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Information analysis often involves heterogeneous sources expressed as logical sentences, 
numerical models, sensor data, etc. Each of these has its own way to describe uncertainty 
or error; e.g., frequency analysis, algorithmic truncation, floating point roundoff, Gaussian 
distributions, etc. A unifying framework is proposed here to represent this information 
as logical sentences with associated probabilities in order to allow the inference of the 
probability of a query sentence.
Given such a knowledge base in Conjunctive Normal Form (CNF) for use by an intelligent 
agent, with probabilities assigned to the conjuncts, the probability of any new query 
sentence can be determined by solving the Probabilistic Satisfiability Problem (PSAT). 
This involves finding a consistent probability distribution over the atoms (if they are 
independent) or complete conjunction set of the atoms. For each sentence in the 
knowledge base, we propose to produce an equation in terms of atoms and conditional 
probabilities. This system of equations is then solved numerically to get a solution 
consistent with the sentence probabilities. Finding such a solution is called the Probabilistic 
Sentence Satisfiability (PS-SAT) problem. In particular, findings include:

1. For independent logical variables:
(a) atom probabilities which solve PS-SAT also provide a PSAT solution.
(b) numerical experiments demonstrate a q-superlinear convergence rate for most test 

cases.
(c) problems with up to 1,000 variables and 300 sentences are solved.

2. For general knowledge bases (i.e., variables not independent):
(a) both atom and a subset of conditional probabilities must be found,
(b) a solution to PS-SAT does not guarantee a solution to PSAT, but most empirical 

results provide such a solution.
(c) The convergence rate for equations with non-independent variables also appears 

q-superlinear.
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1. Introduction

A major motivation for the work presented here is to provide a framework for uncertainty quantification in geospatial 
intelligence systems as exemplified by BRECCIA [1] which receives information from humans (as logical statements), simu-
lations (e.g., weather or platform physics), and sensors (e.g., cameras, weather instruments, microphones, etc.), where each 
piece of information has an associated certainty. BRECCIA then provides coherent responses to user queries concerning UAV 
flight missions based on the PS-SAT methods described here. Example information (expressed as logical sentences) might 
include:

Sentence 1: Raven_1_Platform_Available [0.93]
Sentence 2: Wind_Less_Than_17_Knots [0.87]
Sentence 3: Smoke_Obscures_BLDG_21 [0.70]

Each of these sentences has an associated probability (shown in square brackets after the sentence) based in this case 
on: (1) maintenance history, (2) sensor error model, and (3) human determination. The PS-SAT approach presented here is 
particularly well-suited to this probabilistic knowledge base formulation, and moreover, allows the determination of the best 
allocation of information acquisition resources to increase certainty in a given query. Moreover, it is possible to validate both 
knowledge base clause probabilities, as well as probabilities assigned to queries by measuring the appropriate uncertainties 
related to the query variables.

The paper is presented as follows. First, the background information required to technically define the problem is given. 
Next, related work is discussed as well as how the proposed method differs from current approaches. Next, the proposed 
method is described in terms of systems of equations that are generated from the probabilistic knowledge base (including 
the difference between handling independent variables and non-independent variables), and numerical techniques are pro-
vided to solve these systems of equations It is shown that the method is Fixed-Parameter Tractable (FPT) (e.g., is polynomial 
once the maximum clause length is fixed; see [2]). Experiments are then described which characterize the performance of 
the methods, and it is demonstrated that they outperform the most related works (e.g., that of Hansen and Perron [3]). 
Finally, future work is described and includes: (1) a deeper examination of numerical methods for solving the equations, (2) 
discovery of better initial starting points, and (3) the incorporation of a more technical argumentation framework.

2. Background

The effective and efficient confluence of logic and probability has long been a goal of mathematics and artificial intel-
ligence; e.g., see [4] for an early study that undergirds most modern approaches. Here we follow Bacchus’ development of 
defining probabilities on propositions (for details see [5]). First, it is necessary to define a suitable algebraic structure so 
that probabilities may be correctly defined.

Define a collection of sets, F , as a field of sets if:

1. F contains a universal set V � ∀S ∈F , S ⊆ V ,
2. H ∈F implies H ∈F , i.e., the complement of H wrt V is in F , and
3. H, G ∈F implies H ∪ G ∈F .

