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Optimal Motion Planning for Multiple
Robots Having Independent Goals

Steven M. LaValle Member, IEEE,and Seth A. Hutchinsorniember, IEEE

Abstract—This work makes two contributions to geometric measures are combined, certain information about potential
motion planning for multiple robots: solutions and alternatives is lost [21]. For example, the amount
1) motion plans are computed that simultaneously optimize of sacrifice that each robot makes to avoid other robots is not
an independent performance measure for each robot; usually taken into account. It might be that one robot’s goal is
2) a general spectrum is defined between decoupled and cen- . . LS
tralized planning, in which we introduce coordination along  N€&rby, while the other robot has a distant goal. Combining the
independent roadmaps. performance measures might produce a plan that is good for
By considering independent performance measures, we intro- the robot that has the distant goal; however, the performance
duce a form of optimality that is consistent with concepts from of the other robot would be hardly considered.
multiobjective optimization and game theory literature. Previous Given a vector of independent performance measures, we

multiple-robot motion planning approaches that consider opti- -y, that there exists a natural partial ordering on the space of
mality combine individual performance measures into a scalar

criterion. As a result, these methods can fail to find many po- Motion plans, yielding a search for the set of motion plans that
tentially useful motion plans. We present implemented, multiple- areminimalwith respect to the ordering. Our approach can be
robot motion planning algorithms that are derived from the considered as filtering out all of the motion plans that are not
principle of optimality, for three problem classes along the spec- \yorth considering, and presenting the user with a small set of
trum between centralized and decoupled planning: the best alternatives. Within this framework additional criteria,

1) coordination along fixed, independent paths; . o
2) coordination along independent roadmaps: such as priority or the amount of sacrifice one robot makes,

3) general, unconstrained motion planning. can be applied to automatically select a particular motion plan.
Computed examples are presented for all three problem classes If the same tasks are repeated a}nd pr_lqutles change, then one
that illustrate the concepts and algorithms. only needs to select an alternative minimal plan, as opposed

Index Terms—Game-theory, mobile robots, motion planning, to reexploring th? ?nt're space of motion sFrategleg. we aIsp
multiobjective optimization, multiple robots, obstacle avoidance, Show that the minimal strategies are consistent with certain

path planning, scheduling. optimality concepts from multiobjective optimization [21] and
dynamic game theory [2] literature.
Previous approaches to multiple-robot motion planning are
often categorized asentralizedor decoupled A centralized
HIS paper addresses problems in which the task is #pproach typically constructs a path in a composite config-
simultaneously bring each of two or more robots fromyration space, which is formed by the Cartesian product of
an initial configuration to a goal configuration. In additionpe configuration spaces of the individual robots [1], [3], [22].
to ensuring collision avoidance, each robot has a real—valugtaecoumed approach typically generates paths for each robot
performance measure (or loss functional) to be optimized. jhdependently, and then considers the interactions between the
This final point differs from previous approaches tQgpots [7], [11]. In [6], [9], and [18], robot paths are inde-
multiple-robot motion planning. Typically, if optimality is pendently determined, and a coordination diagram is used to
considered, individual performance measures for the robgfig, 5 collision-free trajectory along the paths. The suitability
are combined i_nto. a s.ingle spa}lar criterio_n. For example, in [B} one approach over the other is usually determined by the
and [23] the criterion is to minimize the time taken by the lagfadeoff between computational complexity associated with a

robot to reach the goal. In [26], the performance measures gfgen problem, and the amount of completeness that is lost.
added to yield a scalar criterion. When individual performance |, qdition to introducing multiple-objective optimality to

the multiple-robot geometric motion planning, we expand
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[8], [19] which can be used as a preprocessing step in a@presented as the open set
coordination approach.

Our algorithms are based on applying the dynamic program- Xeou = U Xéj)” 4)
ming principle to generate multiple solutions in a partially- istj
ordered space of motion strategies. The generation of these
solutions is significantly more challenging in comparison to thdence, a state is in the collision subset if the interior of two
standard case of scalar optimization. Many variations of dgf more robots intersect. We defing,,;;4 as the closed set
namic programming for scalar optimization have been applietl— X..u. Note the cylindrical structure oX...; (depicted in
in motion planning [13], [17], [24] and in Al planning [4], Fig. 4), which is exploited by our algorithms when building
[5], [25]; however, techniques are presented in this paper dorepresentation of the state space, allowing the number of
derive multiple solutions for the case of multiple, independegellision detections to grow quadratically with, as opposed

performance measures. to exponentially.
The task is to bring each robot from some initial state

zi., € X' to some goal state’ , € X* while avoiding

et

goa
IIl. PROBLEM DEFINITION AND GENERAL CONCEPTS collisions with obstacles or other robots. We considetate
trajectory as a continuous mapping: [0, 7 - XA

A. Basic Definitions trajectory for an individual robot is representedias(0, 7] —

Each robot,4;, is considered as a rigid object, capable o *- The motion of an individual robot4;, is specified through
moving in a workspace that is a bounded subseRdbr 3.  the state transition equation
The position and orientation of the robot in the workspace F(t) = fi(ai(), ui(t)) Vi (5)
are specified parametrically, by a point in ardimensional
configuration spaceC’. There are static obstacles in thdn Which u “(t) is chosen from a set of allowable controls for
workspace (compact subsets¥®f or :t3) that prohibit certain Ai-
configurations of the robot4;. The closure of the subset of Since we focus on the geometric aspects of a motion
C' that corresponds to configurations in whigh does not Planning problem, we will compute trajectories that apparently
intersect any obstacles is referred to aswhkd configuration allow a robot to switch instantaneously between a fixed speed
space Ci ., [15]. ||| and halting. This represents a typical assumption in
We define astate spaceX, that simultaneously representgnultiple-robot motion planning [11], [14], [18]. In a sense,
the configurations of all of the robots. A natural choice foie results we ultimately obtain will involve both path and

the state space is scheduling information. For most mechanical systems, the
dynamics must be taken into account at some level, and in
X =Clpig X C2pig X oo X CN (1) this paper we choose to decouple the general pick-and-place

problem into two modules:

in which x denotes the Cartesian product. In this paper, wel) motion planning/trajectory generation;

also consider two additional definitions of the state space tha2) tracking controller.

