
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

GRADUATE PROGRAM

INFORMATION AND DATA MANAGEMENT

POSTGRADUATE THESIS

Collaborative Reinforcement Learning for Resolving
Hotspots in the Air Traffic Management Domain

Theocharis A. Kravaris

Supervisors: Panagiotis Stamatopoulos, Assistant Professor, NKUA

George Vouros, Professor, UPRC

ATHENS

JULY 2017



ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΔΕΔΟΜΕΝΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συνεργατική Ενισχυτική Μάθηση για την Επίλυση
Συμφορήσεων στον τομέα Διαχείρισης Εναέριας

Κυκλοφορίας

Θεοχάρης Α. Κράβαρης

Επιβλέποντες: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

Γεώργιος Βούρος, Καθηγητής, ΠΑΠΕΙ

AΘΗΝΑ

ΙΟΥΛΙΟΣ 2017



POSTGRADUATE THESIS

Collaborative Reinforcement Learning for Resolving Hotspots in the Air Traffic

Management Domain

Theocharis A. Kravaris

A.M: M1457

Supervisors: Panagiotis Stamatopoulos, Assistant Professor, NKUA

George Vouros, Professor, UPRC

July 2017



ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συνεργατική Ενισχυτική Μάθηση για την Επίλυση Συμφορήσεων στον τομέα Διαχείρισης

Εναέριας Κυκλοφορίας

Θεοχάρης Α. Κράβαρης

A.M: M1457

Επιβλέποντες: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

Γεώργιος Βούρος, Καθηγητής, ΠΑΠΕΙ

Ιούλιος 2017



ABSTRACT

The objective of this thesis is to propose and investigate the use of collaborative reinforce-

ment learning methods for resolving demand-capacity imbalances during pre-tactical Air

Traffic Management. By so doing, it also initiates the study of data-driven techniques for

predicting multiple correlated aircraft trajectories; and, as such, respond to a need iden-

tified in contemporary research and practice in air-traffic management. Our simulations,

designed based on real-world data, confirm the effectiveness of our methods in resolving

the demand-capacity problem, even in the hardest of scenarios. This effectiveness is con-

firmed further by testing a real world scenario provided by CRIDA, the Spanish Reference

Center for Research, Development, and Innovation in Air Traffic Management.

SUBJECT AREA: Artificial Intelligence, Machine Learning, Reinforcement Learning

KEYWORDS: Air Traffic Management, Demand Capacity Balance, Collaborative Multia-

gent Reinforcement Learning, Q-Learning



ACKNOWLEDGEMENTS

First of all, I would like to acknowledgemy supervisor Prof. Panagiotis Stamatopoulos. His

course Advanced Artificial Intelligence had directly contributed in furthering my interest in

AI and assisted me in selecting this topic. I would also, like to acknowledge Prof. George

Vouros, for his invaluable time and effort throughout the process of this thesis. Moreover,

I would like to acknowledge Prof. Konstantinos Blekas and Prof. Georgios Chalkiadakis,

whose insight assisted me during this project and MSc Student Christos Spatharis, for his

valuable assistance in some crucial technical points. Finally, I would like to acknowledge

the DART Project1, that supported this thesis.

1DART has received funding from the SESAR Joint Undertaking under grant agreement No 699299

under European Unions Horizon 2020 research and innovation programme. DART project’s website:

http://www.dart-research.eu



Contents

1 INTRODUCTION 10

2 THE DEMAND-CAPACITY BALANCE PROBLEM IN ATM 12

2.1 Operational Context and Basic Terminology . . . . . . . . . . . . . . . . . . 12

2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 PRELIMINARIES 19

3.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 PROBLEM SPECIFICATION 24

4.1 The MDP Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 COLLABORATIVE REINFORCEMENT LEARNING ALGORITHMS 30

5.1 Independent Reinforcement Learners . . . . . . . . . . . . . . . . . . . . . 30

5.2 Sparse Cooperative Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Edge-Based Collaborative Reinforcement Learners . . . . . . . . . 31

5.2.2 Agent-Based Collaborative Reinforcement Learners . . . . . . . . . 33

6 EXPERIMENTAL EVALUATION 34

7 RELATED WORK 40

8 CONCLUSIONS AND FUTURE WORK 41



List of Figures

2.1 Airlocks in 2D: Sectors are groups of adjacent airblocks. . . . . . . . . . . . 14

2.2 Occupancy Step=1min., Duration=1min. . . . . . . . . . . . . . . . . . . . . 15

2.3 Occupancy Indicator. The y axis represents the occupancy count, and the x

axis time. Columns show occupancy counts, yellow line shows sustainable

capacity and orange line shows the peak capacity . . . . . . . . . . . . . . 16

2.4 Air Traffic during 12/01/2016. Darker colors indicate lower traffic, as colors

become lighter traffic becomes higher . . . . . . . . . . . . . . . . . . . . . 17

2.5 Air Traffic during 12/01/2016 in a specific volume. X-axis shows the time

and Y-axis the number of flights in the volume . . . . . . . . . . . . . . . . . 18

3.1 The basic premise of Reinforcement Learning . . . . . . . . . . . . . . . . . 20

3.2 An exploratory Q-learning agent. It is an active learner that learns the value

Q(a, s) of each action in each situation. . . . . . . . . . . . . . . . . . . . . 23

4.1 Example of trajectories crossing sectors . . . . . . . . . . . . . . . . . . . . 24

5.1 An edge-based decomposition of the global Q-function for a 4-agent problem. 31

5.2 A graphical representation of the edge-based and agent-based update

method after the transition from state s to s′ [1]. . . . . . . . . . . . . . . . . 32

6.1 Comparative results: Plots illustrate (a) the number of hotspots and (b) the

mean delay estimated by each method in terms of various values of sectors’

capacity (x-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Learning curves received by three methods in a setting considering sectors’

capacity equal to 7. The x-axis shows the number of the learning episode,

while the y-axis shows the number of hotspots and mean delay achieved in

each episode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 An example of the distribution of interacting flights in Occupancy Counting

Periods (a) initially and (b) as produced by three methods . . . . . . . . . . 36

6.4 Learning curves received by the three methods in a setting where N=3000

and sectors’ capacity C=20. The x-axis shows the number of the learning
episode, while the y-axis shows (a) the number of hotspots and (b) themean

delay achieved in each episode. . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 A comparison of the number of hotspots. (a) shows all the hotspots for the

3000 flight simulated scenario and (b) those of the real scenario . . . . . . 38

6.6 Learning curve received by the Independent Learners method in the sce-

nario produced by the dataset. The x-axis shows the number of the learning

episode, while the y-axis shows the number of flights in hotspots and mean

delay achieved in each episode. . . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 An example of the distribution of interacting flights in Occupancy Counting

Periods (a) initially and (b) as produced by the Independent Learners. Note

that the sector’s capacity is 20 . . . . . . . . . . . . . . . . . . . . . . . . . 39



List of Tables

6.1 Parameter values used during the simulated experiments . . . . . . . . . . 34

6.2 Parameter values used during the simulated experiments with 3000 flights . 37

6.3 Parameter values used during the experiments on the real scenario . . . . 38

8.1 LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



Collaborative Reinforcement Learning for Resolving Hotspots in the Air Traffic Management Domain

1. INTRODUCTION

The current Air Traffic Management (ATM) system worldwide is based on an time-based

operations paradigm that leads to demand-capacity balancing (DCB) issues. These fur-

ther impose limitations to the ATM system that are resolved via airspace management

or flow management solutions, including regulations that generate delays (and costs) for

the entire system. These demand-capacity imbalances are difficult to be predicted in pre-

tactical phase (prior to operation) as the existing ATM information is not accurate enough

during this phase.

With the aim of overcoming these ATM system drawbacks, different initiatives, notably

SESAR in Europe2 and Next Gen in the US3, have promoted the transformation of the

current ATM paradigm towards a new, trajectory-based operations (TBO) paradigm. In

the future ATM system, the trajectory becomes the cornerstone upon which all the ATM

capabilities will rely on. The trajectory life cycle describes the different stages from the

trajectory planning, negotiation and agreement, to the trajectory execution, amendment

and modification. This life cycle also provides new opportunities in terms of both informa-

tion quality and availability among ATM stakeholders, as it requires collaborative planning

processes, before operations. The envisioned advanced decision support tools required

for enabling future ATM capabilities will exploit trajectory information to provide optimised

services to all ATM stakeholders—Airspace users, Air Navigation Service Providers, Net-

work Manager, and so on.

