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Optimal Motion Planning for Multiple
Robots Having Independent Goals
Steven M. LaValle,Member, IEEE,and Seth A. Hutchinson,Member, IEEE

Abstract—This work makes two contributions to geometric
motion planning for multiple robots:

1) motion plans are computed that simultaneously optimize
an independent performance measure for each robot;

2) a general spectrum is defined between decoupled and cen-
tralized planning, in which we introduce coordination along
independent roadmaps.

By considering independent performance measures, we intro-
duce a form of optimality that is consistent with concepts from
multiobjective optimization and game theory literature. Previous
multiple-robot motion planning approaches that consider opti-
mality combine individual performance measures into a scalar
criterion. As a result, these methods can fail to find many po-
tentially useful motion plans. We present implemented, multiple-
robot motion planning algorithms that are derived from the
principle of optimality, for three problem classes along the spec-
trum between centralized and decoupled planning:

1) coordination along fixed, independent paths;
2) coordination along independent roadmaps;
3) general, unconstrained motion planning.

Computed examples are presented for all three problem classes
that illustrate the concepts and algorithms.

Index Terms—Game-theory, mobile robots, motion planning,
multiobjective optimization, multiple robots, obstacle avoidance,
path planning, scheduling.

I. INTRODUCTION

T HIS paper addresses problems in which the task is to
simultaneously bring each of two or more robots from

an initial configuration to a goal configuration. In addition
to ensuring collision avoidance, each robot has a real-valued
performance measure (or loss functional) to be optimized.

This final point differs from previous approaches to
multiple-robot motion planning. Typically, if optimality is
considered, individual performance measures for the robots
are combined into a single scalar criterion. For example, in [6]
and [23] the criterion is to minimize the time taken by the last
robot to reach the goal. In [26], the performance measures are
added to yield a scalar criterion. When individual performance
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measures are combined, certain information about potential
solutions and alternatives is lost [21]. For example, the amount
of sacrifice that each robot makes to avoid other robots is not
usually taken into account. It might be that one robot’s goal is
nearby, while the other robot has a distant goal. Combining the
performance measures might produce a plan that is good for
the robot that has the distant goal; however, the performance
of the other robot would be hardly considered.

Given a vector of independent performance measures, we
show that there exists a natural partial ordering on the space of
motion plans, yielding a search for the set of motion plans that
areminimalwith respect to the ordering. Our approach can be
considered as filtering out all of the motion plans that are not
worth considering, and presenting the user with a small set of
the best alternatives. Within this framework additional criteria,
such as priority or the amount of sacrifice one robot makes,
can be applied to automatically select a particular motion plan.
If the same tasks are repeated and priorities change, then one
only needs to select an alternative minimal plan, as opposed
to reexploring the entire space of motion strategies. We also
show that the minimal strategies are consistent with certain
optimality concepts from multiobjective optimization [21] and
dynamic game theory [2] literature.

Previous approaches to multiple-robot motion planning are
often categorized ascentralizedor decoupled.A centralized
approach typically constructs a path in a composite config-
uration space, which is formed by the Cartesian product of
the configuration spaces of the individual robots [1], [3], [22].
A decoupled approach typically generates paths for each robot
independently, and then considers the interactions between the
robots [7], [11]. In [6], [9], and [18], robot paths are inde-
pendently determined, and a coordination diagram is used to
plan a collision-free trajectory along the paths. The suitability
of one approach over the other is usually determined by the
tradeoff between computational complexity associated with a
given problem, and the amount of completeness that is lost.

In addition to introducing multiple-objective optimality to
the multiple-robot geometric motion planning, we expand
the traditional view of centralized and decoupled planning
by considering these two approaches as opposite ends of
a spectrum. An approach that only weakly constrains the
robot motions before considering interactions between robots
could be considered as lying somewhere in the middle of the
spectrum. By utilizing this view, we show that many useful
solutions can be obtained by constraining the robots to travel
on independent networks of paths calledroadmaps.Many
approaches exist that construct roadmaps for a single robot
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[8], [19] which can be used as a preprocessing step in our
coordination approach.

Our algorithms are based on applying the dynamic program-
ming principle to generate multiple solutions in a partially-
ordered space of motion strategies. The generation of these
solutions is significantly more challenging in comparison to the
standard case of scalar optimization. Many variations of dy-
namic programming for scalar optimization have been applied
in motion planning [13], [17], [24] and in AI planning [4],
[5], [25]; however, techniques are presented in this paper to
derive multiple solutions for the case of multiple, independent
performance measures.

II. PROBLEM DEFINITION AND GENERAL CONCEPTS

A. Basic Definitions

Each robot, , is considered as a rigid object, capable of
moving in a workspace that is a bounded subset ofor .
The position and orientation of the robot in the workspace
are specified parametrically, by a point in an-dimensional
configuration space, . There are static obstacles in the
workspace (compact subsets of or ) that prohibit certain
configurations of the robot, . The closure of the subset of

that corresponds to configurations in which does not
intersect any obstacles is referred to as thevalid configuration
space, [15].