are more restrictive. In Section Ill, we will consider motions ofhis is a widely-utilized assumption that forms the basis

the robots that are restricted to fixed paths, and in Section §f motion planning research [15]. We expect that in many

we will consider a more general case in which the robots ag@plications, especially mobile robotics, optimal solutions gen-

constrained to move along independent roadmaps. erated with the first module will be suitable for an integrated
The concepts introduced in the remainder of this secti@jstem. However, in general, we concede that the resulting

apply to any of the above state space definitions. For thiglutions might not be feasible for many applications in which

reason we generally refer to the state space as the dynamic constraints prohibit tracking of our designed
. ) N trajectories.
X=X x X7x.- x X" 2 To evaluate the performance of each robdt, we define

‘ a loss functionalof the form
and use the notatior;(z") to refer to the transformed robot,

¢ i 1 N
A,, at configurationz®. (%init, Lgoat, w™, ---, u)
In multiple robot motion planning problems, we are not T ii(
only concerned about collision with obstacles, but also about g'(t 2'(2), ))dt+ Z (@"(1)
collisions that occur between robots. L4} denote the interior s 6
of A; (i.e., the open set corresponding to the exclusion of the 6)
boundary of.A4;). We define (see Fig. 4) which maps to the extended reals, and
[ o/ j 0 if .’L’(t) cC X, lid
- c X .A n .A J 3 ) . — ’ = valt
Xou =1 | A? (=) F(27) # 0} 3) () {oo, otherwise @

which represents the set of states in which the two robd8d o
collide. The reason for using the interior of; is to allow ¢ (#(T)) :{07 if 2/(T) = 2,4 ®)
the robots to “touch.” Thecollision subset X..; ¢ X, is oo, otherwise.
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The functiong’ represents a continuous cost function, whichlence, we can considé#];, to be either better tharworse
is a standard form that is used in optimal control theory. Waan, equivalent to, or incomparable tg'];,. We can also

additionally require, however, that apply the termswvorse and better to representative strategies
; : : . : of different quotient strategies; for instangds better thany’
gt = (1), w'() =0 if 2*(t) = 20 (9 i [y]. < [¥']z. A quotient strategyiy*] ., is minimalif for all

~|r, # [v*]r such that[y]; and[vy*]; are not incomparable,

This implies that no additional cost is received while rob enlv'l = [l

A; “waits” at xéoal until time 7°. The middle term in (6),

¢ (x(-)), penalizes collisions between the robots. The functiqr

¢*(z*(T)) in (6) represents the goal in terms of performance. If _ _ _ o _
A; fails to achieve its goal’ _,, then it receives infinite loss. In this section, we briefly state how the minimal strategies
goa relate to optimality concepts from multiobjective optimization

and dynamic game theory; a more thorough discussion appears
in [16]. The minimal quotient strategies are equivalent to the
Suppose that a coordination problem has been posedntthdominatedstrategies used in multiobjective optimization
which the state spacey, is defined, along with initial and andpareto optimastrategies used in cooperative game theory.
goal statesw;,;x and ... The goal of each robot is to Fyrthermore, we show that under the general loss functional
choose some control function; that achieves the goat,,,; (6), the minimal strategies satisfy the Nash equilibrium condi-
while trying to minimize the loss functional (6). We will tion from noncooperative game theory, which implies that for

use the notatiory® to refer to arobot strategyfor A;, 3 strategyy* = {y*---~N*}, the following holds for each

which represents a possible choice @f that incorporates ; and eachy’ € I

state feedback, representedq&$t) = ~*(z, t). We refer to P i N P ; N

v ={yL, %, ---, 4N} as astrategy Let I denote the set of O T S LT e ).

all allowable strategies. o - . (10)
For a givenz;,;; and strategyy, the entire trajectory, Pr_oppsmon LA m'_mm_al quotient strate*gy[fy_*]ﬁ,_ls_ an

«(t), can be determined. If we assume thaf.; and admissible Nash equilibrium if and only [§*];, is minimal

Ty are given, then we can writel'(y) instead of in I . .
L' (2imit Tgonts ub, ---, u). Unless otherwise stated, we Proof: The proof of this and all subsequent propositions
ity ~goals ) ) . - 1 . .
assume in the remainder of the paper th&ty) refers to the appear in Apl)pendlx A h lationshi .
loss associated with implementing to bring the robot from _ V& can also consider the relationship between our min-
some fixedz;,z; 10 T, imal strategies, and scalar optimization. In multiobjective
n generalmtzhere will be many strategieslirthat produce OPtimization literature, this is referred to aalarization

equivalent losses. Therefore, we define an equivalence relatigr: I Which a mapping that projects the loss vector to
~1, on all pairs of strategies if. We say thaty ~r +/ a scalar, while guaranteeing that optimizing the scalar loss
iff jLi(,y) — Li(y') Vi (i.e., v and~ are equivalent). We produces a nondominated strategy. This function is used in

denote theguotient strategy spacky I'/ ~, whose elements Section V, in an algorithm that determines minimal strategies.
are the induced equivalence classes. An element/of will COnsider a vector of positive, real-valued constams=

be termed aquotient strategyand will be denoted agy];, 2t P2 - Anl. such thaf|j| = 1. If we take 5; = (1/N)
indicating the equivalence class that contains forall¢ € {1, ---, N}, then the scalarizing function produces

Consider a strategyy, which producesL!(y) = 1 and a weighted-average of losses among the robots

L?() = 2, and another strategy,, which produced.* (v') = N ‘

2 andL%(y') = 1. From a global perspective, it is not clear H(y, B)=>_BiL'(y). (11)

which strategy would be preferable. Rohd{ would prefer =1

~, while 4> would prefer+’. Both robots would, however, In principle, this scalarizing function could be considered as

prefer either strategy to a third alternative, that produced a flexible form of prioritization.