The proposed transformation requires high-fidelity aircraft trajectory prediction capabili-

ties, supporting the trajectory life cycle at all stages efficiently. This is also evidenced

by the fact that improvements in trajectory prediction are fully aligned with FlightPath

20504 goals, in particular with those related to societal and market needs (with focus on

improved, weather-independent arrival punctuality), protecting environment and energy

supply, and ensuring safety and security. Single trajectory prediction refers to the process

of predicting an individual trajectory considering it in isolation from the overall ATM sys-

tem. Accounting for network effects and their implications on the execution of planned

trajectories of individual flights requires considering interactions among these trajectories;

moreover, it requires considering other operational conditions that influence the actual tra-

jectory of any flight.

State-of-the-art techniques for predicting flights’ trajectories, enable predictions based on

specific physical models of aircrafts’ movement, or on the exploitation of historical tra-

jectory data that are obtained from surveillance systems (e.g., radar or ADS-B tracks) or

directly from the aircraft (e.g., Quick Access Records). Two important drawbacks of such

prediction methods are that (a) they are limited to single trajectory predictions, and (b) their

2SESAR 2020, http://www.sesarju.eu/
3NextGen,https://www.faa.gov/nextgen/
4“Flightpath 2050” European Commission. Available Online: http://ec.europa.eu/trans-

port/modes/air/doc/flightpath2050.pdf.
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prediction horizon is a short time one. Indeed, the trajectories are predicted one-by-one

based on the information related to the individual flights, ignoring the expected traffic at

the prediction time lapse. Consequently, the network effect resulting from the interactions

of multiple trajectories is not considered at all, which may lead to huge prediction inaccu-

racies. This is due to the complex nature of the ATM system, which impacts the trajectory

predictions in many different ways. Capturing aspects of that complexity, and being able

to devise prediction methods that take the relevant information into account, would greatly

improve the current trajectory prediction approaches.

Against this background, our main objective in this thesis is to demonstrate how machine

learning methods can help in refining single trajectory predictions (learned from surveil-

lance data linked to weather data and other contextual information), considering cases

where demand of airspace use exceeds capacity, resulting to hotspots. This is referred
as the Demand and Capacity Balance (DCB) problem. In our work we study and deter-

mine the way trajectories are affected due to the influence of the surrounding traffic (i.e.,

considering interactions among individual predicted trajectories), taking into account an

important aspect of ATM system complexity.

Our overall, long-term goal is to deliver an understanding on the suitability of applying

data-driven techniques for predicting single and multiple correlated aircraft trajectories.

However, our focus in this thesis is on the DCB problem in Air Traffic Management, whose

solution takes place during the so-called “flights’ planning phase”, during which the even-

tual conflicts resolutions adopted by air-traffic controllers in the actual flights are not taken

into consideration. As such, our immediate objective is to predict delays that are applied

to the flight plans, due to the demand and capacity imbalances occurring in hotspots [2].

To this end, this thesis incorporates the following:

• It formulates the DCB problem as an MDP.

• It proposes the use of specific collaborative reinforcement learning techniques for

tackling this problem.

• It presents evaluation results in simulated, varying traffic conditions based on real-

world data, showing the potential of our methods. All our methods managed to suc-

cessfully resolve the DCB problem i.e., to produce schedules without any conflicts

even in the hardest of our scenarios.

The rest of this thesis is structured as follows. In Chapter 2 we present the Demand

Capacity Problem inATM, the operational context and basic terminology. We also describe

the problem and the Data Sources that should be exploited during the process. Chapter

3 is dedicated to the preliminaries, describing the theoretical background of MDPs and

Reinforcement Learning. Chapter 4 gives a detailed problem specification. Chapter 5

presents the collaborative Reinforcement Learning algorithms used for the experiments.

Chapter 6 contains the experimental evaluation. Chapter 7 presents notable work related

to this thesis. Finally, in Chapter 8 there are some conclusions and propositions for future

extensions of this work.

Th. Kravaris 11
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2. THE DEMAND-CAPACITY BALANCE PROBLEM IN ATM

2.1. Operational Context and Basic Terminology

Air Navigation is the combination of procedures and techniques that make possible an

aircraft to fly from an origin to a destination. It is formed by many services supporting this

purpose. Each country has mainly the same organization of such services, following the

ICAO rules for air navigation [3] [4].

Air Navigation System is divided in three mainly services.

The first one is theAeronautical Information Service (AIS). AIS is provided by Aeronau-

tical Information Division to all users requesting it. AIS provides the necessary information

so as to ensure that aeronautical operations are developed with safety, regularity, econ-

omy and efficiency. All the information is made public and distributed by theAir Navigation

Service Provider of each country [5].

Meteorological Services contribute towards the safety, regularity and efficiency of in-

ternational air navigation by the provision of timely and accurate weather information. It

will be apparent that aircrew must be able to access accurate weather information when

planning their flight and given the changing nature of the earth’s weather patterns this

information will need to be updated as necessary ensuring that a planned flight can be

completed safely [6]. This is achieved by providing necessary meteorological information

to aircraft operators, flight crew, air traffic services units and airport management through

network of international communication systems which ensures close liaison between all

stakeholders.

Air Traffic Management primarily consists of three distinct activities:

• Airspace Service Management (ASM): This service is responsible for airspace’s

planning and management. The main objective of this service is to allow safety, effi-

cient and effective aircraft’s operations. The service works in these main aspects: to

build an airspace structure, to maintain airways (aircraft’s routes) and to coordinate

civil and military activity.

• Air Traffic Control: It’s the process by which aircrafts are safely separated as they

fly and at the airports where they land and take off. Tower control at airports is a

familiar concept regarding air traffic control, but aircrafts are also separated as they

fly en route; Europe has many large Air Traffic Control Centers which guide aircrafts

to and from terminal areas around airports [4].

• Air Traffic Flow Management: It is an activity that is done before flights take place.

Any aircraft using air traffic control, from a business aeroplane to an airliner, files a

Th. Kravaris 12
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flight plan and sends it to a central repository. All flight plans for flying into, out of

and within Europe are analysed and computed [5].

Europe has a complex airspace, where 30.000 aircrafts usually overfly its sky. Therefore,

it is one of the airspaces with most activity in the world. ATFCM service appears in ninety’s,

where European airspace has a huge lack of capacity taken into account the growth of

demand. For this reason, a service available to handle capacity and demand balancing

appeared early in ninety’s [7] [8] [9]. The objective is to optimize traffic flows according to

air traffic control capacity while enabling airlines to operate safe and efficient flights. Plan-

ning operations start as early as possible, sometimes more than one year in advance: Air

traffic forecasts issued are consolidated by the aviation industry and the capacity plans

issued by the Air Traffic Control Centers and airports. Also operational scenarios to an-

ticipate specific events which may cause congestion (such as sporting events, Christmas

skiing or summer holiday traffic) are specified. Eventually, in case of an unforeseen event

with major impact on traffic, a coordinated response to the crisis is organized. Given that

the objective is to protect ATC service of overload, [9] this service is always looking for

optimum traffic flow through a correct use of the capacity, guaranteed: safety, better use

of capacity, equity, information sharing among stakeholders and fluency. Coordination be-

tween actors in the system is necessary. The main actors involved are:

• Airline Operators (AO): Airlines must be informed of the regulations that are applied

to their flights.

• Network Manager (NM): Central Position placed on Eurocontrol that is in charge of

network monitoring in order to propose regulations to FMPs. Once these regulations

are approved, these are applied to the flights affected.

• Flow Management Position (FMP): Local position placed at Airspace Control Centre

(ACC) level that is in charge of network monitoring in order to approve the necessary

regulations proposed by the NM.