We define astate space, , that simultaneously represents
the configurations of all of the robots. A natural choice for
the state space is

(1)

in which denotes the Cartesian product. In this paper, we
also consider two additional definitions of the state space that
are more restrictive. In Section III, we will consider motions of
the robots that are restricted to fixed paths, and in Section IV
we will consider a more general case in which the robots are
constrained to move along independent roadmaps.

The concepts introduced in the remainder of this section
apply to any of the above state space definitions. For this
reason we generally refer to the state space as

(2)

and use the notation to refer to the transformed robot,
, at configuration .
In multiple robot motion planning problems, we are not

only concerned about collision with obstacles, but also about
collisions that occur between robots. Let denote the interior
of (i.e., the open set corresponding to the exclusion of the
boundary of ). We define (see Fig. 4)

(3)

which represents the set of states in which the two robots
collide. The reason for using the interior of is to allow
the robots to “touch.” Thecollision subset, , is

represented as the open set

(4)

Hence, a state is in the collision subset if the interior of two
or more robots intersect. We define as the closed set

. Note the cylindrical structure of (depicted in
Fig. 4), which is exploited by our algorithms when building
a representation of the state space, allowing the number of
collision detections to grow quadratically with, as opposed
to exponentially.

The task is to bring each robot from some initial state
to some goal state while avoiding

collisions with obstacles or other robots. We consider astate
trajectory as a continuous mapping . A
trajectory for an individual robot is represented as

. The motion of an individual robot, , is specified through
the state transition equation

(5)

in which is chosen from a set of allowable controls for
.
Since we focus on the geometric aspects of a motion

planning problem, we will compute trajectories that apparently
allow a robot to switch instantaneously between a fixed speed

and halting. This represents a typical assumption in
multiple-robot motion planning [11], [14], [18]. In a sense,
the results we ultimately obtain will involve both path and
scheduling information. For most mechanical systems, the
dynamics must be taken into account at some level, and in
this paper we choose to decouple the general pick-and-place
problem into two modules:

1) motion planning/trajectory generation;
2) tracking controller.

This is a widely-utilized assumption that forms the basis
of motion planning research [15]. We expect that in many
applications, especially mobile robotics, optimal solutions gen-
erated with the first module will be suitable for an integrated
system. However, in general, we concede that the resulting
solutions might not be feasible for many applications in which
the dynamic constraints prohibit tracking of our designed
trajectories.

To evaluate the performance of each robot,, we define
a loss functionalof the form

(6)

which maps to the extended reals, and

if
otherwise

(7)

and
if
otherwise.

(8)
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The function represents a continuous cost function, which
is a standard form that is used in optimal control theory. We
additionally require, however, that

if (9)

This implies that no additional cost is received while robot
“waits” at until time . The middle term in (6),

, penalizes collisions between the robots. The function
in (6) represents the goal in terms of performance. If

fails to achieve its goal, , then it receives infinite loss.

B. A Proposed Solution Concept

Suppose that a coordination problem has been posed in
which the state space, , is defined, along with initial and
goal states, and . The goal of each robot is to
choose some control function, that achieves the goal
while trying to minimize the loss functional (6). We will
use the notation to refer to a robot strategy for ,
which represents a possible choice of that incorporates
state feedback, represented as . We refer to

as astrategy. Let denote the set of
all allowable strategies.

For a given and strategy , the entire trajectory,
, can be determined. If we assume that and

are given, then we can write instead of
. Unless otherwise stated, we

assume in the remainder of the paper that refers to the
loss associated with implementing, to bring the robot from
some fixed to .

In general, there will be many strategies inthat produce
equivalent losses. Therefore, we define an equivalence relation,

, on all pairs of strategies in . We say that
iff (i.e., and are equivalent). We
denote thequotient strategy spaceby , whose elements
are the induced equivalence classes. An element of will
be termed aquotient strategyand will be denoted as ,
indicating the equivalence class that contains.

Consider a strategy, , which produces 1 and
2, and another strategy,, which produces

2 and 1. From a global perspective, it is not clear
which strategy would be preferable. Robot would prefer

, while would prefer . Both robots would, however,
prefer either strategy to a third alternative,, that produced

5 and 5. These comparisons suggest
that there exists a natural partial ordering on the space of
strategies. Our interest is in finding the set of strategies that are
minimal with respect to this partial ordering; these comprise
all of the useful strategies, since any other strategies would
not be preferred by any of the robots.

We define a partial ordering, , on the space . The
minimal elements with respect to will be considered
as the solutions to our problem. For a pair of elements

we declare that if
for each . If it further holds that for

some , we say that is better than . Two quotient
strategies, and , are incomparableif there exists
some such that and .

Hence, we can consider to be either better than,worse
than, equivalent to, or incomparable to . We can also
apply the termsworseand better to representative strategies
of different quotient strategies; for instanceis better than
if . A quotient strategy, , is minimal if for all

such that and are not incomparable,
then .