Given such an F , a probability function, P , may be defined over F :

1. Total Probability: P (V ) = 1 where V is the universal set in F ,
2. Positivity: P (H) ≥ 0, if H ∈F , and
3. Additivity: H ∩ G = ∅ implies P (H ∪ G) = P (H) + P (G).

Next, propositional logic is defined as a set of atomic variables (atoms), A = {A1, A2, . . . , An}, and a set of logical con-
nectives or operators, C = {¬, ∨, ∧}. The language, L, is the set of all well-formed formulas and is defined recursively as:

1. (Ai), where Ai ∈ A,
2. (¬σ), where σ ∈L,
3. (σ1 ∨ σ2), where σ1, σ2 ∈L,
4. (σ1 ∧ σ2), where σ1, σ2 ∈L,

L is the closure of the atomic variables using these connectives to generate formulas.
Atoms are assigned truth values, i.e., v(Ai) ← true or false, and the standard truth value functions are given for the 

logical connectives. Given a logical sentence σ ∈ L, then v(σ ) is defined using the connective truth functions applied to 
the atomic truth assignments. � is defined as the set of complete conjunctions (CC), i.e., all possible truth assignments to 
the atoms; although this is a set, we will consider it in the order of the elements as binary numbers. The truth value of 
formula σ given a truth assignment ω ∈ � is denoted by v(σ , ω). If τ is a tautology, then v(τ , ω) is true for all ω ∈ �. A 
contradiction is the negation of a tautology. An equivalence class, E , is the set of all formulas such that σ1, σ2 ∈ E implies 
that ∀ω ∈ � v(σ1, ω) = v(σ2, ω).
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Bacchus showed that a Boolean algebra may be defined over the set of equivalence classes using the logical connectives 
as operators. If [0] denotes the smallest element in the algebra (i.e., contradictions), and [1] denotes the largest element 
(tautologies), then a probability function, μ, can be defined as follows:

1. μ([1]) = 1, and
2. if [σ1 ∧ σ2] ≡ [0], then

μ([σ1 ∨ σ2]) = μ([σ1]) + μ([σ2])
Then given a logical language, its associated Boolean algebra (in this case, the Lindenbaum-Tarksi algebra), and a probability 
function, the probability of any formula may be determined.

Several initial observations are in order. The logical language and the structures necessary to assign probabilities to 
formulas are now in place, but as Bacchus points out, the probabilities are given at the semantic level, and not at the 
syntactic level. That is, the language cannot use these probabilities. Bacchus goes on to describe an extension of Halpern’s 
probability logic [6] which includes the power to represent and make inferences over the probabilities of sentences. That is 
not the goal in the current work.

Consider a knowledge base, K , from propositional calculus expressed in Conjunctive Normal Form (CNF) over n logical 
variables:

K = C1 ∧ C2 ∧ . . . ∧ Cm

where Ci, i = 1 . . .m is a conjunct. and:

Ci = Li,1 ∨ Li,2 ∨ . . . ∨ Li,ki

where Li, j is a literal, i.e., either a logical atom (variable) or its negation. This is a sublanguage of that defined above.
The Satisfiability Problem (SAT) is to determine if there exists a truth assignment, ω, to the n atoms such that K is 

true; if so, we say that ω satisfies K (denoted ω |= K ). A simple method to solve SAT is to generate and test all 2n truth 
assignments; i.e., the complete conjunction set. This approach is guaranteed to find a solution if it exists, but has O(2n) 
complexity.

Each conjunct in K is called a clause or sentence. K is consistent if K has a SAT solution; otherwise, it is inconsistent. For 
example, A ∨ ¬A is consistent, while A ∧ ¬A is inconsistent. We note that SAT solvers are very efficient, and large formulas 
can be solved, even though SAT is NP-complete.

Suppose that a probability is assigned to each conjunct. That is:

K = C1[p1] ∧ C2[p2] ∧ . . . ∧ Cm[pm]
where pi is the probability of Ci .

Definition. A function π̄ : � → [0, 1] is a consistent probability distribution with respect to K for � iff:

1. ∀i, 0 ≤ π̄ (ωi) ≤ 1.
2.