• Airport Operators (AOP): Airports are the places where regulations are applied to

specific flights. Operators must be informed of applied regulations to the flights while

are still on the ground.

The Demand and Capacity Balancing (DCB) process is organized mainly in three phases,

depending on the lookahead time: strategic, planning and tactical. The operational sce-

narios for trajectory predictions considered in this thesis (and as part of DART agenda of

research) assume that the process of predicting traffic happens at the planning phase (i.e.,

days before operation), as opposed to the tactical phase (i.e. in real-time during opera-

tion), and aims at improving the predictability of the traffic count within an airspace volume.

The scenarios are considered to be developed in a specific geographical area (without af-

fecting the generality of the solutions proposed), and interests of different stakeholders,

such as Air Navigation Service Providers (ANSP) and airspace users, are taken into ac-

count: Air Navigation Service Providers (ANSP) require resolving the demand-capacity

imbalances efficiently, while airspace users (e.g. airlines) aim to operate safely and effi-

ciently without large delays.

Considering the ATM network effects and multiple trajectories prediction, our objective is

to demonstrate how machine learning methods can help in refining single trajectory pre-

dictions considering cases where demand of airspace use exceeds capacity. Doing so,

Th. Kravaris 13
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we aim to study and determine the way trajectories are affected due to the influence of

the surrounding traffic.

2.2. Problem Description

The DCB problem (or process) considers two important types of objects in the ATM sys-

tem: aircraft trajectories and airspace sectors.

Aircraft trajectories are series of spatio-temporal points of the generic form (longi, lati, alti, ti),
denoting the longitude, latitude and altitude, respectively, of the aircraft at a specific time

point ti. At the same time, flight plans are intended trajectories, which consist of events

of flights crossing air blocks and sectors, and flying over specific waypoints. Each event

specifies the element that is crossed (air block or sector), the entry and exit locations (co-

ordinates + flight levels), and the entry and exit times, or the time that the flight will fly over

a specific time. Other information such as estimated take-off time are specified, and, in

case of delay, the calculated take-off time.

Sectors are air volumes segregating the airspace, each defined as a group of airlocks.

These are specified by a geometry (the perimeter of their projection on earth) and their

lowest and highest altitudes. As an example, Figure 2.1 (provided by Dr.Giorgos Santipan-

takis) depicts projections of airblocks above Europe. Airspace sectorization may be done

in different ways, depending on sector configuration. Such a configuration determines the

number of active (open) sectors. Only one sector configuration can be active at a time.

Airspace sectorization changes frequently during the day, given different operational con-

ditions and needs. This happens transparently for flights.

Figure 2.1: Airlocks in 2D: Sectors are groups of adjacent airblocks.

The capacity of sectors is of utmost importance: this quantity determines the maximum

number of flights flying within a sector during a specific time interval.

Th. Kravaris 14
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The demand for each sector is the quantity that specifies the number of flights that co-

occur (or predicted to occur) during a specific interval within a sector. Demand must not

exceed sector capacity for any time interval. There are different types of measures to

monitor the demand evolution, with the most common ones being Entry Rate and Occu-

pancy Count. In this work we consider Occupancy Count.

The Occupancy of a given sector is defined as the number of flights inside the sector dur-

ing a selected period, referred as Occupancy Counting Period. In turn, this Occupancy

Counting Period is defined as a picture of the sector occupancy taken every time step

value along an interval of fixed duration: The Step value defines the time difference be-

tween two consecutive Occupancy Counting Periods. The Duration value defines the time

difference between start and end times of each Occupancy Counting Period. For instance,

considering the example in Figure 2.2 for a specific sector, the occupancy counts corre-

sponding to the set of flights at different moments P with duration of 1min and step of 1min

are: (a) At P: 1,2,3; (b) at P+1: 1,3,4,5; (c) at P+2: 3,4,6; and (d) at P+3: 4,6,7,8.

Figure 2.2: Occupancy Step=1min., Duration=1min.

The DCB process is divided in three phases: Strategic, Planning and Tactical Phase. The

overall objective is to optimise traffic flows according to air traffic control capacity while

enabling airlines to operate safe and efficient flights.

Planning operations start as early as possible - sometimesmore than one year in advance.

Given that the objective is to protect air traffic control service of overload [10], this service

is always looking for optimum traffic flow through a correct use of the capacity, guaranteed:

safety, better use of capacity, equity, information sharing among stakeholders and fluency.

We consider the demand-capacity process during the pre-tactical phase. Pre-tactical flow

management is applied at least six days prior to the day of operations, and consists of

planning and coordination activities. This phase aims to compute the demand for the op-

erations day, compare it with the predicted airspace capacities on that day, and make any

necessary adjustments to the flight plans. Since our goal is trajectory prediction in a TBO

environment, we consider individual predicted trajectories instead of flight plans, in order

to determine the delay that should be imposed on them due to traffic. At this phase, trajec-

tories are sent to the Network Manager who takes into account sector capacities to detect

problematic areas. The main objective of this phase is to optimise efficiency and balance

demand and capacity through an effective organisation of resources. In fact, DCB work

today involves a collaborative decision making process among stakeholders, resulting to

a corresponding Air Traffic Flow Control Management Daily Plan.

Th. Kravaris 15
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Tactical flow management takes place on the day of operations and involves considering,

in real time, those events that affect the Air Traffic Flow Control Management Daily Plan

and make the necessary modifications to it. This phase aims at refining the measures

taken during the pre-tactical phases towards solving the demand -capacity imbalances

that may appear. Tactical flow management is not within the scope of our work.

Figure 2.3 shows a snapshot of the Air Traffic Flow Control Management human-machine

interface that is currently being used by the Network Manager, for supporting collaborative

decision-making between all stakeholders: This snapshot shows the occupancy count of

a specific sector in consecutive periods.

Figure 2.3: Occupancy Indicator. The y axis represents the occupancy count, and the x axis time.

Columns show occupancy counts, yellow line shows sustainable capacity and orange line shows

the peak capacity

Concluding the above, our objective is to demonstrate howmachine learning methods can

help in trajectory forecasting when planned demand exceeds sectors capacity, taking into

account interactions among trajectories, and thus traffic. In this case, regulations of type

C (i.e. delays) are applied to the trajectories.

Th. Kravaris 16
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2.3. Data Sources

This section presents the data sources exploited for the experimental evaluation of the al-

gorithms implemented. Before continuing, I would like to acknowledge DART and CRIDA

for providing these data sources, which are confidential and cannot be provided as part

of this thesis.

The data sources include the following vital information:

• Tables with all the flight plan messages, from which we can extract flight plans.

• Tables which contain sectorizarion information, such as sectors’ capacities.

• Tables to specify which sector configuration is active each given moment.

In order to create a scenario based on the data sources, the initial task was to collect the

flight plans. As previously stated, flight plans consist of air volumes (or sectors) crossed

by a flight, as well as time stamps for entering and exiting each air block.

To accomplish that task, we needed to filter flight plan messages. In addition, due to the

fact that dozens of flight plan messages could correspond to each flight, we needed to

assure that we used the initial flight plan messages, meaning the ones that occur before

any kind of delay was applied. After collecting all the initial flight plans for the duration

needed, specifically for a single day, we could store the required information i.e.the air

volumes and time stamps concerning each flight plan. Figure 2.4 shows the air traffic in

all the volumes crossed during the 12th of January 2016. Figure 2.5 shows the flights that

cross the volume with the most traffic that day.

Figure 2.4: Air Traffic during 12/01/2016. Darker colors indicate lower traffic, as colors become

lighter traffic becomes higher

The next task was to translate those air volumes to sectors. This needed to be done,

due to the fact that capacities can apply to sectors but not to air volumes. This task was
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complicated by the fact that each volume could correspond to multiple sectors. So, a list

was compiled, containing of all sectors (and their capacities) that could possibly be active

during the day of interest. To verify which sector was active during the time each air vol-

ume was crossed, we cross checked with the active configurations.