C. Relationships to Established Forms of Optimality

In this section, we briefly state how the minimal strategies
relate to optimality concepts from multiobjective optimization
and dynamic game theory; a more thorough discussion appears
in [16]. The minimal quotient strategies are equivalent to the
nondominatedstrategies used in multiobjective optimization
andPareto optimalstrategies used in cooperative game theory.
Furthermore, we show that under the general loss functional
(6), the minimal strategies satisfy the Nash equilibrium condi-
tion from noncooperative game theory, which implies that for
a strategy , the following holds for each

and each

(10)
Proposition 1: A minimal quotient strategy, , is an

admissible Nash equilibrium if and only if is minimal
in .

Proof: The proof of this and all subsequent propositions
appear in Appendix A.

We can also consider the relationship between our min-
imal strategies, and scalar optimization. In multiobjective
optimization literature, this is referred to asscalarization
[21], in which a mapping that projects the loss vector to
a scalar, while guaranteeing that optimizing the scalar loss
produces a nondominated strategy. This function is used in
Section V, in an algorithm that determines minimal strategies.
Consider a vector of positive, real-valued constants,

, such that If we take
for all , then the scalarizing function produces
a weighted-average of losses among the robots

(11)

In principle, this scalarizing function could be considered as
a flexible form of prioritization.

The scalarizing function in (11) produces a minimal strat-
egy:

Proposition 2: For a fixed , if is a strategy that mini-
mizes , then the quotient strategy, is minimal.

This implies that can be optimized to determine a
minimal quotient strategy; however, in addition, we can apply

to the set of all minimal quotient strategies (which can be
obtained by our algorithms) to select a single strategy. Once
the minimal strategies have been obtained, different values of

can be used, which only requires a different selection from
the small set of minimal quotient strategies as opposed to re-
exploring . This would be useful, for instance, if the robots
were to repeatedly perform the same tasks, with preferences
or priorities that change over time.
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III. M OTION PLANNING ALONG FIXED PATHS

In this section, we consider the problem of coordinating the
motions of multiple robots, when each robot is independently
constrained to traverse a fixed path. This work makes some
new contributions to the problem of coordinating multiple
robots along fixed paths. First, we generalize the coordination
space to more than two robots by exploiting the cylindrical
structure of . We have also shown through homotopy that
few minimal quotient strategies will typically exist, and present
an algorithm that determines the minimal quotient strategies.

A. Concepts and Definitions

We assume that each robot, , is given a path, , which
is a continuous mapping . Without loss of
generality, assume that the parameterization ofis of constant
speed. Let denote the set of parameter values
that place the robot along the path. We define apath
coordination spaceas .

A strategy must be provided in which
and , and the robots do not

collide. This corresponds to moving each robot from to
, and we assume that a robot,, monotonically moves

toward ; waiting at a particular for some
is also allowed. It is assumed that the robots do not collide
with static obstacles, implying that each given path,, is a
solution to the basic motion planning problem for (with
the other robots removed).

We perform a discrete-time analysis of this problem, and
partition into stages, denoted by . Stage

refers to time . The development of analytical,
continuous-time solutions would require detailed analysis for
specific models and geometric representations; however, with
discrete time, we can readily compute solutions to a variety
of motion planning problems. The discrete-time representation
induces a discretization of the state space, which is typically
obtained in motion planning research (e.g., [18]). The tradeoff
is that general completeness is sacrificed, and replaced byreso-
lution completeness, which is typically applied to approximate
decomposition methods [15]. This implies that our method
will find solutions that exist at a certain resolution, and this
resolution can be arbitrarily improved. We assume that we can
send an action (or motion command) to each robot everys.

Discretized time allows to be represented by a finite
number of locations, which correspond to possible positions
along the paths at time for some . For each robot,
say , we partition the interval into val-
ues that are indexed by , in which

is given by length . Each indexed value
yields length . We denote the discrete-time
approximation of the path coordination space as. This
yields a restricted space of strategies . We consider

and , however, as continuous subsets of. These
can be considered as approximate, cellular representations of

and , respectively (in which cell boundaries are
determined by elements in).

During the time interval each robot can
decide to either remain motionless, or move a distance

Fig. 1. See the proof of Proposition 3.

along the path. The choice taken by a robot,, is referred
to as anaction, which is denoted at stage as . The
set of actions for the robots at a given stage is denoted by

. The choices for can be represented
as 0, for no motion, and 1 to move forward. We can specialize
(5) to obtain the next state from , with action

if
length if

(12)

We can approximate (6), in discrete time as

(13)

in which

(14)

and
if
otherwise.

(15)

The and terms of (13) comprise the standard terms that
appear in a discrete-time dynamic optimization context [2].
The middle term, represents the interaction between the
robots, by penalizing collision. As will be seen shortly,
will typically be considered as a constant, which for instance,
measures time.