L'(4") = 5 and L?(y") = 5. These comparisons suggest The scalarizing function in (11) produces a minimal strat-

that there exists a natural partial ordering on the space agfy:

strategies. Our interest is in finding the set of strategies that aré’roposition 2: For a fixedg, if v* is a strategy that mini-

minimal with respect to this partial ordering; these comprisaizes H(~, ), then the quotient strategly*]r, is minimal.

all of the useful strategies, since any other strategies wouldThis implies thatH (v, 3) can be optimized to determine a

not be preferred by any of the robots. minimal quotient strategy; however, in addition, we can apply
We define a partial orderingg, on the spacd”/ ~. The H to the set of all minimal quotient strategies (which can be

minimal elements with respect tB/ ~ will be considered obtained by our algorithms) to select a single strategy. Once

as the solutions to our problem. For a pair of elementse minimal strategies have been obtained, different values of

L, [¥]L € '/ ~ we declare thafy], =< [y]L if Li(y) < S can be used, which only requires a different selection from

Li(+") for eachi. If it further holds thatL/(v) < L7(+') for the small set of minimal quotient strategies as opposed to re-

somej, we say thafy];, is betterthan [y'];. Two quotient exploringI’. This would be useful, for instance, if the robots

strategies,[y]r and [¥']r, are incomparableif there exists were to repeatedly perform the same tasks, with preferences

somei, j such thatLi(y) < L‘(vy’") and Li(y) > L’(v’). or priorities that change over time.

. Relationships to Established Forms of Optimality

B. A Proposed Solution Concept
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I1l. M OTION PLANNING ALONG FIXED PATHS

In this section, we consider the problem of coordinating the
motions of multiple robots, when each robot is independently
constrained to traverse a fixed path. This work makes some
new contributions to the problem of coordinating multiple
robots along fixed paths. First, we generalize the coordination
space to more than two robots by exploiting the cylindrical
structure ofX,,;. We have also shown through homotopy that
few minimal quotient strategies will typically exist, and present
an algorithm that determines the minimal quotient strategies.

A. Concepts and Definitions

We assume that each robot;, is given a pathy?, which 19 1. See the proof of Proposition 3.

is a continuous mappingp, 1] — C¢,,.,- Without loss of

generality, assume that the parameterizatiorf @ of constant along the path. The choice taken by a rohdt, is referred
speed. LetS? = [0, 1] denote the set of parameter valueo as anaction which is denoted at stagé as ui. The
that place the robot along the path. We define apath set of actions for the robots at a given stage is denoted by

coordination spac@sS = S' x 8% x --- x SV, up, = {ul, ---, ul'}. The choices for, can be represented
A Stratng’V € I' must be provided in whichs;,;; = as 0, for no motion and 1 to move forward We can specialize
(0,0, 0) andsgoq = (1, 1, - -+, 1), and the robots do not (5) to obtain the next state fronf(si), with action,
colllde ThIS corresponds to movmg each robot frehi0) to S
7¢(1), and we assume that a robet;, monotonically moves F(7" (1), up)
towardﬂ(l); waiting at a particular’(s) for somes’ € (0, 1) _ {Ti(si), if ul, = () 12)
is also allowed. It is assumed that the robots do not collide (st + ||vf]| At /length(79)), if ul =

with static obstacles, implying that each given path,is a ) o )
solution to the basic motion planning problem fdg (with We can approximate (6), in discrete time as
the other robots removed). X

We perform a discrete-time analysis of this problem, andLi _ I o Zrs Qi 13
partition [0, 77 into stagesdenoted by: € {1, ---, K'}. Stage (1= thlohe wi) 267 (@()) 044" (o) (13)

k refers to time(k — 1)At¢. The development of analytical, = s

continuous-time solutions would require detailed analysis far which

specific models and geometric representations; however, with kAL

discrete time, we can readily compute solutions to a variety;;(ggg‘w ui) = / gi(t, xi(t), ui(t)) dt (14)
of motion planning problems. The discrete-time representation (k—1)At

induces a discretization of the state space, which is typicafyd
obtained in motion planning research (e.g., [18]). The tradeoff i; (2() = { 0, if z(t) g S7, Ve [(k—1)At, kAt]
is that general completeness is sacrificed, and replacessby ’“ oo, oOtherwise.
lution completenessvhich is typically applied to approximate (15)
decomposition methods [15]. This implies that our method
will find solutions that exist at a certain resolution, and thi$he Ii and g’ terms of (13) comprise the standard terms that
resolution can be arbitrarily improved. We assume that we c@RPear in a discrete-time dynamic optimization context [2].
send an action (Or motion Command) to each robot em‘;ry The middle term C“ represents the interaction between the
Discretized time allowsS to be represented by a finiterobots, by penahzmg collision. As will be seen shortly,
number of locations, which correspond to possible positioMdll typically be considered as a constant, which for instance,
along the paths at timé&A¢ for some k. For each robot, measures time.
say A;, we partition the intervalS' = [0, 1] into val- Before discussing the algorithm in Section III-B, we will
ues that are indexed by € {0, 1,---,4 1}, in which provide a proposition that characterizes the quantity of mini-
it .. is given by |length(r? )/||v1||AtJ Each indexed value mal quotient strategies that can existif~, for the fixed-path
yields 71 (it ||vt||At/length(71)). We denote the discrete-timecoordination problem. It might appear that there could be
approximation of the path coordination space &s This numerous minimal quotient strategies, even for only two
yields a restricted space of strategiesC I'. We consider robots. For instance, suppose there were strategies that pro-
S.ou andS,.zi4, however, as continuous subsets®fThese duced losses.! = ¢ and L? = 10000 — ¢ for eachi €
can be considered as approximate, cellular representationd bf---, 10000}. No pair of these strategies are comparable,
Seon and 8,44, respectively (in which cell boundaries areand hence they could all be minimal. In multiobjective opti-
determined by elements if). mization the existence numerous or even an infinite number
During the time interva[(k — 1)At, kAt] each robot can of solutions often causes difficulty [27]. We show that at
decide to either remain motionless, or move a distdhégAt  least for the case in which time-optimality is of interest (i.e.,