Figure 2.5: Air Traffic during 12/01/2016 in a specific volume. X-axis shows the time and Y-axis the

number of flights in the volume

A configuration is a structural element of the air-space right above the sectors. It is active

for a period of time, from several minutes to a few hours, and contains a number of sec-

tors. So each volume, given its corresponding time stamps, can belong to only one active

sector, which in turn belongs to an active configuration.

After all air volumes were successfully translated to sectors, we had all the vital elements

of each flight plan in order to run our experiments.
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3. PRELIMINARIES

3.1. Markov Decision Processes

This section provides a general, high-level overview of Markov decision processes. We

are concerned with sequential decision problems where there is a need to make many

decisions in the lifetime of a system.

We assume that there is a discrete sequence of time points at which we get to make de-

cisions. It is possible to consider continuous time processes, but the issues that arise

from this added complexity is not in the scope of this thesis. The problem of calculat-

ing a complete mapping from states to actions, which is called a policy, in an accessible,

stochastic environment with a known transition model is called a Markov decision problem

(MDP), after the Russian statistician Andrei A. Markov. Markov’s work is so closely asso-

ciated with the assumption of accessibility, that decision problems are often divided into

”Markov” and ”non-Markov”. More strictly, we say the Markov property holds if the transi-

tion probabilities from any given state depend only on the state and not on previous history.

An MDP is defined by the following three components [11]:

• Initial State: S0

• Transition Model: T (s, a, s′)

• Reward unction: R(s)

A specification of the outcome probabilities for each action in each possible state is called

a transition model. We will use T (s, a, s′) to denote the probability of reaching state s′ if
action a is done in state s. To complete the definition, we must specify the utility function
for the agent. For now, we will simply stipulate that in each state s, the agent receives a
reward R(s), which may be positive or negative, but must be bounded.

A solution must specify the action that the agent must apply at any state that the agent

might reach. A solution of this kind is called a policy, as previously stated. We usually

denote a policy by π, and π(s) is the action recommended by the policy π for state s. If the
agent has a policy, then no matter what the outcome of any action, the agent will always

know what to do next.

The quality of a policy is measured by the expected utility, calculated by 3.1 (where the

utility U of a state si is multiplied by the probability Pi of its occurrence [11]) of the possible

environment histories generated by that policy.
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E(U) =
n∑

i=1

Pi ∗ U(si) (3.1)

An optimal policy is a policy that yields the highest expected utility. We use π∗ to denote

an optimal policy. Given π∗, the agent decides what to do by consulting its current precept,

which signifies the current state s, and then executing the action π∗(s). A policy represents

the agent function explicitly and is therefore a description of a simple reflex agent, com-

puted from the information used for a utility-based agent.

The careful balancing of risk and reward is a characteristic of MDPs that does not arise

in deterministic search problems; moreover, it is a characteristic of many real-world de-

cision problems. For this reason, MDPs have been studied in several fields, including

AI, operations research, economics, and control theory. Dozens of algorithms have been

proposed for calculating optimal policies, the most notable being Value Iteration [12] and

Policy Iteration [13].

3.2. Reinforcement Learning

This section aims to provide a basic understanding of Reinforcement Learning [11]. We

know an agent can learn to play chess by supervised learning, by being given examples of

game situations along with the best moves for those situations. But if there is no teacher

providing examples, what can the agent do? By trying random moves, the agent can

eventually build a predictive model of its environment: what the board will be like after it

makes a given move and even how the opponent is likely to reply in a given situation.

The problem is this: without some feedback about what is good and what is bad, the

agent will have no grounds for deciding which move to make. The agent needs to know

that something good has happened when it wins and that something bad has happened

when it loses. This kind of feedback is called a reward, or reinforcement. In environments

like the one we are considering in this thesis, the rewards come frequently. Reinforcement

has been carefully studied by animal psychologists for over 60 years.

Figure 3.1: The basic premise of Reinforcement Learning

Rewards were introduced in the previous section, where they served to define optimal poli-

cies in Markov decision processes (MDPs). An optimal policy is a policy that maximizes

the expected total reward. The task of reinforcement learning is to use observed rewards
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to learn an optimal (or nearly optimal) policy for the agent ot act in the environment.

In many complex domains, reinforcement learning is the only feasible way to train a pro-

gram to perform at high levels. For example, in game playing, it is very hard for a human

to provide accurate and consistent evaluations of large numbers of positions, which would

be needed to train an evaluation function directly from examples.

Instead, the program can be told when it has won or lost, and it can use this information to

learn an evaluation function that gives reasonably accurate estimates of the probability of

winning from any given position. Similarly, it is extremely difficult to program an agent to fly

a helicopter; yet given appropriate negative rewards for crashing, wobbling, or deviating

from a set course, an agent can learn to fly by itself.

Reinforcement learning might be considered to encompass all of AI: an agent is placed

in an environment and must learn to behave successfully therein. There are three main

agent designs:

• A utility-based agent learns a utility function on states and uses it to select actions

that maximize the expected outcome utility. A utility-based agent must also have

a model of the environment in order to make decisions, because it must know the

states to which its actions will lead. For example, in order to make use of a backgam-

mon utility function, a backgammon programmust knowwhat its legal moves are and

how they affect the board position. Knowing the actions and their immediate effect

on the environment is not enough: the agent has to know where it is headed, and

whether it is headed to a winning situation or not. Only in this way can it apply the

utility function and choose the optimal action to the outcome states.

• A Q-learning agent learns an action-value function, or Q-function, giving the ex-

pected utility of taking a given action in a given state. A Q-learning agent can com-

pare the values of its available choices without needing to know their outcomes, so

it does not need a model of the environment. On the other hand, because they do

not know where their actions lead, Q-learning agents cannot look ahead.

• A reflex agent learns a policy that maps directly from states to actions. Simple reflex

agents act only on the basis of the current percept, ignoring the rest of the percept

history. The agent function is based on the condition-action rule: if condition then

action. This agent function only succeeds when the environment is fully observable.

There are also two main divisions of Reinforcement Learning.

Passive Learning, where the agent’s policy is fixed and the task is to learn the utilities of

states (or state-action pairs); this could also involve learning a model of the environment.

The three basic approaches of this division are the following:

• Direct Utility Estimation. A simple method for this was invented in the late 1950s in

the area of adaptive control theory by Widrow and Hoff. The idea is that the utility of

a state is the expected total reward from that state onward, and each trial provides

a sample of this value for each state visited. Thus, at the end of each sequence,

the algorithm calculates the observed reward-to-go for each state and updates the

estimated utility for that state accordingly, just by keeping a running average for each

state in a table.
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• An Adaptive Dynamic Programming agent works by learning the transition model

of the environment as it goes along and solving the corresponding Markov deci-

sion process using a dynamic programming method. For a passive learning agent,

this means plugging the learned transition model and the observed rewards into the

Bellman equations to calculate the utilities of the states. Because the model usually

changes only slightly with each observation, the value iteration process can use the

utility estimates calculated up to each point as initial values and should converge

quite quickly.

• Temporal Difference Learning combines the best of both previous approaches. The

key is to use the observed transitions to adjust the values of the observed states

so that they agree with the constraint equations. The basic idea of all temporal-

difference methods is, first to define the conditions that hold locally when the utility

estimates are correct, and then, to write an update equation that moves the esti-

mates toward this ideal ”equilibrium” equation.

Active Learning, where the agent must also learn what to do. As opposed to a passive

learning agent, which has a fixed policy that determines its behavior, the principal issue

here is exploration: an agent must experience as much as possible of its environment in

order to learn how to behave in it.

An agent of Active Reinforcement Learning must make a trade-off between exploitation to

maximize its reward -as reflected in its current utility estimates- and exploration to maxi-

mize its long-term well-being. Pure exploitation risks getting stuck in a sub-optimal state.

Pure exploration to improve one’s knowledge is of no use if one never puts that knowl-

edge into practice. In the real world, one constantly has to decide between continuing in

a comfortable existence and striking out into the unknown in the hopes of discovering a

new and better life. With great understanding, less exploration is necessary.

So, an obvious question arises about the existence of an optimal exploration method. This

question has been studied in depth in the subfield of statistical decision theory that deals

with the well-known bandit problems [14].