Before discussing the algorithm in Section III-B, we will
provide a proposition that characterizes the quantity of mini-
mal quotient strategies that can exist in , for the fixed-path
coordination problem. It might appear that there could be
numerous minimal quotient strategies, even for only two
robots. For instance, suppose there were strategies that pro-
duced losses and for each

. No pair of these strategies are comparable,
and hence they could all be minimal. In multiobjective opti-
mization the existence numerous or even an infinite number
of solutions often causes difficulty [27]. We show that at
least for the case in which time-optimality is of interest (i.e.,
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Fig. 2. For a time-invariant problem, this algorithm finds all of the minimal quotient strategies in~S.

Fig. 3. Suppose thatlik(x
i
k; u

i
k) = �t for all k 2 f1; � � � ; Kg and i 2 f1; � � � ; Ng. This algorithm finds all of the minimal quotient strategies

in ~R1 � ~R2 � � � � � ~RN .

for all ), there are very few minimal
quotient strategies because each must be obtained from a
distinct path class in .

A given strategy yields a trajectory
through the coordination space. A different strategy,
yields a trajectory . The two paths and arehomotopic
in (with endpoints fixed) if there exists a continuous
map with and

for all , and and
for all . This homotopy determines

an equivalence relation on the state trajectories, and hence on
the space of strategies,. Note that since is monotone,
the path classes defined here donot represent the fundamental
group from homotopy theory; there are far fewer path classes
in this context.

Using these path classes we have the following proposition:
Proposition 3: If for all

and , then there exists at most one minimal
quotient strategy per path class in .

B. Algorithm Presentation

In this section we present an algorithm that determines all
of the minimal quotient strategies in by applying the dy-
namic programming principle to the partially-ordered strategy
space. We represent both and as -dimensional arrays.
A strategy must ensure that the robots do not collide
during the transitions from to (i.e., does not
produce a collision . In practice, this
computation depends on the type of curve, the geometry of

, and the type of transformation that is performed to obtain
.

Fig. 4. The setXij
coll

and its cylindrical structure onX.

We construct a data structure that maintains the complete
set of minimal quotient strategies from each discretized value,

. Each position in the coordination
space will contain a list of minimal strategies , which
reach from . In , we have only one
representative strategy for each class in . Each element

is of the form

(16)

Above, denotes the vector of actions that are to be taken by
the robots, in the first step of the strategy represented by.
Each represents the loss that the robot receives, under
the implementation of the minimal strategy thatrepresents.
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(a) (b)

Fig. 5. A coordination space for a three-robot fixed-path problem.

Using (12), the actions will bring the system to some
. At this location, there will be a set, , of strategies

represented, and above indicates which element in
will continue the strategy.

For a given state,, it will be useful to represent the set of all
states that can be reached by trying the various combinations
of robot actions that do not yield a collision (one can easily
check the array representation of). Define as
the neighborhoodof the state , which corresponds to these
immediately reachable states. Formally we have

and
(17)

in which represents the next state that is obtained for the
vector of robot actions, , and denotes the space of possible
action vectors.

Consider the algorithm in Fig. 2. Only a single iteration is
required over the coordination space. The algorithm terminates
when the minimal quotient strategies have been computed
from each state that is connected to the goal. Note that this
algorithm does not require one to determine in advance.
In Line 1, all states are initially empty, except for the goal
state. Lines 5–8 are iterated over the entire coordination space,
starting at the goal state, and terminating at the initial state.
At each element, , the minimal strategies are determined
by extending the minimal strategies at each neighborhood
element.

Consider the extension of some in which
. Let be the action such that .

Suppose that is the th element in . The loss for the
extended strategy is given by

if
otherwise

(18)

for each . Suppose that is the th element
in . The third element of [recall (16)] represents an
index, , which selects a strategy in .

We now discuss how to execute a strategy that is represented
as . If the action is implemented, then a new state

will be obtained. The index parameter,, is used to select
the th element of , which represents the continuation of
the minimal strategy. From theth element of , another
action is executed, and a coordination stateis obtained. This
iteration continues until the goal state is reached.

The following proposition establishes the correctness of the
algorithm:

Proposition 4: For a time-invariant problem, the algorithm
presented in Fig. 2 determines the complete set of minimal
quotient strategies in for .

We now briefly discuss the computational performance of
the algorithm. Let denote the maximum number of cells per
dimension in the representation of. Let denote the max-
imum number of minimal quotient strategies that can appear
at some . At each location in the state space, action
combinations are considered, in which at moststrategies
are extended. Time is required to insert the extended
strategy into the new list, and remove any dominated strategies
(an improved data structure could be used in this case). The
worst-case time complexity is , and the worst-
case space complexity is . Although the complexity
is exponential in the number of robots, the algorithm is
efficient for a fixed .

C. Computed Examples

The algorithms presented in this paper were quickly imple-
mented in Common Lisp on a SPARC 10 workstation with
only 84 FL MIPS and 73.7 IN MIPS. No consideration was
given to reducing computation time; however, the computation
times are given for comparisons between examples.

