
Probabilistic verification and synthesis

Marta Kwiatkowska

Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015

2

What is probabilistic verification?

• Probabilistic verification (aka probabilistic/
quantitative model checking)…

− is a formal verification technique for modelling and
analysing systems that exhibit probabilistic behaviour

• Formal verification…

− is the application of rigorous, mathematics-based
techniques to establish the correctness of
computerised systems

• Synthesis…

− is an automatic method to generate system
components that are correct-by-construction

3

Why must we verify?

“Testing can only show the presence of errors, not their absence.”

To rule out errors need to
consider all possible executions
often not feasible mechanically!

− need formal verification…

“In their capacity as a tool,
computers will be but a ripple
on the surface of our culture.
In their capacity as intellectual
challenge, computers are
without precedent in the
cultural history of mankind.”

Edsger Dijkstra

1930-2002

4

But my program works!

• True, there are many successful large-scale complex
computer systems…

− online banking, electronic commerce

− information services, online libraries, business processes

− supply chain management

− mobile phone networks

• Yet many new potential application domains with far
greater complexity and higher expectations

− autonomous driving, self-parking cars

− medical sensors: heart rate & blood pressure monitors

− intelligent buildings and spaces, environmental sensors

• Learning from mistakes costly…

5

The NASA Mars space mission

Mars Polar Lander
Launched 3rd January 1999

LOST 3rd December 1999
Engine shutdown due to
spurious signals that gave false
indication that spacecraft had
landed

Mars Climate Orbiter
Launched 11th December 1998

LOST 23rd September 1999
Conversion error from English
units to metric in navigation
software
Cost: $125 million

Source: http://mars.jpl.nasa.gov/msp98/

6

Infusion pumps

Over the last five years,
[…] 710 patient deaths
linked to problems with
the devices.

Some of those deaths
involved patients who
suffered drug
overdoses accidentally,
either because of
incorrect dosage
entered or because the
device’s software
malfunctioned.

Manufacturers […]
issued 79 recalls,
among the highest for
any medical device.

Published: April 23, 2010

Pump producers now typically conduct
‘simulated’ testing of its devices by users.

F.D.A. Steps Up Oversight of Infusion
Pumps

Source: http://www.nytimes.com/2010/04/24/business/24pump.html?_r=0

7

Cardiac pacemakers

• The Food and Drug Administration (FDA)

− issued 23 recalls of defective pacemaker devices during the
first half of 2010

− classified as “Class I,” meaning
there is “reasonable probability
that use of these products will
cause serious adverse health
consequences or death”

− six of those due to software
defects

• “Killed by code” report

− many similar medical devices

− wireless, implantable, e.g. glucose monitors

Source: https://www.softwarefreedom.org/resources/2010/transparent-medical-devices.html

8

Toyota

• February 2010

− unintended acceleration

− resulted in deaths

• Engine Control Module

− source code found defective

− no mirroring: stack overflow ,
recursion was used

• “Killed by firmware”

− millions of cars recalled, at huge cost

− handling of the incident prompted
much criticism, bad publicity

− fined $1.2 billion for concealing safety defects

Source: http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

9

What do these stories have in common?

• Programmable computing devices

− conventional computers and networks

− software embedded in devices

• airbag controllers, mobile phones, medical devices, etc

• Programming error direct cause of failure

• Software critical

− for safety

− for business

− for performance

• High costs incurred: not just financial

• Failures avoidable…

10

Automatic verification

• Formal verification…

− the application of rigorous, mathematics-based techniques
to establish the correctness of computerised systems

− essentially: proving that a program satisfies it specification

− many techniques: manual proof, automated theorem proving,
static analysis, model checking, …

• Automatic verification =

− mechanical, push-button technology

− performed without human intervention

1070 atoms10500,000 states

11

Verification via model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

12

Verification… or falsification?

• More value in showing property violation?

− model checkers used as debugging tool!

− can we synthesise directly from specification?

• Widely accepted in industrial practice

− Intel, Cadence, Bell Labs, IBM, Microsoft, ...

• Many software tools, including commercial

− CProver/CBMC, NuSMV, FDR2, UPPAAL, ...

− hardware design, protocols, software, …

Much progress since 1981! But...