One of the simplest approaches is to have the agent choose a random action a fraction 1/t

of the time and to follow the greedy policy otherwise. While this does eventually converge

to an optimal policy, it can be extremely slow. A more sensible approach would give some

weight to actions that the agent has not tried very often, while tending to avoid actions that

are believed to be of low utility. Essentially, this amounts to an optimistic prior over the

possible environments and causes the agent to behave initially as if there were wonderful

rewards scattered all over the place.

3.2.1.Q-Learning

The Active Temporal Difference method is called Q-learning and learns an action-value

function instead of learning utilities. We will use the notation Q(a, s) to denote the value of
doing action a in state s. Q-values are directly related to utility values as shown in equation
3.2:

U(s) = max
a

Q(a, s) (3.2)
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Q-functions may seem like just another way of storing utility information, but they have a

very important property: a Temporal Difference agent that learns a Q-function does not

need a model for either learning or action selection. For this reason, Q-learning is called

a model-free method. The update equation for Temporal Difference Q-learning, which is

calculated whenever action a is executed in state s leading to state s′, is 3.3:

Q(a, s) := Q(a, s) + α[Rwd(s) + γmax
a′

Q(a′, s′)−Q(a, s)] (3.3)

Here α is called learning rate and determines to what extent the newly acquired informa-

tion will override the old information. A factor of 0 will make the agent not learn anything,

while a factor of 1 would make the agent consider only the most recent information. The

discount factor γ determines the importance of future rewards. A factor of 0 will make the

agent short-sighted by only considering current rewards, while a factor approaching 1 will

make it strive for a long-term high reward. If the discount factor meets or exceeds 1, the

action values may diverge.

Since Q-learning is an iterative algorithm, it implicitly assumes an initial condition before

the first update occurs. High initial values, also known as ”optimistic initial conditions”,

can encourage exploration: no matter what action is selected, the update rule will cause

it to have lower values than the other alternative, thus increasing their choice probability.

Figure 3.2 presents the behavior of a basic Q-Learning agent in pseudo code.

Figure 3.2: An exploratory Q-learning agent. It is an active learner that learns the value Q(a, s) of
each action in each situation.
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4. PROBLEM SPECIFICATION

Let there be N trajectories in T that must be executed over the airspace in a total time

period of duration H (e.g. hours). The airspace consists of a set of sectors, denoted by

Sectors. Time can be divided in intervals of duration ∆t, equal to that of the Occupancy
Counting Period.

As already defined above, each trajectory is a sequence of timed positions in airspace.

This sequence can be exploited to compute the series of sectors that each flight crosses,

together with the entry and exit time for each of these sectors. For the first (last) sector

of the flight, i.e. where the departure (resp. arrival) airport resides, the entry (resp. exit)

time is the departure (resp. arrival) time.

However, there may exist flights that cross the airspace but do not depart and/or arrive in

any of the sectors of our airspace: In that case we only consider the entry and exit time of

sectors within the airspace of our interest.

Thus, a trajectory T in T is a time series of elements of the form:

T={(sector1, entryt1 , exitt1)....(sectorm, entrytm , exittm)},
where sectorl ∈ Sectors, l = 1, ...m.

For instance, considering the trajectories T1 and T2 in Figure 4.1, these are specified as

follows:

T1 = {(sector5,10:00, 10:20), (sector2,10:20, 10:45)}
T2 = {(sector1,10:00, 10:05), (sector2,10:05, 10:15), (sector7,10:15, 10:25), (sector12,10:25, 10:35)}

Figure 4.1: Example of trajectories crossing sectors
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This information per trajectory suffices to measure the demand Dsi,p for each of the sec-

tors sectori ∈ S in the airspace in any Occupancy Counting Period p of duration ∆t.

Specifically, Dsi,p = |Tsi,p|, i.e. the number of trajectories in Tsi,p, where

Tsi,p = {T ∈ T |T = (. . . , (si, entryti , exitti), . . .),
and the temporal interval [entryti , exitti ] overlaps with period p}

For instance, considering the trajectories T1 and T2 crossing the sector s2 in Figure 4.1, it
holds that Tsector2,p = {T1, T2}, with p=[10:10,10:15].

The trajectories in Tsectori,p are defined to be interacting trajectories for the period p and
the sector sectori.

Each sector sectori ∈ S has a specific capacity Csectori . The aim is to resolve imbalances

of sectors’ demand and capacity: These are cases where Dsectori,p > Csi , for any period

p of duration ∆t in H, in any sectori ∈ S. ∆t equals to the Occupancy Counting Period

duration. We refer to these cases as capacity violation or demand-capacity imbalance

cases, resulting to hotspots.

In case of capacity violation for a period p and sector sectori, the interacting trajectories in
Tsectori,p are defined as hotspot-constituting trajectories: one or more of these trajectories

must be delayed in order to resolve the imbalance in sectori.

Clearly, imposing delays to trajectories may propagate hotspots to a subsequent time pe-

riod for the same and/or other sectors crossed by that trajectory: In any case, the sets of

interacting trajectories in different periods and sectors may change, and thus, in case of

demand-capacity imbalances, hotspot-constituting trajectories may change as well. This

can be done in many ways, when different trajectories delay.

Having said that, we must clarify that the only type of change in a trajectory that may be

imposed by a regulation is “delay”: i.e., shifting the entry and exit time for each sector by

a specific amount of time. The sequence of sectors crossed is not affected.

Towards the agent-based formulation of the problem, we consider the following: Each

agent Ai is specified to be the aircraft (instrument) performing a specific trajectory, in a

specific date and time. Thus, we consider that agents and trajectories coincide in our

case and we may interchangeably speak of agents Ai, trajectories Ti, or agents Ai exe-

cuting trajectories Ti.

Agents, as it will be specified, have own interests and preferences, although they are as-

sumed collaborative, and take autonomous decisions on their delays: It must be noted

that agents do not have communication and monitoring constraints given that imbalances

are resolved at the planning phase, rather than during operation.

Therefore agents have to learn joint delays to be imposed to their trajectories w.r.t. the

operational constraints concerning the capacity of sectors crossed by these trajectories.

It must be noted that agents have conflicting preferences since they prefer to impose the

smallest delay possible (preferably none) to their own trajectory, while also executing their

planned trajectories safely and efficiently.
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Agents with interacting trajectories are considered to be “peers” given that they have to

jointly decide on their delays: The decision of one of them affects the others. This implies

that agents form “neighbourhoods” of peers, taking also advantage of the inherent sparsity

of the problem (e.g a flight crossing the north part of Spain, will never interact in any direct

manner with a flight crossing the southest part of the Iberian Peninsula).

However, as mentioned above, these neighbourhoods have to be updated when delays

are imposed to trajectories, given that trajectories that did not interact prior to any delay

may result to be interacting when a delay is imposed. Thus, a dynamic update of peers’

neighbourhoods is necessary according to agents’ decisions.

Given an agent Ai the traffic for that agent is determined to be the trajectories of all other

agents forming its neighbourhood. More specifically:

Traffic(Ai)

= {Tj |Tj is a trajectory that interacts with the trajectory Ti executed by Ai for any specific sector

crossed by Ti and any time period within H }
= ∪(sector,·,·)∈Ti,pTsector,p

A society of agents S = (T ,A, E) is modelled as a graph with one vertex per agent Ai

in A and any edge (Ai, Aj) in E connecting agents with interacting trajectories in T .

As pointed out above, the set of edges are dynamically updated by adding new edges

when new interacting pairs of trajectories appear. N(Ai) denotes the neighbourhood of

agent Ai, i.e. the set of agents connected to agent Ai ∈ A including also itself: These are

the peers of Ai.

The options available in the inventory of any agent Ai for contributing to the resolution of

hotspots may differ between agents: These, for agentAi areDi ⊆ {0, 1, 2, ...,MaxDelayi}.
These are ordered by the preference of agentAi to any such option, according to the func-

tion γ(i) : Di → R. We do not assume that agents in A−{Ai} have any information about
γ(i): This represents the situation where airlines set own options and preferences for de-
lays even in different own flights, depending on different circumstances.