In Fig. 5(a) we show an example in which there are three
robots. The initial positions are indicated in Fig. 5(a):
is black, is white, and is gray. Fig. 5(b) shows the
computed representation of. The axes show distances along
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Fig. 6. A problem that yields four minimal quotient strategies.

the paths. The cylindrical structure in can be clearly
observed in this example. The two vertical columns correspond
to the two collisions that can occur between and . Each
of the two horizontal columns represents collisions ofwith

or . There were 3125 collision checks which took 18s,
and the solution computation took 9s. There are two minimal
quotient strategies for this problem, for which representative
strategies are depicted as paths in the coordination space.

Fig. 6 shows a three-robot example in which two robots
move along “S”-curves, and the third robot moves horizon-
tally. There were 17 721 collision checks which took 124s,
and the solution computation took 37s. There are four minimal
quotient strategies for this problem, which produce losses.

Each integer represents the number of stages required to
reach . In the lower portion of Fig. 8, we show four
sets of timing diagrams, each of which corresponds to a
representative minimal quotient strategy that was computed.
Each graph indicates whether a robot is moving or waiting,
as a function of time.

IV. M OTION PLANNING ALONG INDEPENDENTROADMAPS

In this section, we present a method that determines minimal
strategies for the case in which each robot is constrained to
traverse a network of collision-free paths. Many of the general
concepts are similar to those from the last section; however,
the topological structure of a Cartesian product of roadmaps
makes this problem more complex.

A. Concepts and Definitions

We consider aroadmapfor to be a collection of constant-
speed curves, , such that for each

. The endpoints of some paths coincide in , to
form a network.

Recall that in the previous section we considered robot
coordination on the Cartesian product of unit intervals, which
represented the domains of the paths. For the roadmap coordi-
nation problem, we will coordinate the robots on the domains
of the functions in . Let denote a set that represents
the union of transformed domains of the paths in. Using
the ’s, we can describe aroadmap coordination space,

. A position in indicated
by specifying both a path and a position along that path, for
each of the robots.

A problem is specified by providing an initial configuration,
, and a goal configuration for each

robot, . An individual roadmap could also be extended to
cover a new initial or goal position in a motion planning query
[15]. During the time interval each robot can
decide to either remain motionless, or move a distance
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(a)

(b)

Fig. 7. A two-robot example in which one of the robots can make a decision
about which path to continue along.

Fig. 8. The corresponding path branch in the representation of~R.

in either direction along a path. Also, if the robot moves into
a roadmap junction, then a new path must be chosen.

B. Algorithm Presentation

We consider the case in which for all
. We construct the discrete representations, and ,

which are similar to and , and build one array for
each combination of path choices for the robots, each of
which can be constructed in the same manner as for
and . This representation can be considered as a network of
coordination spaces.

There are two primary differences between the roadmap
coordination problem and the fixed path coordination problem
in terms of the algorithm development. The first difference
is that robots on are allowed to move in either direction.
For fixed paths, we assumed that the robots could only move
forward along a path. By allowing the robots to move in either
direction, there are usually choices for as opposed to

(there are additional choices when one or more robots
moves into a junction, because a new path must be selected).
The second major difference is the complicated topology of

, as opposed to which is a unit cube.

Both of these differences increase the difficulty of defining
the neighborhood of a state. For an example of a neighborhood
in the roadmap coordination problem in which 2,
consider Figs. 7 and 8. For this example, the second robot
is approaching a junction, while the first robot is in the middle
of a path. The white circles in Fig. 7 indicate the positions of
the robots at state, and the black circles indicate possible
locations of the robots at the next state,. The representation
of this situation in is shown in Fig. 8. For this problem,
there are 11 possible choices for. For each representation of
some , in addition to the components in (16), we
store an index when necessary that indicates which new paths
are chosen by the robots.

The algorithm is described in Fig. 3. A set of roadmap
coordination states, termed awavefront, , is maintained
in each iteration. During an iteration, the complete set of
minimal strategies is determined for each element of. The
initial wavefront, , contains only the goal state. Each new
wavefront is defined as the set of all states that:

1) can be reached in one stage from an element in;
2) are not included in any of .

The algorithm terminates when all states have been consid-
ered. This algorithm could be viewed as a multiple-objective
extension of the wavefront algorithm that is used in [3].

The following proposition establishes the correctness of the
algorithm:

Proposition 5: The algorithm presented in Fig. 3 deter-
mines the complete set of minimal quotient strategies in ,
when .

We now briefly discuss the computational performance of
the algorithm. Let denote the maximum number of cells
per dimension in the representation of. Let denote
the maximum number of minimal quotient strategies that
can appear at some. At each location in the state space,
usually action combinations are considered, in which
at most strategies are extended. At junctions, however,
more actions can be considered, but we neglect these because
they occur at cells. Time is required to
insert the extended strategy into the new list, and remove
any dominated strategies. The worst-case time complexity
is , and the worst-case space complexity is

. If, however, we let denote the number of
maximum number of cells per representation of a path, and let

denote the maximum number of paths in a roadmap, we ob-
tain time complexity and space complexity

. Hence, the computational cost is significantly
increased if many more quantized values are needed to repre-
sent a roadmap, when compared to a single path.