13

New challenges for verification

• Devices, ever smaller

− laptops, phones, sensors…

• Networking, wireless, wired & global

− wireless & internet everywhere

• New design and engineering challenges

− adaptive computing,
ubiquitous/pervasive computing,
context-aware systems

− DNA computing and biosensing

− trade-offs between e.g. performance,
security, power usage, battery life, …

14

New challenges for verification

• Many properties other than correctness are important

• Need to guarantee…

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− security, privacy, trust, anonymity, fairness

− and much more…

• Quantitative, as well as qualitative requirements:

− “how reliable is my car’s Bluetooth network?”

− “how efficient is my phone’s power management policy?”

− “how secure is my bank’s web-service?”

• This course: probabilistic verification and synthesis

15

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …

16

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance

17

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

18

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

19

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

20

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

NB One can also consider continuous space…

21

Lecture plan

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/kth15/

• 5 sessions: lectures 9-12noon, labs 2.30-5pm

− 1 – Introduction

− 2 – Discrete time Markov chains (DTMCs)

− 3 – Markov decision processes (MDPs)

− 4 – LTL model checking for DTMCs/MDPs

− 5 – Probabilistic timed automata (PTAs)

• For extended versions of this material

− and an accompanying list of references

− see: http://www.prismmodelchecker.org/lectures/

22

Course material

• Reading

− [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

− [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

− [SMGs] Chen, Forejt, Kwiatkowska, Parker and Simaitis.
Automatic Verification of Competitive Stochastic Systems.
FMSD 43(1), 61-92, 2013.

− [PTAs] Norman, Parker and Sproston. Model Checking for
Probabilistic Timed Automata. FMSD 43(2), 164-190, 2013.

− [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

• See also PRISM website

− www.prismmodelchecker.org

Introduction to model checking

Part 1

24

Overview (Part 1)

• Introduction

• Transition systems

• Temporal logic

• Model checking

− Reachability

− CTL model checking

• PRISM: overview

− Probability example

− Modelling language

− Properties

− GUI, etc

• Summary

25

Modelling reactive systems

• Reactive systems

− keep interacting with their environment without terminating

− e.g. protocols, operating systems, monitoring devices

− termination is not relevant

• Graphical notations based on automata

− based on finite-state automata (DFA, NFA) and formal
languages, e.g. regular languages

− usually no accepting state

• System is modelled as

− states, i.e. snapshots of the system’s variables at some point
in time

− transitions, which cause state changes in response to stimuli

− computation proceeds through invoking state changes from
some initial state, possibly ad infinitum

26

Modelling with automata

• Simple light switch

• Automaton

− usually finite state

• States

− atomic propositions

− values of variables

• Transitions

− actions/commands

− e.g. on/off button

• Properties

− If light is Off, then sometime in future it is On

~On
~Faulty

press

press

On
~Faulty

~On
Faulty

press

repair

27

Modelling with probabilistic automata

• As automata except

− add probability

• States

− values of atomic
propositions

− can have clocks

• Transitions

− actions, possibly guarded

− probabilistic choice of target state

• Properties

− If light is Faulty then with probability 1 it becomes ~Faulty

~On
~Faulty

press

press

On
~Faulty

~On
Faulty

press

repair

1

1

0.99

0.01

28

Transition systems

• A labelled transition system (LTS) is a tuple M =
(S,sinit,α,T,L) where

− S is a set of states (“state space”)

− sinit ∈ S is the initial state

− α is an alphabet of action labels

− T ⊆ S × α × S is the transition relation

− L : S → 2AP is a labelling with atomic propositions

• Note

− the state space is not necessarily finite

− we sometimes omit state names or proposition labels

− T is nondeterministic

− since we model reactive systems, no accepting state

29

Example

• S = {1,2,3}

• sinit = 1

• α = {press,repair}

• T = {(1,press,2),
(2,press,1),
(2,press,3),
(3,repair,1)}

• AP = {On, Faulty}

• L = {1 a {},
2 a {On},
3 a {Faulty}}

~On
~Faulty

press

press

On
~Faulty

~On
Faulty

press

repair

1 2

3

30

Paths & execution runs

• A path ω of transition system M = (S,sinit,α,T,L) is a finite or

infinite sequence of transitions (si, ai, s’i) ∈ T such that, for

all i ≥0, s’i = si+1

• Paths are denoted s0a0 s1a1 …

• Or, if transition labels are omitted, s0s1s2 …

• A path ω is a partial execution run if it starts in the initial
state sinit

• An execution run is complete if it is maximal, i.e. cannot be
extended (ends in a deadlocking state)