∑2n−1
i=0 π̄ (ωi) = 1.

3. pi = ∑
ωk∈�,ωk|=Ci

π̄ (ωk).

Definition. The Probabilistic Satisfiability (PSAT) Problem is to determine if for a given knowledge base, K , there exists a 
consistent probability distribution for � with respect to K .

Nilsson [7] proposed methods to find a consistent assignment of probabilities to logical clauses (essentially rediscovering 
Boole’s method – also analyzed by Hailperin [8,9]). Georgakopoulos [10] showed this problem to be NP-complete and ex-
ponential in n. Nilsson posed this problem in terms of probabilities over the possible worlds as follows: given K , determine 
whether there exists an m × 2n binary matrix A and a probability distribution function π̄ such that:

Aπ̄ = p̄

where p̄ = [p1, p2, . . . , pm]T from K , and A is defined as:

A(i, j) =
{

1 if ω j satisfies Ci
0 otherwise

Note that the probabilities of the complete conjunction set form a basis for probabilities of the set of clauses as follows: for 
any clause, Ci :
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P (Ci) =
∑

ωk|=Ci

π̄ (ωk)

This is true because the complete conjunction set forms a partition of the event space, and the probability of any clause is 
the sum of the probabilities of the complete conjunctions that satisfy the clause.

[7] solves for π̄ , the probabilities of the complete conjunction set, and shows how probabilistic inference can be per-
formed for an arbitrary query, so that the probability of any clause over the n variables can be computed. However, for a 
given K , PSAT, just like SAT, may have more than one solution, and may in fact, have an uncountable number of solutions. 
To see this, consider Nilsson’s example (Modus Ponens):

K = P [0.7] ∧ (¬P ∨ Q )[0.7]
Then:

� = {¬A ∧ ¬B,¬A ∧ B, A ∧ ¬B, A ∧ B}
p̄ = [0.7,0.7]T

A =
[

0 0 1 1
1 1 0 1

]

π̄ = [0,0.3,0.3,0.4]T

where π̄ is found using least squares methods. (Note that an extra row of 1’s is added to A as is an extra row with 1 to 
the p̄ vector so as to force the sum of the elements of π̄ to be 1.) It turns out that π̄ = [0.3, 0, 0.3, 0.4]T is also a solution 
for this problem. In fact, if we define:

π̄ (0,0) ∈ [0,0.3]
π̄ (0,1) = 0.3 − π̄ (0,0)

π̄ (1,0) = 0.3

π̄ (1,1) = 0.4

then these equations describe an uncountable set of solutions for this problem.
Bacchus [5] states that Nilsson’s method is equivalent to the algebraic field of sets approach described above where 

in this case the probability distribution is defined over the field of sets of possible worlds (complete conjunctions) of the 
language. The possible world semantics provides a standard denotational semantics, and a probabilistic knowledge base is 
just a set of constraints on possible world probabilities.

Definition. A knowledge base K is probabilistically consistent if there exists a consistent probability distribution π̄ for the �
arising from K . Otherwise, K is probabilistically inconsistent.

Consider:

K = P [0.7] ∧ (¬P ∨ Q )[0.7] ∧ Q [0.2]
Then K is probabilistically inconsistent (as shown by Nilsson). Nilsson also considered a geometric approach in the sentence 
probability space where a query clause was added as a last dimension to the clause set. For more detailed discussion of 
this approach, including the geometric approach, see [11]. This method produces a matrix A that is exponential size in the 
number of variables.

3. Related work

For broader discussions of this problem and approaches to solving it, see [5,12–16]. Adams early work focused on the 
probability of conditionals and its relation to measurement uncertainty. Hailperin proposed a way to allow the expression of 
statistical knowledge as well as constraints on the probability of the truthfulness of formulas in a formal first order logical 
framework. Unfortunately, the “set of valid formulas of the logic with probabilities on possible worlds is not recursively 
enumerable” (see [17]). Thus, it is not possible to find a finitary axiomatization. Belle and Lakemeyer have recently extended 
the work of Bacchus et al. [18] to DS (Degrees of belief in the Situational calculus) which “captures a family of only knowing 
logics” [19]. We note that Belle gives as future directions the implementation (possibly) of a propositional version of DS as 
well as a way to “allow both discrete and continuous probabilities, although it is not clear how this can be achieved.”