The algorithm in Fig. 3 can be scalarized in the same
manner as discussed in Section III-B. In addition, search
can be performed to obtain a single minimal solution. We
have successfully implemented an algorithm that performs
search on the roadmap coordination space.

C. Computed Examples

We present some computed examples that were obtained
with the algorithm in Fig. 3. There were 1620 collision checks
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Fig. 9. Two symmetric minimal quotient strategies were computed.

which took 18s, and the solution computation took 17s. Fig. 9
shows the two unique-loss minimal strategies side-by-side,
for an “H”-shaped roadmap coordination problem in which
two robots attempt to reach opposite corners. The black and
white discs represent and , respectively. The black and
white triangles indicate the goal configurations. Intuitively, for
this problem, one would expect two symmetric possibilities to
exist: either has to wait, or has to wait. These two
situations are precisely what are obtained in the two minimal
quotient strategies.

Figs. 10 and 11 present one minimal strategy in a roadmap
coordination problem that involves three robots in, with
different roadmaps for each robot. There were 42 875 collision
checks which took 242s, and the solution computation took
13 m.

Fig. 12 presents an example in which there are two robots
in the plane that move along independent roadmaps. The con-
figuration spaces of the individual robots is three dimensional
in this case because robots can rotate while moving along
the roadmap. There are five minimal quotient strategies for
this problem, and the two that are shown do not require
either robot to wait. There were 94 249 collision checks which
took 287s, and the solution computation took 11 m. Quite
distinct routes, however, are taken by the robots in the different
strategies. The collision region only comprises 9.89%; 83.0%
of corresponds to states in which there is only one minimal
strategy. Also, 6.52% holds two solutions; 0.602% holds three
solutions; 0.0265% holds four solutions; and 0.002 12% holds
five strategies, which is the maximum for this problem.

Fig. 13 shows the minimal quotient strategies for a problem
in which there are three robots that can translate or rotate
along roadmaps. There were 327 488 collision checks which
took 38 m, and the solution computation took 8 h (most of
the computation is overhead due to naively processing the
wavefront as a LISP list).

Fig. 14 shows another “H”-shaped roadmap coordination
problem; however, in this case there are three robots, and
they rotate along the roadmaps. There were 425 568 collision
checks which took 17 m, and the solution computation took
14 h. This problem is perhaps one of the most complex in

(a) (b)

(c) (d)

Fig. 10. (a)–(c) show the independent roadmaps forA1; A2, and A3,
respectively, and (d) shows the initial positions on the roadmaps.

terms of solution alternatives; one minimal quotient strategy
out of sixteen is represented in the figure.

V. CENTRALIZED MOTION PLANNING

This section briefly discusses an algorithm that determines
one discrete-time minimal strategy on the unconstrained state
space, . A more thorough
presentation appears in [16].

A. Concepts and Definitions

We first choose a vector such that a linear scalarizing
function, , is defined using (11). As opposed to a point goal
in , we allow each robot goal to be a subset, .
We approximate (5) by discrete-time state transition equations,



LAVALLE AND HUTCHINSON: OPTIMAL MOTION PLANNING 921

Fig. 11. A representative of one of four minimal quotient strategies.

Fig. 12. Two of five minimal quitient strategies for a two-robot problem
with rotation.

Fig. 13. A problem that has three minimal quotient strategies.

. For the computed examples that we will
present, we model translation in in discrete time. We define
the action space for robot as . If

, then attempts to move a distance
toward a direction in , in which denotes some fixed
speed for . If , then the robot remains motionless.
The state transition equation for robot is

(19)

Suppose that at some stage, the optimal strategy is known
for each stage . The loss obtained by starting
from stage , and implementing the portion of the optimal
strategy, , can be represented as

(20)

The function is sometimes referred to as thecost-to-go
function in dynamic optimization literature. For this context,
we modify the definition of in (6), by replacing

with .
We can convert the cost-to-go functions into a scalar func-

tion by applying [from (11)] to obtain , which
represents a single cost-to-go function.

The principle of optimality implies that can be
obtained from by selecting an optimal value for .
The following recurrence represents the principle of optimality
for our context

(21)

For each choice of is obtained by applying
for each . The boundary condition for this
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Fig. 14. One solution out of sixteen is shown for three rotating robots.

Fig. 15. One representative minimal quotient strategy is given for two
robots, allowed to translate in<2.

recurrence is given by

(22)

We can begin with stage , and repeatedly apply (21)
to obtain the optimal actions. The cost-to-go, , can be
determined from through (21). Using the
that minimizes (21) at , we define . We
then apply (21) again, using to obtain and .
These iterations continue until . Finally, we take

. The final cost-to-go function is essentially a
global navigation function [20].