• Transition systems can be unfolded into execution trees

31

Executions and unfoldings

. . .
1

~On
~Fault

2 3

On
~Fault

On
Fault

~On
~Fault

1

press press repair

. . .
1

~On
~Fault

2 1

On
~Fault

~On
~Fault

On
~Fault

2

press press press

1

press

2

1
press

3

press repair

1

press

2

press . . .
2

. . .

. . .

1

3

press

press

Execution runs

Execution tree

(some detail
omitted)

32

Reachability graph

• Let M = (S,sinit,α,T,L) be a finite
transition system

• A state s is reachable if there exists
an execution leading to s

• The reachable states are

− Reach(M) = {s ∈ S | s is reachable}

• The reachability graph is the
subgraph of M obtained by
restricting to Reach(M)

A

B C

D F

E

G

33

Reachability & invariance properties

• Given transition system M = (S,sinit,α,T,L) and set of states
Y ⊆ S, define the following:

• Reachability: is it possible to reach a state in Y?

− Is Reach(M) ∩ Y ≠ {}?
− A witness is an execution leading to a state in Y

• Invariance: is every reachable state of S also in Y?

− Is Reach(M) ⊆ Y ?
− Y is an invariant for M

• Safety: is a state in Y never reachable?

− Is Reach(M) \ Y = {}?
− NB the dual of reachability – a witness for reachability of ~Y is

an error trace for Y

34

Reachability analysis

• Represent the graph in an appropriate data structure -
adjacency list

− e.g. a list of states, each associated with a list of successors

− memory optimisation possible, not discussed

• Employ graph traversal – traverse the graph one edge at a
time

− iterate computation of successors (forward)

− iterate computation of predecessors (backward)

• Known as enumerative or explicit state

− since states explored one at a time

− symbolic analysis processes sets of states at a time

35

Backward safety checking

• Start from the set ~Y of
unsafe states

• Is it possible to reach an
unsafe state from the
initial state?

• Model finite-state, hence
termination assured, but
can visit unreachable
states

• Can also generate
witness

− how?

Initial state

36

Temporal logic basics

• Temporal logic expresses statements about the temporal
order of events

− e.g. sent → F received

• Consider individual executions, i.e. infinite sequences of
states

• Atomic propositions are elementary statements about
states appearing in executions

− e.g. true, ~Closed

• Boolean combinators

− negation ¬

− conjunction (∧), disjunction (∨), implication (→)

• Propositional formulas

− built from atomic propositions and Boolean connectives

37

Unfold into executions or trees

. . .
1 2 3 1

press press repair

. . .
1 2 1 2

press press press

1

press

2

1
press

3

press repair

1

press

2

press . . .
2

. . .

. . .

1

3

press

press

Linear time

Branching time

38

Temporal combinators

• For linear time, a model is an infinite sequence

• The temporal combinators express statements about order
of events along a sequence

− X, next

− F, future

− G, always

− U, until

• NB, each of these refers to a particular execution

39

Linear time temporal logic (LTL)

• For LTL, a model is an infinite state sequence

• Temporal operators

− “Next-time”: X p at t iff p at t+1

− “Globally”: G p at t iff p for all t’ ≥ t.

K

210
,, sss=ω

p p p

X p... X p...

p p p p p p p p p p p...

G p...

40

Temporal operators...

• “Future”: F p at t iff p for some t’ ≥ t.

