we see the very similar pattern for Reward-2 and 

Reward-3 (FIGURE 3). At low congestion, Reward-2 shows most desired trend and for 

other cases, Reward-1 shows the most reduction of delay with time. It is interesting to see 

that, RMART with Reward-1 initially performs better, however with time gets worse at 

low level of congestion. The pattern is different for medium and high level congestion. 

With these patterns, using queue length as reward function for RMART is expected to 

yield better results with medium to high congestion. 
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Figure 2 Performance rate of Q-learning with different reward functions. 
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Figure 3 Performance rate of RMART with different reward functions. 
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6.6 Comparison of the algorithms 

FIGURE 4 and FIGURE 5 demonstrates the performance of different algorithms 

with time at same congestion level with fixed reward function. There results show the 

time varying performance of the algorithm Specific to Reward-2, FIGURE 4 shows that 

SARSA does not improve over time at low congestion level and performs worse than 

fixed control. At medium congestion level, initially it gets better with time. However, at 

higher congestion it performs better than fixed control. Q-learning and RMART has 

similar rate of improvement over time for low to medium congestion, however RMART 

outperforms others at higher congestion level. It is interesting to see that the performance 

of SARSA and Q-learning is close at high congestion level. 

 Specific to Reward-1, FIGURE 5 exhibits that Q-learning has a better 

trend for low to medium congestion level and RMART shows better rate of improvement 

at higher congestion.  
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Figure 4 Comparison of algorithms (Reward-2). 
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Figure 5 Comparison of algorithms (Reward-1). 
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6.7 Comparison of multi-reward algorithms 

TABLE 5 compares the results for algorithms using multi-reward structure and 

single reward structure. The results from the multi-reward case are compared with the 

best and worst cases from single reward algorithms. For instance, the best case of a single 

reward Q-learning algorithm is the algorithm-reward combination that yields the 

minimum delay. The multi-reward structure requires comprehensive analysis before 

reaching any insightful conclusion. TABLE 5 presents a single test case only. TABLE 5 

shows that, the multi-reward scheme performs better than the worst case in single reward 

in most cases. Only exception is the RMART with high demand where it performs worst. 

Only SARSA at intersection-3, is the case where multi-reward performs better than the 

single reward scheme.  

Next, we tested the algorithms for different probability values of action choosing.  

As we decrease the probability for choosing a random action (i.e., the algorithm becomes 

greedier and chooses the action with the previously obtained maximum reward value), 

the performance improves in terms of average delay and stopped delay. However after a 

certain value of probability the algorithms start to decline in the performance. TABLE 6 

shows a sample test result for Off-policy Q-learning at high congestion level.  
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Table 5 Comparison with multi-reward algorithms 

Algorithm Congestion Average delay 
(Multi-reward) 

Average delay 
(Best-single 
reward) 

Change from best 
case(%) 

Average delay 
(Worst-single 
reward) 

Change from worst 
case(%) 

 Intersection 3 
Q-Learning Low 137 131 -4.58 141 2.84 

Medium 174 156 -11.54 175 0.57 
High 259 250 -3.6 290 10.69 

SARSA Low 136 152 10.52 164 17.1 
Medium 175 189 7.41 209 16.27 

High 278 284 2.11 357 22.31 
RMART Low 152 132 -15.15 149 2.01 

Medium 176 166 -5.68 178 1.12 
High 315 213 -47.88 238 -32.35 

 Intersection 6 
Q-Learning Low 140 135 -3.7 140 0 

Medium 171 167 -2.39 193 11.39 
High 338 260 -30 297 -11.11 

SARSA Low 149 148 -0.67 149 0 
Medium 201 187 -7.48 201 0 

High 352 276 -27.53 291 -20.96 
RMART Low 140 139 -0.72 145 3.45 

Medium 159 176 9.66 179 11.17 
High 233 226 -3.1 277 15.88 
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Table 6 Sensitivity of Multi-Reward algorithms with action selection probability  
(Case: Q-Learning at Intersection 3 with High congestion) 

Random action selection probability Average delay (seconds) Stopped delay 
1/3 246 181 
1/6 224 160 
1/8 205 144 
1/10 378 309 
1/15 251 188 
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6.8 Comparison with adaptive signal control algorithms 

The reinforcement learning based algorithms are compared with the longest-

queue-first (LQF)algorithm. The LQF algorithm based on a concept similar to a well 

established routing algorithm in communication network and has been implemented by 

researchers in the context of traffic signal control (Wunderlich et al., 2008 and Arel et al., 

2010). Wunderlich et al.(2008) proposed a variant of the LQF algorithm by introducing 

user defined weight to certain vehicle classes. For the test purpose, we modified the 

algorithm to make it more efficient. The changes include provision for minimum and 

maximum green in the signal timing plan and adjusting for repetitive phase for the case 

when a particular approach is highly congested compared to all other approaches. The 

LQF algorithm also uses real time information to make signal control decision. The key 

concept is to allocate the green towards the approach with longest queue size. Queue size 

is  defined as the number of stopped vehicles. 