However, we expect that the order of preferences should be decreasing from 0 to

MaxDelayi. In this thesis we ran experiments assuming that Di = Dj, and thus

MaxDelayi = MaxDelayj, and γ(i)(d) = γ(j)(d). This assumption does not affect the

generality of the proposed methods, which may be applied to any other case. However,

this issue requires further investigation for agents to reach optimal solutions.

Considering two peers Ai and Aj ∈ N(i) − {Ai}, agents must select among the sets of

available optionsDi andDj respectively, so as to increase their expected payoff w.r.t. their

preferences on options, and resolve the DCB problem.

This problem specification emphasises on the following problem aspects:

• Agents need to coordinate their strategies (i.e. chosen options to impose delays)

to execute their trajectories jointly with others, taking into account traffic, w.r.t. their

preferences and operational constraints
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• Agents need to explore and discover how different combinations of delays affect the

joint performance of their trajectories w.r.t. the DCB process, given that the way

different trajectories do interact is not known beforehand (agents do not know the

interacting trajectories that emerge due to own decisions and decisions of others,

and of course they do not know whether these interactions result to hotspots i.e.,

demand-capacity imbalances)

• Agents’ preferences on the options available may vary depending on the trajectory

performed, and are kept private.

4.1. The MDP Framework

In principle, a collaborative multiagent MDP can be regarded as one large single agent in

which each joint action is represented as a single action. It is then possible to learn the op-

timal Q−values for the joint actions using standard single-agent Q−learning. In this MDP,
either a central controller models the complete MDP and communicates to each agent

its individual action, or each agent models the complete MDP separately and selects the

individual action that corresponds to its own identity.

In the latter case, the agents do not need to communicate but they have to be able to ob-

serve the executed joint action and the received individual rewards. The problem of explo-

ration is solved by using the ε-greedy exploration-exploitation strategy for all agents [15].

Although this approach leads to the optimal solution, it is infeasible for problems with many

agents. In the first place, it is intractable to model the complete joint action space, which is

exponential in the number of agents. For example, a problem with 20 agents, here flights,

each able to perform 2 actions (add a delay or not) results in more than one millionQ−val-
ues per state. Secondly, the agents might not have access to the needed information for

the update because they are not able to observe the state, action, and reward of all other

agents. Finally, it will take many time steps to explore all joint actions resulting in slow

convergence.

So, in order to exploit its various advantages, we use the model of collaborative multiagent

MDP framework [16], [17] which assumes:

-The society of agents S = (T ,A, E).

-A time step t = t0, t1, t2, t3, ..., tmax, where (tmax − t0) = H.

-A local state per agent Ai at time t, comprising state variables that correspond to (a) the
delay imposed to the trajectory Ti, ranging to the sets of options assumed by Ai, and (b)

the number of hotspots in which Ai is involved in (for any of the sectors and time periods).

Such a state is denoted sti. The joint state sti,j of agents Ai and Aj at time t is the tuple
of the state variables for both agents. This is generalized for any subset of agents in the

society. A global state st at time t is the tuple of all agents’ local states.

-The local strategy for agent Ai at time t, denoted by strti is the action that Ai performs

at that specific point: An action for any agent at any time point, in case the agent is still on

ground, may be, either impose a delay or not. Thus, at each time point the agent has to

take a binary decision. When the agent flies, then it just follows the trajectory. The location
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(i.e. sector) of that agent at any time point can be calculated by consulting its trajectory.

The joint strategy of a subset of agents A of A executing their trajectories (for instance

of N(Ai)) at time t, is a tuple of local strategies, denoted by strtA (e.g. strtN(Ai)
). The set

of all joint strategies for A ⊂ A is denoted StrategyA. The joint strategy for all agents A
at time t is denoted strt.

-The state transition function gives the transition to the joint state st+1 based on the

joint strategy strt taken in joint state st. Formally Tr : State × Strategy → State. It
must be noticed that although this transition function may be deterministic in settings with

perfect knowledge about society dynamics, the state transition per agent is stochastic,

given that no agent has a global view of the society, of the decisions of others, while

its neighbourhood gets updated. Thus no agent can predict how the joint state can

be affected in the next time step. Thus, for agent Ai this transition function is actually

Tr : Statei×Strategy{Ai}×Statei → [0, 1], denoting the transition probability p(st+1
i |sti, strti).

-The local reward of agent Ai, denoted Rwdi, is the reward that the agent gets by ex-

ecuting its own trajectory in a specific joint state of its peers in N(Ai), thus Traffic(Ai),

according to the sectors’ capacities, and the joint strategy of agents in N(Ai). The joint
reward, denoted by RwdA, for a set of peers A specifies the reward received by agents

in A by executing their actions in their joint state, according to their joint strategy.

The joint reward RwdA for A ⊆ A depends on the number of hotspots occurring while the

agents execute their trajectories according to their joint strategy strtA in their joint state

stA, i.e. according to their decided delays, and also according to their preferences on the
chosen delays. Formally:

RwdA(s
t
A, str

t
A) = λ1 ∗X(strtA, s

t
A) + λ2 ∗D(strtA, s

t
A) (4.1)

where, X(strtA, s
t
A) is equal to the total number of hotspots in which agents in A are in-

volved while executing their joint strategy in their joint state (i.e. according to the delays

decided up to t),D(strtA, s
t
A) : sA → R, is a function aggregating the preferences of agents

on their chosen delays. The parameters λ1 and λ2 are used for balancing between the

interests of different stakeholders towards reaching an optimum solution.

Currently we have set λ1 = −100 and λ2 is a very small number close to zero: Methods

are indeed proved to be very sensitive to preferences on delays although they do favour

small delays, and this requires further investigation as part of our future work.

Thus, the reward received by any agent depends on (a) the sectors’ capacity and the

hotspots in which they participate, and on (b) their preferences on delays while perform-

ing their trajectories jointly.

A (local) policy of an agent Ai is a function πi : Statei → Strategy{Ai} that returns local

strategies for any given local state, for Ai to execute its trajectory. The objective for any

agent in the society is to find an optimal policy π∗ that maximises the expected discounted

future return
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V ∗
i (s) = maxπi

E[
∞∑
t=0

δtRwdi(s
t
i, πi(s

t
i))|πi)] (4.2)

for each state si, while executing its trajectory. δ ∈ [0, 1] is the discount factor.

This model assumes the Markov property, assuming also that rewards and transition prob-

abilities are independent of time. Thus, the state next to state s is denoted by s′ and it is
independent of time.
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5. COLLABORATIVE REINFORCEMENT LEARNING ALGORITHMS

The next paragraphs describe three collaborative reinforcement learning methods that

take advantage of the problem structure (i.e. interactions among flights), considering that

agents do not know the transition and reward model (model-free methods) and interact

concurrently with all their peers.

5.1. Independent Reinforcement Learners

The independent learners Q-learning variant proposed in [18] decomposes the global Q-

function into a linear combination of local agent-dependent Q-functions. Each local Qi is

based on the local state and local strategy for agent Ai:

Q(s, a) =
∑|N |

i=1Qi(si, stri)
Dependencies between agents, and thus the coordination graph, are defined according to

the agents’ society specified above. It must be pointed out that these dependencies may

be updated by adding new ones while solving the problem. Each agent observes its local

state variables.

A local Qi is updated using the global temporal-difference error, the difference between

the current global Q-value and the expected future discounted return for the experienced

state transition, using

Qi(si, stri) := Qi(si, stri)+

α[Rwd(sN(Ai), strN(Ai)) + δmax′
aQ(s′i, str

∗
i )−Q(si, stri)] (5.1)

where, str∗i is the best strategy known to the agent for the state s′i. It must be noticed that
instead of the global reward Rwd(s, str) used in [18], we use the reward received by the
agent, taking into account only the joint state and joint strategy of its neighbourhood.

5.2. Sparse Cooperative Q-Learning

The next two algorithms that we propose in this thesis are based on Sparse Cooperative

Q−learning, or SparseQ, method which also approximates the global Q−function into a

linear combination of local Q−functions. The decomposition is based on the structure of
a Coordinated Graph(CG) which is chosen beforehand.