916 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 6, DECEMBER 1998

1 Let M(5g0m) = {{0, [0 0,...,0],0)}, and all other M(3) be @
2 For each ¢! from i} _ down to 0 do

maa:

3 For each i* from i2,, down to 0 do
4 For each i" from ¥ down to 0 do
5 Let 5= (il,2,...,i")
6 Let M, be a set of strategics that is the union of M(3")
for each §' € N (3)
7 Construct a set M, be extending the strategies in M,
8 Let M(8) consist of all unique-loss minimal elements of M,

9 Return M(Sin:)

Fig. 2. For a time-invariant problem, this algorithm finds all of the minimal quotient strategiés in

1 Initialize R
2 Let W() - {Finit}
3 =0
4  Until W, =0 do
5 For each 7 € W, do
6 Let M, be a set of strategies that is the union of M(7)
for each # € N(F)
7 Construct a set M, by extending the strategies in M,
8 Let M(7) consist of all unique-loss minimal elements of M,
9 Leti=1+1
10 Let W; be set of all neighbors of W;_; that have not yet been processed

11 Return M(F'Lnit)

"

Fig. 3. Suppose thaak

K p (f,ul) = At for all k € {1,.--, K} and¢ € {1,---, N}. This algorithm finds all of the minimal quotient strategies
in R' x R? x - X

, 0
7%\/

I(xi, wi) = At for all 4, k), there are very few minimal
quotient strategies because each must be obtained from a /_\
distinct path class IS, 4iq- \4
A given strategyy € I yields a trajectory: [0, 7] — S
through the coordination space. A different strateglye I X
yields a trajectoryx.,/. The two pathg, anda/, arehomotopic
iN Syatid (with endpoints fixed) if there exists a continuous
map h: [0, T] x [0, 1] — Suazia With A(t, 0) = a.(t) and
h(t, 1) = o (t) for all ¢t € [0, T, and (0, s) = h(0, 0) and
h(1, s) = h(1, 0) for all s € [0, 1]. This homotopy determines
an equivalence relation on the state trajectories, and hence on
the space of strategief. Note that sincew., is monotone,
the path classes defined hererdu represent the fundamental
group from homotopy theory; there are far fewer path classes

in this context. x!
Using these path classes we have the following proposition:
Proposition 3: If li(g;;“ ui) = Atforallie {1, ---, N} Fig.4 The setXm” and its cylindrical structure oX.
andk € {1, ---, K}, then there exists at most one minimal

quotient strategy per path class fqiq- We construct a data structure that maintains the complete

set of minimal quotient strategies from each discretized value,
B. Algorithm Presentation s € 8. Each positiors = (s!, s?, - -+, s%) in the coordination

In this section we present an algorithm that determines gacesS will contain a list of mlnlmal strateg|eM( ), which
of the minimal quotient strategies Iy~ by applying the dy- reach (1, 1, 1) from 3. In M(3), we have only one
namic programming principle to the partially-ordered strateg’ﬁ’Presenta“Ve strategy for each classjf. Each element
space. We represent bafh,;; andS asN-dimensional arrays. m € M(s) is of the form
A strategyy € F_r_nust ensure that the _robots do not collide m = (g, [L* L¥ - LN*], ). (16)
during the transitions fromx; to zx41 (i.e., z(¢) does not
produce a collisiorVt € [(k — 1)At, kAt]). In practice, this Above,u; denotes the vector of actions that are to be taken by
computation depends on the type of curfethe geometry of the robots, in the first step of the strategy representechby
A;, and the type of transformation that is performed to obtalBachL’* represents the loss that the robbt receives, under
Ai(z?). the implementation of the minimal strategy thatrepresents.
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25

201

l‘“““\\“‘

{

st
| Robot 3

104

10
Robot 1

1
Rcbot 2

(@) (b)

Fig. 5. A coordination space for a three-robot fixed-path problem.

Using (12), the actionsy, will bring the system to some We now discuss how to execute a strategy that is represented
§'. At this location, there will be a sef\/ ("), of strategies asm € M(3). If the actiomy is implemented, then a new state
represented, angl above indicates which element &/ (') § will be obtained. The index parameter,is used to select
will continue the strategy. the jth element ofA/(§'), which represents the continuation of
For a given states, it will be useful to represent the set of allthe minimal strategy. From thgh element ofA/(§’), another
states that can be reached by trying the various combinati@wiion is executed, and a coordination stdtés obtained. This
of robot actions that do not yield a collision (one can easiljeration continues until the goal state 1, -- -, 1) is reached.
check the array representation &j. Define N(5) C S as The following proposition establishes the correctness of the
the neighborhoodof the states, which corresponds to thesealgorithm:
immediately reachable states. Formally we have Proposition 4: For a time-invariant problem, the algorithm
~ ., ~ ~ . presented in Fig. 2 determines the complete set of minimal
N@r) = {8 = (3, we) | v € U and f(3, ur) € Swatia}  quotient strategies ifi/~ for X = § = 8L x &2 x -+ x SV

We now briefly discuss the computational performance of

in which £, represents the next state that is obtained for thge aigorithm. Let) denote the maximum number of cells per
vector of robot actionsy;,, andU denotes the space of possiblejimension in the representation &f Let M denote the max-

action vectors. imum number of minimal quotient strategies that can appear

Consider the algorithm in Fig. 2. Only a single iteration i$; somes. At each location in the state spa@ — 1 action
required over the coordination space. The algorithm terminaig$mbpinations are considered. in which at mést strategies
when the minimal quotient strategies have been computgd extended. Tim&(M) is required to insert the extended

from each state that is connected to the goal. Note that ti$;teqy into the new list, and remove any dominated strategies

algorithm does not require one to determigin advance. (on improved data structure could be used in this case). The
In Line 1, all states are initially empty, except for the go

. , _ or orst-case time complexity i©(Q~ 2" M?), and the worst-
state. Lines 5-8 are iterated over the entire coordination spaggse space complexity B(QN M). Although the complexity

starting at the goal state, and terminating at the initial stafg. exponential in the number of robots, the algorithm is
At each elementgs, the minimal strategies are determinedsicient for a fixed V.

by extending the minimal strategies at each neighborhood
element.