The results achieved in probabilistic first-order logic have been exploited to extend logic programming environments to 
include probabilities. For example, ProbLog is one Prolog-based language [20]. Such languages are interesting, but face some 
serious challenges, including: (1) a need for efficient inference methods for broader language feature support, (2) an analysis 
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of their relative computational complexity, and (3) how to learn probabilistic programs (currently learned from entailment, 
although some attempts have been made to learn from interpretations).

Chavira and Darwiche [21] consider the problem of probabilistic inference in terms of weighted model counting on a 
propositional knowledge base. A given Bayesian network (and consequently a known full joint probability distribution) is 
converted to Conjunctive Normal Form, and the network probabilities are used to assign weights to the CNF variables. These 
are then used to obtain weights on the models. Finally, the evidence is used to select consistent models and sum their 
weights. This approach assumes model probabilities are available, i.e., Pr(x1, x2, . . . , xn) = ∏

Pr(xi | ui). Another approach 
based on Bayesian networks (Bayesian Logic – BLOG) is described by Milch and Russell [22,23], wherein the PSAT solution 
is assumed. Chakraborty et al. [24] have proposed distribution-aware sampling to achieve weighted model counting, and 
assume an NP-oracle (they use a SAT solver as the black box oracle for weights of truth assignments – i.e., possible world 
probabilities). The PS-SAT approach does not require a PSAT solution as input, and does not involve any explicit representa-
tion of such a solution (either as a function or set of probabilities). Moreover, direct comparison to their benchmark set is 
not possible if the knowledge bases do not have independent logical variables. Moreover, approximately counting the mod-
els of a CNF formula is known to be NP-hard [25]. Their algorithm uses a SAT solver, and moreover, requires bounded tilt
to succeed, where tilt is ωmax/ωmin , the maximum and minimum probabilities of worlds making the formula true. However, 
there are problem classes for which the tilt increases exponentially with n. For instance, consider:

Fn = A1 ∨ A2 ∨ . . . ∨ An

and let:

ω(σ ) = 2−s

where s is the number of true variables in σ ; this weight function gives higher weight when there are less true variables 
because it is easier to verify. Then ωmax is 1

2 when just one variable is true, and ωmin is 1
2n so that tilt = 2n−1 and grows 

exponentially with n. Knowledge compilation may be used to allow the application of these methods to a much larger range 
of Bayesian networks [26,27].

Another approach is that of the Statistical Relational Learning (SRL) community [28] which extends graphical models (e.g., 
Bayesian or Markov networks, see [29] for a detailed account of probabilistic graphical models) to allow relations and logical 
statements. The main goal is to develop models of object-relational structures of data that has some amount of uncertainty. 
It is key to build such models so as to allow efficient learning and inference. Current models combine graphical, probability 
and logical structures. Markov Logic Networks (MLN) [30–32] constitute one main SRL approach. A Markov network models 
the joint probability distribution of a set of variables. A Markov Logic Network (MLN) is a template for constructing a Markov 
network from a set of logical formulas (clauses). Moreover, this representation allows the computation of the probability 
of a possible world given a KB by simply assigning a weight to each KB formula. There are however, some drawbacks to 
this approach. First, Proposition 2.5 (p. 15) in [31] proves that propositional knowledge bases can be handled by MLN’s, but 
requires a consistent probability distribution (i.e., a PSAT solution) as the potential functions on the one maximal n-clique 
with n variables. In general, the complexity of solving a query is exponential in the number of cliques in the graph. e.g., 
consider the simple k-Modus Ponens problem with:

K = {A1 ∧ (¬A1 ∨ A2) ∧ . . . ∧ (¬Ak−1 ∨ Ak)}
Then this KB has O (2n) maximal cliques. In addition, MLN’s take a maximum entropy approach to the probabilities of the 
possible worlds, and it has been shown that maximum entropy distributions are dependent on the representation used [33], 
which means solutions are ambiguous.