Here, in order to construct this CG, we assume the following:

• Each Flight is a node of the graph.
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• An edge between two graph nodes exists if and only if the two corresponding flights

are involved in the same hotspot.

Two connected flights on that graph are called neighbors. A flight can be a neighbor of

another flight only if they both can be found at the same sector, at the same occupancy

period. It has to be noted here, that given a maximum delay for each flight, the set of

possible interacting flights at a time slot is finite.

We investigate both a decomposition in terms of the nodes (or agents), as well as the

edges. In the agent-based decomposition the local function of an agent is based on its

own action and those of its neighboring agents. In the edge-based decomposition each

local function is based on the actions of the two neighbor agents it is connected to. In

order to update a local function, the key idea is to base the update not on the difference

between the current global Q−value and the experienced global discounted return, but

rather on the current local Q−value and the local contribution of this agent to the global

return. In this thesis we utilize the edge-based decomposition.

Figure 5.1: An edge-based decomposition of the global Q-function for a 4-agent problem.

5.2.1. Edge-Based Collaborative Reinforcement Learners

This is a variant of the edge-based update sparse cooperative edge-based Q-learning

method proposed in [1]. Given two peer agents performing their tasks, Ai and Aj, the

Q−function is denoted succinctly Qi,j(si,j, stri,j), where si,j with abuse of notation denotes
the joint state related to the two agents, and stri,j denotes the joint strategy for the two

agents. The sum of all these edge-specific Q−functions defines the global Q−function.
The update function in this case is as follows:

Qi,j(si,j, stri,j) = Qi,j(si,j, stri,j)+

α(
Rwdi(si, stri)

N(Ai)
+

Rwdj(sj, strj)

N(Aj)
+ δQi,j(s

′
i,j, str

∗
i,j)−Qi,j(si,j, stri,j)) (5.2)

where, str∗i,j is the best joint strategy for agents Ai and Aj and for the joint state s′i,j. In this
case this is approximated using the max-plus message-passing algorithm [19].

This algorithm is a popular method for computing the maximum a posteriori configura-

tion in an undirected graphical model. It operates by iteratively sending locally optimized

messages ij(aj) between node i and j over the corresponding edge in the graph. After

convergence, each node then computes the MAP assignment based on its local incoming
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messages only [1].

Actually, given the society of agents (i.e. the coordination graph), in order to compute the

optimal joint action str∗, each agent Ai repeatedly sends a message µij to its neighbors

Aj ∈ N(Ai). The message µij can be regarded as a local payoff function of agent Aj and

is calculated as

µij(strj) = maxstri{Qi(stri) + Qij(stri, strj) +
∑

k∈N(Ai)−Aj

µki(stri)}, (5.3)

The local Q-function for Ai is defined as in the Ind-Colab-RL update case above (formula

(3)). Agents decide on their best local strategy by computing

str∗i = argmaxstri(fi(stri) +
∑

j∈N(Ai)

µji(stri)) (5.4)

Figure 5.2: A graphical representation of the edge-based and agent-based update method after the

transition from state s to s′ [1].

Th. Kravaris 32



Collaborative Reinforcement Learning for Resolving Hotspots in the Air Traffic Management Domain

5.2.2. Agent-Based Collaborative Reinforcement Learners

This is a variant of the agent-based update sparse cooperative edge-based Q-learning

method proposed in [1]. As in Ed− Colab− RL method, given two peer agents perform-

ing their tasks,Ai and Aj, the Q−function is denoted succinctly Qi,j(si,j, stri,j), where si,j
denotes the joint state related to the two agents, and stri,j denotes the joint strategy for

the two agents. The update function is as follows:

Qi,j(si,j, stri,j) = Qi,j(si,j, stri,j)+

α
∑

k∈{i,j}

(Rwdi,j(si,j, stri,j) + δQk(s
′
k, str

∗
k)−Qk(sk, strk))

|N(Ak)|
(5.5)

where, str∗k is the best strategy for agent Ak in state s′k, k ∈ {i, j}. Agents, compute their
local Q-functions and their best local strategy as in the Ed− Colab−RL method.
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6. EXPERIMENTAL EVALUATION

We have performed a series of experiments in order to test and compare the efficiency

of the three collaborative Q-learning methods to resolving the DCB problem in ATM. The

efficiency is measured by means of the resulting number of hotspots, the mean delay

achieved and the distribution of interacting flights in Occupancy Counting Periods - in

conjunction to the number of learning periods needed for methods to compute policies.

To this purpose, we create specific simulation scenarios of trajectories crossing an

airspace. The scenarios are artificial, but correspond to typical and difficult cases in the

real world, found in datasets provided by CRIDA, the Spanish Reference Centre for Re-

search, Development, and Innovation in ATM. They have been used during this phase of

our research in order to control the experimental settings and explore the potential of the

proposed methods.

For the simulation we consider that the airspace comprises a grid of sectors, all having a

specific capacity value (that could possibly differ from sector to sector). Table 6.1 presents

the data used in producing the experimental cases and the parameter values used in all

simulated runs.

Table 6.1: Parameter values used during the simulated experiments

Parameter value

grid structure of sectors 4× 4
capacity of sectors, C ∈ [4, 10]
number of planes, N 100

Duration and Step of Occupancy Counting Period 6
total time period duration H 180

maximum delay 10

All three approaches follow an ε-greedy exploration strategy starting from probability 0.9,

which is gradually reduced in subsequent rounds. However the Ind-Colab-RL differs from

the other methods in that it initiates an ε-greedy exploitation phase for 1000 rounds with
high probability, while in a subsequent phase of 1000 rounds, it does pure exploration.

To evaluate the three approaches in cases of varying difficulty, we modify the capacity of

sectors (C), and the numberm of sectors that each flight crosses. Herein we report results

only for the most hard cases in the grid considered, where m ∈ [3, 4]. For every capacity
value C ∈ [4, 10], we generated 50 random experimental cases. Figure 6.1 shows the

mean value and the standard deviation of the final (after learning) number of hotspots, as

well as the mean delay for all flights and for all experiments performed.
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Figure 6.1: Comparative results: Plots illustrate (a) the number of hotspots and (b) the mean delay

estimated by each method in terms of various values of sectors’ capacity (x-axis).

According to the results and as shown in Fig. 6.1 (a), all methods demonstrated very

similar behaviour wrt. hotspots’ eradication, with Ed − Colab − RL being slightly more

effective compared to others: The x-axis in Fig. 6.1 (a) shows the capacity of each sector,

while y-axis shows the number of hotspots when agents’ strategies converge. When the

capacity of sectors was greater than or equal to 7 all methods reached the optimum policy

for the hotspot criterion.

However, an improvement in the ’mean delay’ criterion is shown in Fig. 6.1 (b) concerning

the edge-based and the agent-based collaborative RL approaches: x-axis in this figure

shows the varying capacity of each sector, and the y-axis shows the mean delay achieved

by each method. Ind−Colab−RL shows the worst performance, while the performance

of Ed− Colab− RL is similar to that of Ag − Colab− RL, although the later is more con-
sistent while the capacity of sectors increases.

This confirms that the proposed multi-agent formulation provides a promising framework

for tackling the DCB problem.

0 200 400 600 800 1000
0

5

10

15

20
number of hotspots
mean delay

0 200 400 600 800 1000
0

5

10

15

20
number of hotspots
mean delay

0 200 400 600 800 1000
0

5

10

15

20
number of hotspots
mean delay

Ind-Colab-RL Ed-Colab-RL Ag-Colab-RL

Figure 6.2: Learning curves received by three methods in a setting considering sectors’ capacity

equal to 7. The x-axis shows the number of the learning episode, while the y-axis shows the number

of hotspots and mean delay achieved in each episode.

Figure 6.2 illustrates an example of the received learning curves by each method, i.e. the
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number of hotspots and mean delay as estimated for 1000 episodes during learning (we

set sector’s capacity as C = 7 to all cases). For the Ind − Collab − RL method, these

episodes are from the pure exploitation phase.

All methods were able to converge rapidly, achieving strategies with zero hotspots to any

sector, and with flights’ delay much less than the maximum acceptable delay (which was

10 in all experiments).