Consider the extension of some € M(s') in which C. Computed Examples
s' € N(5). Let u;, be the action such that = f(5, ug).

. i ) N The algorithms presented in this paper were quickly imple-
Suppose thatn is theith element inM (s'). The loss for the

mented in Common Lisp on a SPARC 10 workstation with

extended strategy is given by only 84 FL MIPS and 73.7 IN MIPS. No consideration was
: 0 if 5 =1 given to reducing computation time; however, the computation
Ly = {L’Z' LT(F, ul), otherwise (18) times are given for comparisons between examples.
BT TR In Fig. 5(a) we show an example in which there are three
for each: € {1, ---, N}. Suppose that is the jth element robots. The initial positions are indicated in Fig. 5(a};

in M(8'). The third element ofn [recall (16)] represents anis black, A, is white, and.As is gray. Fig. 5(b) shows the
index, j, which selects a strategy i/ (s"). computed representation 6t The axes show distances along
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o

1
1
M~
1
o,
™~
A

1 mell 1

*

T3 Vs

Fig. 6. A problem that yields four minimal quotient strategies.

the paths. The cylindrical structure ifi.,; can be clearly V. MOTION PLANNING ALONG INDEPENDENT ROADMAPS
observed in th?s_example. The two vertical columns correspond|n this section, we present a method that determines minimal
to the two collisions that can occur betwedn andAz. Each  gategies for the case in which each robot is constrained to

of the two horizontal columns represents collisionsQfwith  ayerse a network of collision-free paths. Many of the general
A or A,. There were 3125 collision checks which t00k 18%,ncents are similar to those from the last section: however,

and the solution computation took 9s. There are two minimglg tonological structure of a Cartesian product of roadmaps
quot|er!t strategles_ for this proble_m, for Whlch re_presentatlyﬁakes this problem more complex.
strategies are depicted as paths in the coordination space.
Fig. 6 shows a three-robot example in which two robot&
move along “S"-curves, and the third robot moves horizon-’
tally. There were 17 721 collision checks which took 124s, We consider aoadmapfor A; to be a collection of constant-
and the solution computation took 37s. There are four minimépeed curves7”, such that for each; € 7°, 7;: [0, 1] —
quotient strategies for this problem, which produce losses. C,.;;4- The endpoints of some paths coincidedf,;;,, to
form a network.
Recall that in the previous section we considered robot
coordination on the Cartesian product of unit intervals, which
Strategy Lossl Loss2 Loss3 represented the domains of the paths. For the roadmap coordi-
N 81 75 30 nation problem, we will coordinate the robots on the domains
of the functions in7*. Let R* denote a set that represents

Concepts and Definitions

72 7 7 82 the union of transformed domains of the pathsZih Using
Vi 33 73 41 the R*s, we can describe @aoadmap coordination space
i 73 {0 30 R=R)x R? x --- x RN. A position € R in indicated

by specifying both a path and a position along that path, for
each of the robots.
Each integer represents the number of stages required té\ problem is specified by providing an initial configuration,
reachz? ;. In the lower portion of Fig. 8, we show four+} ., € R, and a goal configuration! , € R’ for each
sets of timing diagrams, each of which corresponds torabot, .A;. An individual roadmap could also be extended to
representative minimal quotient strategy that was computever a new initial or goal position in a motion planning query
Each graph indicates whether a robot is moving or waitinf.5]. During the time interva](k —1)At, kAt] each robot can

as a function of time. decide to either remain motionless, or move a distdhépAt
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Both of these differences increase the difficulty of defining
the neighborhood of a state. For an example of a neighborhood
in the roadmap coordination problem in which = 2,
consider Figs. 7 and 8. For this example, the second robot
is approaching a junction, while the first robot is in the middle
of a path. The white circles in Fig. 7 indicate the positions of
the robots at staté, and the black circles indicate possible
locations of the robots at the next staté, The representation
of this situation inR is shown in Fig. 8. For this problem,
there are 11 possible choices #or For each representation of
somem € M (5), in addition to the components in (16), we
store an index when necessary that indicates which new paths
are chosen by the robots.

The algorithm is described in Fig. 3. A set of roadmap
coordination states, termed waavefronf W;, is maintained
in each iteration. During an iteration, the complete set of

() _mjr_wimal strategies is determined for each element\pf The
Fig. 7. A two-robot example in which one of the robots can make a decisicl)ﬂItlal wavefropt,Wq, contains only the goal state. Each new
about which path to continue along. wavefrontW; is defined as the set of all states that:

1) can be reached in one stage from an elemem¥jn
2) are not included in any ofV;_{, ---, Wo.

The algorithm terminates when all states have been consid-
ered. This algorithm could be viewed as a multiple-objective
extension of the wavefront algorithm that is used in [3].