TABLE 7 reports the comparison of RL algorithms with LQF algorithm. The RL 

algorithms perform better than the LQF algorithm in terms of both average delay and 

stopped delay statistics. The results are similar for both intersection-3 and intersection-6. 

One should note that both algorithms use real time traffic information to make signal 

control decision. The key difference is that, the RL based algorithm have learning feature 

with which signal controllers learn to make the better decision with time. Therefore, we 

can conclude from these testing scenarios using VISSIM that learning offers better 

performance compared to adaptive algorithms in the context of traffic signal control. 
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Table 7 Comparison with adaptive signal controllers (Longest-Queue-First 
algorithm) 

Congestion Level 
Average Delay (seconds) 

Fixed Timing Plan Adaptive (LQF) Off-Policy 
 Q-Learning RMART 

Intersection-3 

Low 144 177 132 132 

Medium 203 207 160 175 

High 357 294 270 232 

Intersection-6 

Low 155.13  198.338 145.86  134.53  

Medium 236.42  223.947 176.79  177.42 

High 353.47 279.32 263.95  228.06  
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6.9 Value of information sharing among neighborhood signal controllers in RL 

algorithms 

Sharing traffic information among neighborhood controllers is mentioned as one 

of the distinct feature in the proposed RL algorithms in this research. To justify the 

impact of information sharing we compare the results from two test cases: one case 

considers the information sharing and the other does not. TABLE 8 shows the 

comparison results. For Q-Learning, we see improvements at all congestion levels. For 

R-MART, we see improvement for higher congestion and for SARSA negligible 

deterioration is observed at higher congestion level. Previous results show that Q-

Learning and R-MART  have superior performance compared to fixed control and also 

adaptive learning. It can be observed that, inclusion of neighborhood information helps to 

improve the performance in most cases. 
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Table 8 Value of information sharing in RL algorithms 

Test Case 

Average Delay Stopped Delay 

With 
Neighborhood. 
Information 

Without 
Neighborhood. 
Information 

Benefit 
With 
Neighborhood. 
Information 

Without 
Neighborhood. 
Information 

Benefit 

Off-
policy 

(Q-
Learning) 

Low 132.39 132.39 0.00% 92.80 92.80 0.00% 

Medium 160.13 168.56 5.26% 111.30 118.29 6.28% 

High 270.12 270.37 0.09% 204.70 204.06 -0.31% 

R-mart 

Low 131.89 131.89 0.00% 93.09 93.09 0.00% 

Medium 174.98 172.52 -1.41% 123.81 121.31 -2.02% 

High 231.55 284.15 22.72% 168.42 218.03 29.45% 

On 
Policy 

(SARSA) 
 

Low 152.78 152.78 0.00% 111.43 111.43 0.00% 

Medium 184.55 192.88 4.51% 133.75 140.46 5.01% 

High 320.82 319.31 -0.47% 247.58 245.92 -0.67% 
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CHAPTER 7.  CONCLUDING REMARKS AND FUTURE RESEARCH 

The research presents and evaluates reinforcement learning based Signal control 

algorithms that adapts with the traffic dynamics. Learning offers an efficient way to 

optimize the signal control settings and the multi agent based distributed structure 

performs has many advantages over the centralized system. We proposed RL algorithms 

that account for the neighborhood congestion information within the framework and 

evaluated different techniques. The R-Markov Average Reward Technique (RMART) 

shows superior performance at high level of congestion. Some of the insights can be 

drawn from our results are as follows: 

 a)  Different RL algorithms perform better at different congestion level 

and also with different reward functions. It is important to choose the right combination 

of learning algorithm and reward structure at a particular congestion level to maximize 

the performance. 

 b) Analysts should consider both average cumulative metrics and time 

varying performance to evaluate the algorithms. For instance, the queue-length seems to 

be the best reward structure to reduce the average delay when cumulative metrics are 

compared (TABLE 2). However, the improvement rates from time varying performance 

plot (FIGURE 3) indicate that using delay averaged over time steps will perform better in 

future. 

  Further, the complexity of the algorithm should be tested more 

comprehensively. The learning rate parameter and discount factor are assumed arbitrarily 

and a sensitivity analysis can provide us with useful information. We plan to implement 
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the algorithm on a larger network to show the benefit of the learning different traffic state 

information in improving the performance of traffic networks. 

 The RMART algorithm as illustrated in the results has shown higher 

potential to reduce delay at highly congested states. In addition, this research proposes 

the multi-reward structure that is expected to capture  the stochastic nature of the traffic 

arriving at intersections. 
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