• “Until”: p U q at t iff

• q for some t’ ≥ t and

• p occurs between (and incl.) t and (not incl.) t’

p p p p p p

F p...

p p p p p p

p U q...

p p p q

41

Examples

• “p now and in the next two states”
p ^ Xp ^ XXp

• “no signal until light is on”
¬signal U on

• “if sent, then eventually received”

G (sent ⇒ F received)

atomic prop

must occur

temporal operator

42

Linear time temporal logic

• PLTL (Propositional Linear Time Logic)

• Models are infinite sequences of states ω = s0,s1,s2…

• LTL syntax (path formulae only)

− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

− where a ∈ AP is an atomic proposition

• Derived formulas

− F φ ≡ true U φ

− G φ ≡ ¬(F ¬φ)

43

LTL semantics

• LTL semantics (for a path ω)

− ω ⊨ true always

− ω ⊨ a ⇔ a ∈ L(ω(0))

− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ

− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ

− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 ∧∀i<k ω[i…] ⊨ ψ1

where ω(i) is ith state of ω, and ω[i…] is suffix starting at ω(i)

• How to define LTL for an LTS?

44

Path quantifiers

• So far, the operators pertain to a single execution

• Branching time logics allow to quantify over paths possible
from a given state

• Path quantifiers allow to express:

− Aψ: all executions out of the state satisfy ψ

− Eψ: there exists an execution satisfying ψ

• Path quantifiers and temporal operators often used in
pairs, e.g.

− AG ¬deadlock (invariant)

− EF p (reachability of p)

• Do not confuse A (all paths from the given state) with G (all
states of the given path)

45

Linear vs branching time logic

. . .
1

~On
~Fault

2 3

On
~Fault

On
Fault

~On
~Fault

1

press press repair

. . .
1

~On
~Fault

2 1

On
~Fault

~On
~Fault

On
~Fault

2

press press press

1

press

2

1
press

3

press repair

1

press

2

press . . .
2

. . .

. . .

1

3

press

press

F On

GF On

(implied A for
LTS)

AF On

AGF On

(state
dependent)

46

Computation Tree Logic

• Variants CTL* (more expressive) and CTL (simpler and
easier to model check)

• CTL* composed from

− propositional logic

− two types of formulas, state and path formulas

− path formulas are as in LTL

− state formulas allow quantification over paths

• e.g. Aψ for path formula ψ

− arbitrary nesting

• CTL is a syntactic restriction of CTL*

− every operator F, G, X, U is preceded by A or E

47

CTL semantics

• Intuitive semantics:

− of quantifiers (A/E) and temporal operators (F/G/U)

EF red EG red E [yellow U red]

AF red AG red A [yellow U red]

47

48

CTL semantics

• Semantics of state formulae:

− s ⊨ φ denotes “s satisfies φ” or “φ is true in s”

• For a state s of an LTS M = (S,sinit,α,T,L):

− s ⊨ true always

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊭ φ

− s ⊨ A ψ ⇔ ω ⊨ ψ for all ω ∈ Path(s)

− s ⊨ E ψ ⇔ ω ⊨ ψ for some ω ∈ Path(s)

49

CTL semantics

• Semantics of path formulae:

− ω ⊨ ψ denotes “ω satisfies ψ” or “ψ is true along ω”

• For a path ω of an LTS (S,sinit,→,L):

− ω ⊨ X φ ⇔ ω(1) ⊨ φ

− ω ⊨ F φ ⇔ ∃k≥0 s.t. ω(k) ⊨ φ

− ω ⊨ G φ ⇔ ∀i≥0 ω(i) ⊨ φ

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 s.t. ω(k) ⊨ φ2 and ∀i<k ω(i) ⊨ φ1

50

CTL examples

• Some examples of satisfying paths:

− ω0 ⊨ X succ

− ω1 ⊨ ¬fail U succ

• Example CTL formulas:

− s1 ⊨ try ∧ ¬fail

− s1 ⊨ E [X succ] and s3 ⊨ A [X succ]

− s0 ⊨ E [¬fail U succ] but s0 ⊭ A [¬fail U succ]

s1s0

s2

s3

{fail}

{succ}

{try}

s1 s3 s3 s3

{succ} {succ} {succ}{try}

ω0:

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

ω1:

51

CTL examples

• AG (¬(crit1∧crit2))

− mutual exclusion

• AG EF initial

− for every computation, it is always possible to return to the
initial state

• AG (request → AF response)

− every request will eventually be granted

• AG AF crit1 ∧ AG AF crit2

− each process has access to the critical section infinitely often

52

Expressiveness

• LTL less expressive than CTL*

− EF φ not LTL-expressible

• CTL sublogic of CTL*

− FG φ not CTL-expressible

• LTL and CTL not comparable

− FG φ is LTL- but not CTL-expressible

− EF φ is CTL- but not LTL-expressible

LTL CTL

CTL*

53

CTL model checking

• Given

− a finite-state labelled transition system M = (S,sinit,α,T,L):