The following proposition establishes the correctness of the
algorithm:

Proposition 5: The algorithm presented in Fig. 3 deter-
mines the complete set of minimal quotient strategieﬁﬁﬂ,
whenX =R =R! x R? x --- x RN,

We now briefly discuss the computational performance of
the algorithm. Let@ denote the maximum number of cells
per dimension in the representation &. Let M denote
the maximum number of minimal quotient strategies that
Fig. 8. The corresponding path branch in the representatioR.of can appear at somg& At each location in the state space,

usually 3V — 1 action combinations are considered, in which
in either direction along a path. Also, if the robot moves intat most M strategies are extended. At junctions, however,
a roadmap junction, then a new path must be chosen.  more actions can be considered, but we neglect these because
they occur atO(Q™1) cells. Time O(M) is required to
insert the extended strategy into the new list, and remove
o any dominated strategies. The worst-case time complexity

We consider the case in whidh (), u;) = At for all js O(QN3VM?), and the worst-case space complexity is
i, k. We construct the discrete representatioRs,; and’R,  O(QNM). If, however, we letQ denote the number of
which are similar toS.,; and S, and build one array for maximum number of cells per representation of a path, and let
each combination of path choices for the robots, each pfdenote the maximum number of paths in a roadmap, we ob-
which can be constructed in the same manner assSfor  tain time complexityO(Q™ PN 3N M?) and space complexity
andS. This representation can be considered as a network@fQ™ PN f). Hence, the computational cost is significantly
coordination spaces. increased if many more quantized values are needed to repre-

There are two primary differences between the roadmapnt a roadmap, when compared to a single path.
coordination problem and the fixed path coordination problemThe algorithm in Fig. 3 can be scalarized in the same

in terms of the algorithm development. The first differencganner as discussed in Section 11I-B. In additiotf, search
is that robots orR are allowed to move in either direCtiOﬂ.Can be performed to obtain a Sing|e minimal solution. We
For fixed paths, we assumed that the robots could only moygve successfully implemented an algorithm that perfaghs

forward along a path. By allowing the robots to move in eith%’earch on the roadmap coordination space.
direction, there are usualB/ —1 choices for;, as opposed to

2N _1 (there are additional choices when one or more robots
moves into a junction, because a new path must be select&j).
The second major difference is the complicated topology of We present some computed examples that were obtained
R, as opposed t& which is a unit cube. with the algorithm in Fig. 3. There were 1620 collision checks

B. Algorithm Presentation

Computed Examples
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Fig. 9. Two symmetric minimal quotient strategies were computed.

which took 18s, and the solution computation took 17s. Fig. 9
shows the two unique-loss minimal strategies side-by-side, |
for an “H"-shaped roadmap coordination problem in which ‘
two robots attempt to reach opposite corners. The black an
white discs represemd; and.A;, respectively. The black and
white triangles indicate the goal configurations. Intuitively, for
this problem, one would expect two symmetric possibilities to
exist: either4; has to wait, or4, has to wait. These two
situations are precisely what are obtained in the two minimal
guotient strategies. (@ (b)

Figs. 10 and 11 present one minimal strategy in a roadmap
coordination problem that involves three robots$f, with
different roadmaps for each robot. There were 42 875 collision
checks which took 242s, and the solution computation took
13 m.

Fig. 12 presents an example in which there are two robo
in the plane that move along independent roadmaps. The con-
figuration spaces of the individual robots is three dimensional
in this case because robots can rotate while moving along
the roadmap. There are five minimal quotient strategies for
this problem, and the two that are shown do not require
either robot to wait. There were 94 249 collision checks which © (@
took 287s, and the solution computation took 11 m. Quifeg- 10. (a)-(c) show the independent roadmaps for, A2, and As,
distinct routes, however, are taken by the robots in the differdfgPectively. and (d) shows the initial positions on the roadmaps.
strategies. The collision region only comprises 9.89%; 83.0%
of R corresponds to states in which there is only one minim&drms of solution alternatives; one minimal quotient strategy
strategy. Also, 6.52% holds two solutions; 0.602% holds threait of sixteen is represented in the figure.
solutions; 0.0265% holds four solutions; and 0.002 12% holds
five strategies, which is the maximum for this problem. V. CENTRALIZED MOTION PLANNING

Fig. 13 shows the minimal quotient strategies for a problem __ . . . . . .
in which there are three robots that can translate or rotate' IS Section briefly discusses an algorithm that determines

along roadmaps. There were 327 488 collision checks whi@R® discrete—ltime min2imal strategy ?\,n the unconstrained state
took 38 m, and the solution computation took 8 h (most GPacEX = Cypiig X Cigriq X -+ X Cugiig- A more thorough
the computation is overhead due to naively processing {REesentation appears in [16].
wavefront as a LISP list). o

Fig. 14 shows another “H’-shaped roadmap coordinatidh Concepts and Definitions
problem; however, in this case there are three robots, andVe first choose a vectofi such that a linear scalarizing
they rotate along the roadmaps. There were 425568 collisifumction, H, is defined using (11). As opposed to a point goal
checks which took 17 m, and the solution computation todk X, we allow each robot goal to be a subs&t, c X'.
14 h. This problem is perhaps one of the most complex e approximate (5) by discrete-time state transition equations,
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4. 5.

Fig. 11. A representative of one of four minimal quotient strategies.

Suppose that at some stafgethe optimal strategy is known

y - for each stagé € {k, ---, K}. The loss obtained by starting
from stagek, and implementing the portion of the optimal
A & strategy.{vi, - -, 7i }. can be represented as
K
Fig. 12. Two of five minimal quitient strategies for a two-robot problem o ; ; ;
Wi%h rotation. ! ’ P Ly (@) = Z L (@ g ) + Z e (2())
k' =k i
+ qi(ﬂﬁjm-l)- (20)

The functionL;(z;) is sometimes referred to as tbest-to-go
function in dynamic optimization literature. For this context,
iy we modify the definition ofg’(x% ) in (6), by replacing
Robot 3 z2(T) = «*,,, with 2*(T) € X¢.

Robot 1 Robot 2

goa ) X
—1 1 m——— ————1 ~ We can convert the cost-to-go functions into a scalgr func-
tion by applying H(vy, ) [from (11)] to obtain H;, which
I e R, B a— ramia] s ——

‘ represents a single cost-to-go function.

] Se— pm— S The principle of optimality implies thaf; (z;) can be
obtained fromH;_ ,(-) by selecting an optimal value fary.
The following recurrence represents the principle of optimality
‘ o for our context

ry 1 = fu(wy, ug). For the computed examples that we will

present, we model translation 7 in discrete time. We define N N

the action space for roba#; as U’ = [0, 2m) U {Q}. If H;(x) = min Zﬁili(wk, Uk)+22/37;cg(a:i(~))
ui € [0, 2r), then A" attempts to move a distandp’|| At un €U | i ey

toward a direction inC*, in which ||v*|| denotes some fixed

speed forA. If «i = 0, then the robot remains motionless. "

The state transitién equation for rohdt; is + Hin (o) o (21)

Fig. 13. A problem that has three minimal quotient strategies.