The method proposed here can also be viewed as a probabilistic form of logical argumentation in that it finds a solution 
even though there may be probabilistic and logical inconsistencies in the knowledge base; i.e., is a form of argumentation in 
that it finds a (perhaps locally minimal) solution (in terms of minimal sentence probability error) which best fits the given 
data. Others have also explored inconsistencies in probabilistic knowledge bases [34,35], but not in this direction.

Finally, there has been some work in characterizing and improving linear solver methods for the PSAT problem as posed 
by Nilsson. Hansen and Jaumard [36] proposed the use of the column generation technique of linear programming in 
order to increase the effectiveness of their solvers. More recently, Hansen and Perron [3] have given a merged local and 
global solver strategy for which KB’s with up to 200 variables and 800 sentences have been solved. Others [37,38] have 
empirically studied the solution complexity distribution of the PSAT problem (number of solvable cases and time required 
as a function of m

n where n is the number of variables and m is the number of sentences. There appears to be a phase 
transition at about m

n = 4.3. The notion of generalized probabilistic satisfiability has also been recently proposed [39]; that 
is, “deciding the satisfiability of linear inequalities involving probabilities of classical propositional formulas” and is shown 
to be NP-complete.

The in-depth relationship between the proposed method and existing methods is provided in Table 1. The following 
acronyms are used:
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Table 1
Advantages and Disadvantages of Various Methods. The column 
headings indicate: (col 1): each possible grounding of a first-
order formula is considered; (col 2): the underlying computa-
tional complexity is exponential or not; (col 3): the computation 
requires knowledge of the full joint probability distribution.

Propositional 
Version

Efficient 
Inference

Require Full Joint 
Prob Distribution

NILS Yes Yes No
Nilsson Yes No No
DS No No No
ProbLog Yes No Yes
CD Yes No Yes
BLOG Yes No Yes
DA Yes No Yes
MLN Yes No Yes
HP Yes Somewhat Yes

• NILS: method proposed here
• Nilsson: Nilsson’s linear system formulation
• DS: Bacchus’ Degrees of belief in Situational calculus
• ProbLog: Fierens’ ProbLog system
• CD: Chavira-Darwiche weighted model counting
• BLOG: Bayesian Logic
• DA: Chakraborty’s distribution-aware method
• MLN: Markov Logic Networks
• HP: Hansen and Perron method (improvement of Nilsson)

Thus, it can be seen that NILS offers distinct advantages over the other methods in terms of efficiency and not requiring the 
full joint probability distribution. An empirical comparison is given between NILS and HP in the experiments section.

4. Method

The application here is a decision support system expressed in CNF form where each sentence (clause) has an associated 
probability, and decision makers pose queries in terms of variables in the knowledge base. The method proposed here, called 
NonlInear Probabilistic Logic Solver (NILS) involves conversion of the probabilistic CNF to a set of equations (1)–(4) as described 
above, and using numerical solvers. Having provided the context of the work in terms of languages and representations, the 
current approach may now be given. Using the laws of probability structure described above, the probability of a disjunctive 
clause C = L1 ∨ L2 ∨ . . . ∨ Lk can be expressed as:

P (C) = P (L1) + P (R) − P (L1 ∧ R) (1)

P (C) = P (L1) + P (R) − P (L1 | R)P (R) (2)

P (C) = P (L1) + P (R) − P (R | L1)P (L1) (3)

P (C) = P (L1) + P (R) − P (L1)P (R) (4)

where R = L2 ∨ . . . ∨ Lk; note that the formula must be applied recursively and will have 2k − 1 terms. Eqn (1) is the 
conjunction form and makes a linear equation in the unknown probabilities. Eqns (2) and (3) are expressed with conditional 
probabilities and are nonlinear. Eqn (4) assumes independent variables and is nonlinear. Then given a knowledge base, 
equations (1)–(4) contain a set of unknown probabilities over atoms, conditions on atoms, or the logical and of atoms.

Definition. The Probabilistic Sentence Satisfiability (PS-SAT) problem is to find a set of values for the unknown probabilities in 
(1)–(4) which produce the given sentence (clause) probabilities on the left hand side.