• where AP are atomic propositions

• L: S → 2AP is a labelling of states with propositions

− and a CTL formula φ

• Find all states in M that satisfy φ :

{s ∈ S | M,s ╞ φ }

and check that this set includes all initial states

• Model checking much more efficient than LTL and CTL*

54

CTL model checking idea

• Convert formula to ENF

• Build parse tree of the formula

• Proceed recursively, bottom-up (from leaves
upwards) labelling states for each subformula

− if subformula is true in s ∈ S, add it to the set of
labels for s

− continue, going up the formula parse tree

− stop when root of the parse tree is checked

• When the algorithm terminates

− M╞ φ iff the initial state is labelled with φ

¬

EU

true EG

ba

AU

55

Complexity

• CTL model checking (EG is worst case)

− Partition the state space into strongly connected components
(subgraphs where every state can reach every other state),
O(|S|+|T|)

− Traverse the transition graph, O(|S|+|T|)

− Label for each subformula, |φ| of them

• The overall complexity is

O(|φ|*(|S|+|T|))

• In contrast, LTL/CTL* model checking

− is O(2|φ|*(|S|+|T|)), i.e. exponential in size of formula (PSPACE)

− Linear in size of model, as is CTL

− Proceeds by automata-theoretic methods (product with the LTS)

56

Overview (Part 1)

• Introduction

• Transition systems

• Temporal logic

• Model checking

− reachability

− CTL model checking

• PRISM: overview

− Probability example

− Modelling language

− Properties

− GUI, etc

• Summary

57

PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Construction/analysis of probabilistic models…

− discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, …

• Simple but flexible high-level modelling language

− based on guarded commands; see later…

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

58

PRISM…

• Model checking for various temporal logics…

− probabilistic/reward extensions of CTL/CTL*/LTL

− PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

• Various efficient model checking engines and techniques

− symbolic methods (binary decision diagrams and extensions)

− explicit-state methods (sparse matrices, etc.)

− statistical model checking (simulation-based approximations)

− and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

• Graphical user interface

− editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/

− downloads, tutorials, case studies, papers, …

59

PRISM functionality

• High-level modelling language

• Wide range of model analysis methods

− efficient symbolic implementation techniques

− also: approximate verification using simulation + sampling

• Graphical user interface

− model/property editor

− discrete-event simulator - model traces for debugging, etc.

− easy automation of verification experiments

− graphical visualisation of results

• Command-line version

− same underlying verification engines

− useful for scripting, batch jobs

60

Probabilistic model checking

• Overview of the probabilistic model checking process

− two distinct phases: model construction, model checking

Model
construction

High-level
model

Model

Result
Model
checking

Property
PRISM
language
description

PCTL/CSL/LTL/…
formula

DTMC, MDP
or CTMC

61

Model construction

PRISM
language
description graph-based

algorithm

Translation
from
high-level
language

Reachability:
building set
of reachable
states

Model construction

ModelHigh-level
model

matrix
manipulation

DTMC, MDP
or CTMC

62

PRISM modelling language

• Simple, textual, state-based language

− modelling of DTMCs, CTMCs, MDPs, …

− based on Reactive Modules [AH99]

• Basic components…

• Modules:

− components of system being modelled

− composed in parallel

• Variables

− finite (integer ranges or Booleans)

− local or global

− all variables public: anyone can read, only owner can modify

63

PRISM modelling language

• Guarded commands

− describe behaviour of each module

− i.e. the changes in state that can occur

− labelled with probabilities (or, for CTMCs, rates)

− (optional) action labels

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

64

PRISM modelling language

• Parallel composition

− model multiple components that can execute independently

− for DTMC models, mostly assume components operate
synchronously, i.e. move in lock-step

• Synchronisation

− simultaneous transitions in more than one module

− guarded commands with matching action-labels

− probability of combined transition is product of individual
probabilities for each component

• More complex parallel compositions can be defined

− using process-algebraic operators

− other types of parallel composition, action hiding/renaming

65

Simple example

dtmc

module M1

x : [0..3] init 0;

[a] x=0 -> (x’=1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x’=3);

endmodule

module M2

y : [0..3] init 0;

[a] y=0 -> (y’=1);

[b] y=1 -> 0.4 : (y’=2) + 0.6 : (y’=3);

endmodule

66

Probability example

• Modelling a 6-sided die using a fair coin

− algorithm due to Knuth/Yao:

− start at 0, toss a coin

− upper branch when H

− lower branch when T

− repeat until value chosen

• Is this algorithm correct?