[1] + [lv* | At cos (“}) (19) For each choice ofuy, zx+1 is obtained by applyingf;,

(2] + [l | At sin (u) |7 for eachi € {1, ---, N}. The boundary condition for this

x
X

=

i
L1 =

™
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Fig. 14. One solution out of sixteen is shown for three rotating robots.

VI. CONCLUSION

We have presented a general method for multiple-robot
motion planning that is centered on a concept of optimal-
ity with respect to independent performance measures, and
have presented motion planning algorithms, which were each
derived from the principle of optimality. These algorithms
pertain to three problem classes along the spectrum between
centralized and decoupled planning:

1) coordination along fixed, independent paths;
2) coordination along independent roadmaps;

Fig. 15. One representative minimal quotient strategy is given for two 3) general, unconstrained motion plannlng for multlple
robots, allowed to translate i®2. robots.
Computed examples were presented for all three problem
classes that illustrate the concepts and algorithms.
One useful benefit of the algorithms presented in this paper
is that the minimal quotient strategies from all initial states
N o are represented (for a fixed goal). This could be useful if we
Hico1 =Y pig (aheq)- (22)  are repeatedly interested in returning the robots to some goal
=1 positions without colliding, if the initial locations vary. We
could alternatively exchange the initial state and goal states

We can begin with stag& + 1, and repeatedly apply (21)in the algorithms. This would produce a representation of
to obtain the optimal actions. The cost-to-gH;;,, can be Minimal quotient strategies to all possible goals, from a fixed
determined fromH},,, through (21). Using they, € U initial state. This initial state can be interpreted as a “home”
that minimizes (21) atrx, we definey: (zx) = ug. We position for each of the robots. After running the algorithm,

then apply (21) again, using% to obtain H%_, andv%_,. the robots can repeatedly solve different goals, and return to

recurrence is given by

These iterations continue unéil = 1. Finally, we takey* = the home position by reversing the strategy. N
{¥f, -+, 7i}. The final cost-to-go function is essentially a Coordination on roadmaps provides enough maneuverability
global navigation function [20]. for most problems; however, in general, completeness with

respect to the original problem is lost when restricted to
roadmaps. Roadmaps have traditionally been determined for
B. Computed Examples motion planning of a single robot, and some additional issues
We present a computed example that was obtained withn be considered when constructing roadmaps for the purpose
the algorithm described in this section. The example involve$ coordination. For example, if each roadmap contains at
motion planning for two robots, which are allowed to indeleast one configuration that is reachable by the robot, and
pendently translate i®? (without restriction to a path or avoids collisions with the other robots, regardless of their
roadmap). For the problem in Fig. 15, (11) was used wittonfigurations, then general completeness is maintained. For
B1 = B2 = (1/2). There were 160000 collision checks whiclexample, we could give each robot an initial configuration in
took 17 m, and the solution computation took 7 h. In thea home position or “garage,” in which other robots are not
solution, neither robot is required to wait. allowed to enter.
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In [11], prioritization is introduced, and successive motiofiy*],. Since [y]r is minimal in [I'];, then it must be an
plans are constructed to prevent collision with robots a@fdmissible Nash equilibrium by the first part of this proof.
higher priority. One could extend prioritized path plannin@his contradicts the assumption that'];, is an admissible
to prioritized roadmap constructionConsider, for instance, Nash equilibriunid
the greater amount of coordination flexibility that a rises in Proposition 2: For a fixed, if v* is a strategy that mini-
multiple-lane streets for automobiles, as opposed to one-lan&es H (v, 3), then the quotient strategyy*]. is minimal.
streets. A similar principle could be applied to the construction  Proof: Suppose to the contrary thigt‘] ., is not minimal.
of roadmaps for multiple robots. Then there exists somg such thaty < ~*. This implies that

Traditional prioritization can be generalized within out‘(y) < L‘(~*) for eachi € {1, ---, N}, and there exists
framework, to reduce the computational cost at the expensesofne: for which this inequality is strict. By comparing the
losing completeness. Suppose that we wish to coordinate nieems in (11), we determine th& (v, 8) < H(~v*, 8). This
robots along fixed paths. As opposed to directly prioritizing theontradicts the fact that the choice gf minimizes H, which
motions or building a nine-dimensional coordination spacestablishes the propositiag.
consider dividing the robots into three groups of three. For Proposition 3: If I} (x%, i) = At forall i € {1, ---, N}
each group, the algorithm in Fig. 2 (or a variation of it) caand k € {1, ---, K}, then there exists at most one minimal
be applied to determine a strategy that coordinates the thegetient strategy per path class M atia-
robots. These three strategies could be constructed succes- Proof: First, consider the case in whicN = 2. Let «
sively, by interpreting the higher-priority robots as movinglenote the path that is obtained in the coordination space from
obstacles, and providing nonstationary strategies. A betteminimal strategyy. Suppose to the contrary that there exists
approach would be to consider each of the strategies asome«’ € [«];, (with strategyy’) such thaty], and[v'];, are
single path that simultaneously moves three robots (whiclistinct and minimal. The goal of this portion of the proof is to
are then considered as a single robot). The algorithm dégonstruct another path* € [«];, such that bothv*]; =< [+]%
Fig. 2 can then be directly applied to coordinate each of th@d[v*], < [y]r, and[v*]L # [v]r and[v*] # [¥']L. This
three strategies, considered as fixed paths. Issues such asihiecontradict the hypothesis, implying that the proposition
choice of groupings, and choices between prioritizing antblds for N = 2.
coordinating, must be addressed. For N = 2: The images ofx and ¢/ in S intersect in at

least two places [including (0,0) and (1,1)]. Uétbe the points
of intersection inS,,.;4. If the paths coincide from some stage
VIl. PROOFS OF THEPROPOSITIONS k until stagek’ > k, then we add only two intersection