(a)

(b)

Ind-Colab-RL Ed-Colab-RL Ag-Colab-RL.png

Figure 6.3: An example of the distribution of interacting flights in Occupancy Counting Periods (a)

initially and (b) as produced by three methods

Finally, in Figure 6.3 we present an example of the distribution of hotspots (y-axis) in terms

of Occupancy Counting Periods in a number of 29 non-overlapping occupancy periods,

each of duration equal to 6 time instants (e.g. 6 minutes). This was obtained by measur-

ing the interacting flights to a specific sector in different periods: (a) at the beginning and

(b) at the end of learning. As can be seen, our schemes manage to offer strategies with

significantly reduced hotspots (zero in these cases, given that demand in any occupancy

period is not greater than capacity).
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Providing further evidence to the viability of the proposed methods, Figure 6.4 shows the

learning curves received by the three methods in a setting where N=3000 and sectors’

capacity C=20, while the remaining parameters are as specified in Table 6.2.

Table 6.2: Parameter values used during the simulated experiments with 3000 flights

Parameter value

grid structure of sectors 4× 4
capacity of sectors, C 20
number of planes, N 3000

Duration and Step of Occupancy Counting Period 6
total time period duration H 180

maximum delay 10

In that figure the x-axis shows the number of the learning episode, while the y-axis shows

the number of hotspots in each episode (Figure 6.4(a)) and the mean delay achieved

per method (Figure 6.4(b)). As it is seen there, all methods converge fast, after only 60

episodes, resolving all imbalances. Specifically, the Ag − Colab− RL method converges

as fast as the Ind − Colab − RL, but in a solution where the mean delay is lower than

those achieved by the other methods.
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Figure 6.4: Learning curves received by the three methods in a setting where N=3000 and sectors’

capacity C=20. The x-axis shows the number of the learning episode, while the y-axis shows (a) the

number of hotspots and (b) the mean delay achieved in each episode.
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The final experiment was created by utilizing the real world data provided by CRIDA. Table

6.3 specifies the parameters of the scenario that was formulated from the data of the 12th

of January 2016. The main difference here, regarding the parameters, is that the delays

applied are no longer a multiple of the occupancy period, but plain minutes.

Table 6.3: Parameter values used during the experiments on the real scenario

Parameter value

grid structure of sectors 11× 11
capacity of sectors, C ∈ [15, 53]
number of planes, N 3195

Duration and Step of Occupancy Counting Period 60
total time period duration H 1440

maximum delay 45

This change brings the experiment closer to a real world situation, but poses an advanced

difficulty for two reasons. Firstly, the maximum delay is a much bigger number, which

means that every agent has many more states to explore. Secondly, a flight can be de-

layed for less than one occupancy period, as opposed to the previous experiments, where

we could delay a flight for as many as ten periods.

(a) Hotspots in Simulation (b) Hotspots in Real Scenario

Figure 6.5: A comparison of the number of hotspots. (a) shows all the hotspots for the 3000 flight

simulated scenario and (b) those of the real scenario

On the other hand, at Figure 6.5 we see the hotspots that appear in the simulated 3000

flight scenario, as well as those from the actual one. It is quite obvious that the real prob-

lem is much easier than the simulated one, due to the fact that the simulation has tens of

hotspots, but the real scenario has only 7. This is a tremendous difference, which shows

that during our simulations we pushed our methods to the limit, by solving problems much

more difficult than the one produced by the dataset.
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Figure 6.6: Learning curve received by the Independent Learners method in the scenario produced

by the dataset. The x-axis shows the number of the learning episode, while the y-axis shows the

number of flights in hotspots and mean delay achieved in each episode.

Figure 6.6 shows the learning curve received by the Independent Learners method, which

converges to a solution where the average delay is close to 0. The exploration-exploitation

policy used here was the ε-greedy strategy. The exploration stops at episode 130, where
the pure exploitation begins. Figure 6.7 shows the initial and final distribution of flights in

the sector with two out of seven total hotspots.

(a) Initial Distribution (b) Final Distribution

Figure 6.7: An example of the distribution of interacting flights in Occupancy Counting Periods (a)

initially and (b) as produced by the Independent Learners. Note that the sector’s capacity is 20

Th. Kravaris 39



Collaborative Reinforcement Learning for Resolving Hotspots in the Air Traffic Management Domain

7. RELATED WORK

Most works on agent-based modelling of the air traffic management system focus on the

tactical phase, and mostly to the problem of avoiding collisions: These are mostly reactive

approaches using probabilistic models [20] or geometric approaches [21].

For instance, following an agent-based approach, [22] and [23] propose decentralised

methods for air traffic management application as well as for UAV collision avoidance.

The first work proposes a negotiation approach for agents to find safe trajectories. Sim-

ilarly in the second work agents, aiming to collision avoidance (tactical phase) following

either an iterative p2p or a multi party collision avoidance method.

Using the Brahms multi-agent simulation framework, authors in [24] study the issues that

affect the effectiveness of flow management in strategic planning. Although no decision-

making or planning abilities are provided, the paper provides interesting insights for mod-

elling the problem and addressing inefficiencies.

Closely to our aims, [25] propose multiagent reinforcement learning methods to reduce

congestion through agents’ local actions. Each agent may perform one of three actions:

(a) setting separation between airplanes, (b) ordering ground delays or (c) performing

reroutes. Agents are related to fixed points (sectors’ entry points), while the hotspots are

not guaranteed to be solved.

A recent work that provides Bayesian reinforcement learning (BRL) solutions for collab-

orative multiagent settings, is that of [26]. Like [1], the approach employs a variant of

max-plus [19] for message-passing, but, crucially, it is able to extend single-agent and

centralized multi-agent Bayesian RL methods [27] in collaborative settings by decompos-

ing the coordination problem into regional sub-problems.
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8. CONCLUSIONS AND FUTURE WORK

In this work we investigated a collaborative reinforcement learning framework for pre-

tactical planning of flights, with the aim of eliminating hotspots by applying delays. The

key aspect of the proposed scheme is the formulation of the DCB problem in theAir Traffic

Management as a collaborative multiagent MDP framework where the aircraft is treated

as an agent. Three multiagent RL schemes were studied, the Independent Learners, the

Edge-Based Collaborative Reinforcement Learners and the Agent-Based Collaborative

Reinforcement Learners. As shown in the experimental evaluation section, their prelim-

inary results were quite promising. This was supported further by studying a real world

example.

Our primary aim is to further extend our work in a variety of challenging issues. We intend

to examine more systematically the generalization capabilities of the proposed RL-based

multi-agents scheme to more complex environments and validate it in real operations.

This involves work in several interesting aspects:

• Preparing more datasets of flight plans in specific periods (e.g. days) of varying

traffic. Historical data on flight plans do exist, including initial (unregulated) flight

plans and their regulated versions per flight.

• Exploiting more historical data to train our methods and compute solutions using

them.

• Tune/learn a reward model.

• Compare delays imposed by our methods to those imposed by domain experts in

real-life scenarios.

• Utilize Inverse Reinforcement Learning techniques to verify our reward model.

Of course the problem of resolving hotspots can be seen as a constraint optimisation

problem (COP) and it is our aim to also compare the solutions produced by reinforcement

learning methods to those produced by COP methods. Moreover, it is possible to attempt

to solve this problem by utilizing algorithms from the Population Based family, like Genetic

or Swarm Based algorithms [28].

Another direction for future work is to introduce alternative jointQ-functions among agents
taking into account geometric properties, and to examine the effectiveness of different

forms of the reward function.
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Table 8.1: LIST OF ABBREVIATIONS

AI Artificial Intelligence

RL Reinforcement Learning

ATM Air Traffic Management

TCB Trajectory-Based Operations

ANS Air Navigation System

ASM Air Service Management

ATC Air Traffic Control

DCB Demand Capacity Balance

MDP Markov Decision Process

Ind-Colab-RL Independent Collaborative Reinforcement Learners

Ed-Colab-RL Edge-Based Collaborative Reinforcement Learners

Ag-Colab-RL Agent-Based Collaborative Reinforcement Learners
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