B. Computed Examples

We present a computed example that was obtained with
the algorithm described in this section. The example involves
motion planning for two robots, which are allowed to inde-
pendently translate in (without restriction to a path or
roadmap). For the problem in Fig. 15, (11) was used with

. There were 160 000 collision checks which
took 17 m, and the solution computation took 7 h. In the
solution, neither robot is required to wait.

VI. CONCLUSION

We have presented a general method for multiple-robot
motion planning that is centered on a concept of optimal-
ity with respect to independent performance measures, and
have presented motion planning algorithms, which were each
derived from the principle of optimality. These algorithms
pertain to three problem classes along the spectrum between
centralized and decoupled planning:

1) coordination along fixed, independent paths;
2) coordination along independent roadmaps;
3) general, unconstrained motion planning for multiple

robots.

Computed examples were presented for all three problem
classes that illustrate the concepts and algorithms.

One useful benefit of the algorithms presented in this paper
is that the minimal quotient strategies from all initial states
are represented (for a fixed goal). This could be useful if we
are repeatedly interested in returning the robots to some goal
positions without colliding, if the initial locations vary. We
could alternatively exchange the initial state and goal states
in the algorithms. This would produce a representation of
minimal quotient strategies to all possible goals, from a fixed
initial state. This initial state can be interpreted as a “home”
position for each of the robots. After running the algorithm,
the robots can repeatedly solve different goals, and return to
the home position by reversing the strategy.

Coordination on roadmaps provides enough maneuverability
for most problems; however, in general, completeness with
respect to the original problem is lost when restricted to
roadmaps. Roadmaps have traditionally been determined for
motion planning of a single robot, and some additional issues
can be considered when constructing roadmaps for the purpose
of coordination. For example, if each roadmap contains at
least one configuration that is reachable by the robot, and
avoids collisions with the other robots, regardless of their
configurations, then general completeness is maintained. For
example, we could give each robot an initial configuration in
a home position or “garage,” in which other robots are not
allowed to enter.
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In [11], prioritization is introduced, and successive motion
plans are constructed to prevent collision with robots of
higher priority. One could extend prioritized path planning
to prioritized roadmap construction. Consider, for instance,
the greater amount of coordination flexibility that a rises in
multiple-lane streets for automobiles, as opposed to one-lane
streets. A similar principle could be applied to the construction
of roadmaps for multiple robots.

Traditional prioritization can be generalized within our
framework, to reduce the computational cost at the expense of
losing completeness. Suppose that we wish to coordinate nine
robots along fixed paths. As opposed to directly prioritizing the
motions or building a nine-dimensional coordination space,
consider dividing the robots into three groups of three. For
each group, the algorithm in Fig. 2 (or a variation of it) can
be applied to determine a strategy that coordinates the three
robots. These three strategies could be constructed succes-
sively, by interpreting the higher-priority robots as moving
obstacles, and providing nonstationary strategies. A better
approach would be to consider each of the strategies as a
single path that simultaneously moves three robots (which
are then considered as a single robot). The algorithm in
Fig. 2 can then be directly applied to coordinate each of the
three strategies, considered as fixed paths. Issues such as the
choice of groupings, and choices between prioritizing and
coordinating, must be addressed.

VII. PROOFS OF THEPROPOSITIONS

Proposition 1: A quotient strategy, , is an admissible
Nash equilibrium if and only if is minimal in .

Proof: Suppose that is a minimal strategy, but not
a Nash equilibrium. To violate the Nash condition (10), for
some there must exist a strategy , such that

and .
If , then a contradiction would be reached.
Since , then we would have
if for all . We will establish that this
is indeed true by analyzing the loss functional definition in
(6), (7), and (8). Consider any . We argue that each
of the three additive terms in (6) remains fixed when is
replaced by . The function depends only
on the robot strategy , and not on the other robot strategies.
Since remains the same in and ,
remains constant. We must have 0 under the
implementation of ; otherwise, we would have

, which implies that and collide. The trajectories,
, of the other robots do not change, which implies

that remains unchanged. Hence, we must have
for all [i.e., (6) remains constant]. This

implies, however, that , which is a contradiction
to the minimality assumption. Since is both minimal
and a Nash equilibrium, there does not exist another Nash
equilibrium that is better, therefore is an admissible
Nash equilibrium.

Suppose that is an admissible Nash equilibrium, but
not minimal in . Then, there exists a minimal quotient
strategy such that , and

. Since is minimal in , then it must be an
admissible Nash equilibrium by the first part of this proof.
This contradicts the assumption that is an admissible
Nash equilibrium.

Proposition 2: For a fixed , if is a strategy that mini-
mizes , then the quotient strategy, is minimal.

Proof: Suppose to the contrary that is not minimal.
Then there exists some, such that . This implies that

for each , and there exists
some for which this inequality is strict. By comparing the
terms in (11), we determine that . This
contradicts the fact that the choice of minimizes , which
establishes the proposition.

Proposition 3: If for all
and , then there exists at most one minimal
quotient strategy per path class in .