− e.g. probability of obtaining a 4?

− obtain as disjoint union of events

− THH, TTTHH, TTTTTHH, …

− Pr(“eventually 4”)

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

0

3

2

1

6

4

5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

67

Example…

• Other properties?

− “what is the probability of termination?”

• e.g. efficiency?

− “what is the probability of needing
more than 4 coin tosses?”

− “on average, how many
coin tosses are needed?”

• Probabilistic model checking provides a framework for
these kinds of properties…

− modelling languages

− property specification languages

− model checking algorithms, techniques and tools

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

68

Probabilistic models

dtmc

module die

// local state s : [0..7] init 0;

// value of the dice d : [0..6] init 0;

[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);

…

[] s=3 ->

0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);

[] s=4 ->

0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);

…

[] s=7 -> (s'=7);

endmodule

rewards "coin_flips"

[] s<7 : 1;

endrewards

Given in PRISM’s guarded commands modelling notation

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

69

Probabilistic models

int s, d;

s = 0; d = 0;

while (s < 7) {

bool coin = Bernoulli(0.5);

if (s = 0)

if (coin) s = 1 else s = 2;

...

else if (s = 3)

if (coin) s = 1 else {s = 7; d = 1;}

else if (s = 4)

if (coin) {s = 7; d = 2} else {s = 7; d = 3;}

…

}

return (d)

Given as a probabilistic program

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

70

Costs and rewards

• We augment models with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we consistently use the terminology “rewards” regardless

• Properties (see later)

− reason about expected cumulative/instantaneous reward

71

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max.

queue size, receive = action label)

rewards “total_queue_size”
true : queue1+queue2;

endrewards

rewards “time”
true : 1;

endrewards

rewards “power”
sleep=true : 0.25;
sleep=false : 1.2 * up;
[wake] true : 3.2;

endrewards

rewards "dropped"
[receive] q=q_max : 1;

endrewards

72

PRISM – Property specification

• Temporal logic-based property specification language

− subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

• Simple examples:

− P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”

− S>0.999 [“up”] – “long-run probability of availability is >0.999”

• Usually focus on quantitative (numerical) properties:

− P=? [F “crash”]
“what is the probability
of a crash occurring?”

− then analyse trends in
quantitative properties
as system parameters vary

73

PRISM – Property specification

• Properties can combine numerical + exhaustive aspects

− Pmax=? [F≤10 “fail”] – “worst-case probability of a failure
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators

− e.g. P=? [F fail1] / P=? [F failany] – “conditional failure prob.”

74

PRISM property specifications

• Experiments:

− ranges of model/property parameters

− e.g. P=? [F≤T error] for N=1..5, T=1..100

where N is some model parameter and T a time bound

− identify patterns, trends, anomalies in quantitative results

75

PRISM GUI: Editing a model

76

PRISM GUI: The Simulator

77

PRISM GUI: Model checking and graphs

78

PRISM – Case studies

• Randomised distributed algorithms

− consensus, leader election, self-stabilisation, …

• Randomised communication protocols

− Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

• Security protocols/systems

− contract signing, anonymity, pin cracking, quantum crypto, …

• Biological systems

− cell signalling pathways, DNA computation, …

• Planning & controller synthesis

− robotics, dynamic power management, …

• Performance & reliability

− nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies

79

Summary (Part 1)

• Introduced reactive systems

− modelled by labelled transition systems

− unfolded into execution paths or trees

• Property specifications

− expressed in temporal logic, e.g. CTL, LTL

• Model checking algorithms

− graph-based algorithms

− automata constructions

• PRISM: Probabilistic Symbolic Model Checker

• Next: discrete-time Markov chains (DTMCs)