Proposition 1: A quotient strategy[y*]., is an admissible points toV’, corresponding to when the paths initially coincide

Nash equilibrium if and only ify*];, is minimal inT". at stagek, and when the coincidence terminates at stége
Proof: Suppose thaly*];, is a minimal strategy, but not This yields a finite sety’ = {v1, va, - - -, v, } Of intersection

a Nash equilibrium. To violate the Nash condition (10), fopoints. These points are ordered according to the occurrence

some+ there must exist a strategy € I', such thaty = of the intersection along. Note that we always have, =

{71*7 Ty 71—1*7 ,Viv ,yi-l-l*’ Ty ,YN*} andL7(7) < L7(7*) (O’ 0) andvnl = (11 l)

If [v]z = [v*]z, then a contradiction would be reached. The patha* that we will construct will intersectr and o’

Since Li(y) < L(v*), then we would havédy]; = [y*]; atevery pointinV. Letw; ;, fori < j, denote the portion of

if Li(y) = L;(v*) for all j # i. We will establish that this the patha that lies betweem; andwv;. Forl < i < m —1,

is indeed true by analyzing the loss functional definition inompare the lengths i of «; ;41 and«] ;. A shorter path

(6), (7), and (8). Consider any # 7. We argue that each length will always cause the robots reagh; from v; in less

of the three additive terms in (6) remains fixed whenis time. Since the passage of time produces the same loss for

replaced byy. The functiong’ (¢, z7(t), v/(¢)) depends only all robots, any strategy that reachgs, from v; in less time

on the robot strategy’*, and not on the other robot strategiess better than or equal to a strategy that takes more time. For

Sincey7* remains the same in and~*, ¢/(¢, 29(¢t), v/(¢)) this reason, we let} ,,, = «; ;41 whenevery; ;. is shorter

remains constant. We must haw& (z(-)) = 0 under the than @ 11, Otherwiseal | ;1 = of ;4.

implementation ofy; otherwise, we would havd.’(y) = If we were to complete the construction ef by taking

oo, which implies that4; and A; collide. The trajectories, o, ,, = m-1,m O &1, = &4, then the

2%(-), of the other robots do not change, which impliegesulting strategyy* would be better than or equivalent to

that ¢’(«7(T)) remains unchanged. Hence, we must hawither~ or v'. To contradict the hypothesis, however, we are

Li(y) = Li(~*) for all j # i [i.e., (6) remains constant]. Thisrequired to construct a@* that is better than or equivalent to

implies, however, thaty];, =< [vy*]r, which is a contradiction both v and +'.

to the minimality assumption. Sincg*]; is both minimal For this final piece ofx*, consider Fig. 1. The lower left

and a Nash equilibrium, there does not exist another Nasbrner represents the intersection paipt 1, and the upper

equilibrium that is better, thereforgy*]; is an admissible right corner is the goaly,, = (1, 1). There are two thick

Nash equilibrium. black lines that connect,, ; to v,, and represent some

Suppose thafy*] is an admissible Nash equilibrium, bute,,—1,» and«;,, ; ,,,. We will determine the final piece of
not minimal in I'. Then, there exists a minimal quotienin™ without leaving the region formed by the two paths (hence
strategy[y];, € I'/~ such that[y];, =< [v*]., and[y];, # the exterior is shaded in the figure). Since both strategies are
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in the same path class, it is known that this region is free 8t each inductive step, the extended strategies are functions of
collisions. states for which minimal strategies have already been obtained
We will use the principle of minimality to construct the(i.e., in the upper right portion of the coordination space). This
final path segment. Since the algorithm in Fig. 2 produces thgpe of induction forms the basis of Dijkstra’s algorithm, for
complete set of minimal strategies, then is it sufficient to shogxample, for single-source shortest paths [10].
that the algorithm produces only one minimal strategy,at ~ Proposition 5: The algorithm presented in Fig. 3 deter-
The path that corresponds to this minimal strategy will b@ines the complete set of minimal quotient strategies fr,
designated as},_; ,,. Recall that the algorithm begins in thevhen X = R = R* x R? x .- x RY.
upper right corner and progresses from right to left, and top- Proof: We use an inductive argument that is based on the
down. Along the upper and right most boundaries, there a&nciple of minimality. After theith iteration of the algorithm,
unique minimal strategies. These serve as initial conditior®dl minimal strategies that complete in time less thext are
and it will be argued inductively that eadt (3) will contain represented. After the iteration fow, all of the single-stage
only one element. At each iteration, there are at most thrBdnimal strategies are determined (corresponding to all of the
minimal strategies that can be constructed, which correspddigments ofVy), forming the basis of the induction. Consider
to the three possible choices fay. If from a given state, the the wavefrontV; under the assumption that minimal strategies
actionsul = 1 andu? = 1 do not produce a collision, thenhave been determine_d_ for all elements in the wavefronts
the resulting extended strategy will always be better than théi—1» =+ -+ Yo. Any minimal strategy for a statec WV; must

other two choices. If these actions do produce a collision, thEgfluire exactly stages to reach the goal. If it were possible to
there is only one allowable action set (eithér= 0 andu? = achieve the goal in fewer stages, thavould have appeared
1, orut = 1 andu? = 0) that does not produce a collisionin an earlier wavefront. By the principle of minimality over

and hence there will only be one minimal strategy. If thef¥Me, any minimal strategy that requirésstages must be an

were two possible action sets then due to the monotonicity ftension of some substrategy that required stages, which
as already been considered in a previous wavefront. Hence,

o, the two choices would lead to two different path classe%], ; . . .
e extension constructs the minimal strategie¥\in which

which contradicts the initial hypothesis. At the final iterationt, . .
ompletes the inductive stefl

M (vy,—1) will contain only one minimal strategy. The pathC
corresponding to the minimal strategy is used to compiéte
resulting in the contradicting strategy. ACKNOWLEDGMENT
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