Proof: First, consider the case in which 2. Let
denote the path that is obtained in the coordination space from
a minimal strategy . Suppose to the contrary that there exists
some (with strategy ) such that and are
distinct and minimal. The goal of this portion of the proof is to
construct another path, such that both
and , and and . This
will contradict the hypothesis, implying that the proposition
holds for 2.

For 2: The images of and in intersect in at
least two places [including (0,0) and (1,1)]. Letbe the points
of intersection in . If the paths coincide from some stage

until stage , then we add only two intersection
points to , corresponding to when the paths initially coincide
at stage , and when the coincidence terminates at stage.
This yields a finite set, of intersection
points. These points are ordered according to the occurrence
of the intersection along. Note that we always have
(0, 0) and (1, 1).

The path that we will construct will intersect and
at every point in . Let , for , denote the portion of
the path that lies between and . For ,
compare the lengths in of and . A shorter path
length will always cause the robots reach from in less
time. Since the passage of time produces the same loss for
all robots, any strategy that reaches from in less time
is better than or equal to a strategy that takes more time. For
this reason, we let whenever is shorter
than , otherwise .

If we were to complete the construction of by taking
or , then the

resulting strategy would be better than or equivalent to
either or . To contradict the hypothesis, however, we are
required to construct a that is better than or equivalent to
both and .

For this final piece of , consider Fig. 1. The lower left
corner represents the intersection point , and the upper
right corner is the goal, (1, 1). There are two thick
black lines that connect to and represent some

and . We will determine the final piece of
without leaving the region formed by the two paths (hence

the exterior is shaded in the figure). Since both strategies are
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in the same path class, it is known that this region is free of
collisions.

We will use the principle of minimality to construct the
final path segment. Since the algorithm in Fig. 2 produces the
complete set of minimal strategies, then is it sufficient to show
that the algorithm produces only one minimal strategy at.
The path that corresponds to this minimal strategy will be
designated as . Recall that the algorithm begins in the
upper right corner and progresses from right to left, and top-
down. Along the upper and right most boundaries, there are
unique minimal strategies. These serve as initial conditions,
and it will be argued inductively that each will contain
only one element. At each iteration, there are at most three
minimal strategies that can be constructed, which correspond
to the three possible choices for. If from a given state, the
actions 1 and 1 do not produce a collision, then
the resulting extended strategy will always be better than the
other two choices. If these actions do produce a collision, then
there is only one allowable action set (either 0 and
1, or 1 and 0) that does not produce a collision,
and hence there will only be one minimal strategy. If there
were two possible action sets then due to the monotonicity of

, the two choices would lead to two different path classes,
which contradicts the initial hypothesis. At the final iteration,

will contain only one minimal strategy. The path
corresponding to the minimal strategy is used to complete,
resulting in the contradicting strategy.

For : Suppose again that there exists some
, such that and are distinct and minimal. This

implies that for some pair of indices , we have
and . Consider as the coordination

space generated by only consideringand . The path,
on that corresponds to the implementation of
is obtained by the projection of the path down to .
This is true since , as given in (5), only depends on the
configuration and control of . The same is true for the
path under the implementation of . Hence robots
other than and do not interfere with the projected path
in .

From the previous part of the proof (for 2), it
follows that projected paths and are in distinct path
classes in . We consider lifting this projected space

back up to . We note that (two-dimensional)
and (N-dimensional) are homeomorphic, due to
the cylindrical property of . Since homeomorphic spaces
are homotopically equivalent [12], the pathsand are in
distinct path classes in . Since , and
the image of the paths and lie in , they consequently
belong to distinct path classes in .

Proposition 4: For a stationary problem, the algorithm pre-
sented in Fig. 2 determines the complete set of minimal
quotient strategies in for .

Proof: Note that for any strategy that begins in a state
, the trajectory in will lie in the region

bounded by since the robots can only move forward
along the path. Since the strategies depend only on state, it is
argued indicatively that the minimal strategies are maintained.

At each inductive step, the extended strategies are functions of
states for which minimal strategies have already been obtained
(i.e., in the upper right portion of the coordination space). This
type of induction forms the basis of Dijkstra’s algorithm, for
example, for single-source shortest paths [10].

Proposition 5: The algorithm presented in Fig. 3 deter-
mines the complete set of minimal quotient strategies in ,
when .

Proof: We use an inductive argument that is based on the
principle of minimality. After the th iteration of the algorithm,
all minimal strategies that complete in time less then are
represented. After the iteration for , all of the single-stage
minimal strategies are determined (corresponding to all of the
elements of ), forming the basis of the induction. Consider
the wavefront under the assumption that minimal strategies
have been determined for all elements in the wavefronts

. Any minimal strategy for a state must
require exactly stages to reach the goal. If it were possible to
achieve the goal in fewer stages, thewould have appeared
in an earlier wavefront. By the principle of minimality over
time, any minimal strategy that requiresstages must be an
extension of some substrategy that required stages, which
has already been considered in a previous wavefront. Hence,
the extension constructs the minimal strategies in, which
completes the inductive step.
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