Here we advance a new method based on converting the probabilistic knowledge base into a set of nonlinear equations 
which are then solved using some variant of gradient descent (e.g., Newton’s method). This is strictly speaking an approx-
imation method, and it aims to produce an assignment of probabilities to the logical expressions in the equations so as to 
obtain the given clause probabilities. This may or may not lead to a consistent probability distribution. For example, given 
a knowledge base (KB) with A[0.6] ∧ ¬A[0.6] which clearly has no consistent probability, the solution produced is P(A) = 
0.5. In solving PS-SAT, the complexity is determined by the solution procedure and will, in general, be bounded by O (2k), 
where k is the maximum number of literals in a sentence.
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The NILS method consists then of the following steps:

1. Convert K to a system of nonlinear equations expressing the clause probabilities in terms of one of Equations (1) to (4).
2. Solve numerically, constraining each unknown to be in the [0,1] interval.

Given a CNF clause of length k, the resulting formula will have 2k −1 terms. In order to avoid this complexity, we assume 
that an arbitrary PSAT clause can be converted to a 3PSAT set of clauses; otherwise, the complexity of the method is O (2k), 
where k is the number of literals in the longest clause. At the present time, it is straightforward to transform a single clause 
of length four or more to a 3PSAT KB which maintains the probability of the initial clause (i.e., when queried); however, a 
general proof is not yet known. The value k provides a parameterization of this problem, so that it is, in fact, fixed-parameter 
tractable (see [40]). This means that to determine if (K , k) is in the PS-SAT language (K a probabilistic CNF knowledge base, 
and k as above) is decidable in f (k)· | x |O (1) , where f (k) = 2k , and, thus, is in class FPT (at least for independent variable 
KB’s).

4.1. Independent variables

Assuming the variables are independent allows use of Eqn (4). Thus, clauses with one, two or three literals produce the 
following equations, respectively:

P (C) = P (L)

P (C) = P (L1) + P (L2) − P (L1)P (L2)

P (C) = P (L1) + P (L2)P (L3) − P (L1)P (L2)−
P (L1)P (L3) − P (L2)P (L3) + P (L1)P (L2)P (L3)

Disjunctions of length k will have 2k terms. Now consider Nilsson’s Modus Ponens example on two variables:

K = A1[0.7] ∧ (¬A1 ∨ A2)[0.7]
This gives rise to the following equations:

0.7 = P (A1) (5)

0.7 = P (A1) + P (A2) − P (A1)P (A2) (6)

Substituting the value for P (A1) from (5) into (6), we find that P (A2) = 0.571. This specific case requires no search, and 
unlike Nilsson’s method is not exponential. However, in general the complexity of the method is related to the convergence 
properties of the numerical solver.

An important question is whether or not this solves PSAT for a given K . Suppose the method produces probabilities 
for the n atoms in K such that the clause probabilities are produced. Then we can show that there exists a consistent 
probability distribution for K which can be computed from the atom probabilities. It is not necessary to generate these 2n

values since the probability of any clause can be computed just using the atom probabilities.

Theorem. Given K with n independent logical atoms, and an assignment of probabilities, ak, to the atoms such that the nonlinear 
equations produce the sentence probabilities, p̄, then ∃π̄ : � → [0, 1] � π̄ is a consistent probability distribution.

Proof. By induction on n.
Case n = 2: Consider the ωk ∈ �:

P (¬A ∧ ¬B) = P (¬A)P (¬B)

P (¬A ∧ B) = P (¬A)P (B)

P (A ∧ ¬B) = P (A)P (¬B)

P (A ∧ B) = P (A)P (B)

In the sum of these, the first and third yield P (¬B) while the second and fourth result in P (B). These sum to 1.
Case n: Consider the ωk ∈ �; each has a counterpart:

P (ωk) = P (¬Ak ∧ X) = P (¬Ak)P (X)

P (ωk+2n−1) = P (Ak ∧ X) = P (Ak)P (X)

which sums to: P(X). Altogether these produce the sum of the complete conjunction set of n − 1 variables, which by 
induction is 1. �



8 T.C. Henderson et al. / Artificial Intelligence 278 (2020) 103199
It would be great if all consistent knowledge bases had an independent variable solution, but that is not the case. For 
example:

K = A1[0.7] ∧ (¬A1 ∨ A2)[0.5] ∧ (¬A2 ∨ A3)[0.5]
has a consistent probability distribution over �, but not for independent variables. This can be seen as follows: from the 
first clause, P (A1) = 0.7. Substituting that into the equation for the second clause yields: P (A2) = 0.2857. If this value is 
substituted into the equation for the third clause, we get P (A3) = −0.7501 which is not in [0,1]. On the other hand, the 
assignment

π = [0,0,0.2999,0,0.25,0.25,0.2001,0]
is a consistent probability assignment, and P (A ∧ B) = 0.2001 while P (A)P (B) = 0.7 · 0.5 = 0.35, so that P (A ∧ B) �=
P (A)P (B). The question is then: if a consistent probability distribution exists for a knowledge base with independent vari-
ables, will the gradient descent method find it?

4.2. Non-independent variables

Consider variables which are not necessarily independent. In this case we use the disjunction probability Eqn (2). Unlike 
the independent case where only the atom probabilities were computed (or needed), now, there is a set of conditional 
probabilities which expands the set of variables to be solved. E.g.:

K = (A1 ∨ A2)[0.7]
gives rise to:

0.7 = x(1) + x(2) − x(3)x(2)

where x(1) is P (A1), x(2) is P (A2), and x(3) is P (A1 | A2), and which has solution: x(1) = 0.4663, x(2) = 0.4834, and 
x(3) = 0.5166. However, now the equations from the clauses do not include all the necessary constraints arising from the 
conditional variables, and equations must be added to include these. In particular, a conditional P (A1 | A2) gives rise to 
three additional constraints expressed in terms of the conditional and related variables:

P (A1 | A2) = 1 − P (A1 | A2) (Complement rule) (7)

P (A1 | A2) = P (A1 ∩ A2)

P (A2)

= P (A1) − P (A1 ∩ A2)

P (A2)

= P (A1)

P (A2)
− P (A1 ∩ A2)

P (A2)

= P (A1)

1 − P (A2)
− P (A1 ∩ A2)

1 − P (A2)
.

P (A2)

P (A2)

= P (A1) − P (A2)P (A1 | A2)

1 − P (A2)

(8)

P (A1 | A2) :
Let A1 = C and use above

P (C | A2) = P (C) − P (A2)P (C | A2)

1 − P (A2)

= 1 − P (A1) − P (A2)(1 − P (A1 | A2)

1 − P (A2)

(9)

Another issue that arises with non-independent variables is that the solution may not allow the direct determination of 
the probability of a query. This may happen if the query involves a conditional probability not included in the original 
knowledge base. For example:

K = A[0.8] ∧ B[0.9]
NILS produces P (A) = 0.8 and P (B) = 0.9 for K . Given the query A ∨ B , the equation to be solved is:
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P (A ∨ B) = P (A) + P (B) − P (A | B)P (B)

The result is then P (A ∨ B) ∈ [0.8, 1] with P (A | B) ∈ [0.7778, 1]. The Matlab function lsqlin returns the solution P (A ∨ B) =
0.8885 and P (A | B) = 0.9 right in the center of the interval. Thus, the determination of the probability of a query generally 
requires solving a new system (using the known values for the knowledge base).

4.3. Numerical solutions

Given a set of nonlinear equations resulting from a CNF KB and the associated sentence probabilities, it is necessary 
to create the sentence error function, find an initial guess at a solution, and then apply Newton’s method or some other 
technique. We have applied two methods: (1) Newton’s method, and (2) gradient descent using the Jacobian. The stability 
of these methods has been shown for solving nonlinear systems [41].

4.4. Sentence error function

Given a clause, Ci[pi], the ith element of a sentence error function is defined as:

E(i) = −pi + P (Ci)

where P (Ci) is formed from one of the disjunction probability equations. The scalar sentence error is ‖E‖. A solution is 
found by choosing an initial solution estimate, and then using the sentence error function to perform gradient descent.

4.4.1. Newton’s method
Given the vector function E defined above (a vector function of m elements), Newton’s method iterates the following 

until within tolerance of a solution:

1. Produce next step vector
H E(x̄k) s̄ = ∇E

2. Move toward solution
x̄k+1 = s̄ + x̄k

where H E is the Hessian matrix for E . The development of the Hessian is done symbolically then solved numerically in 
Matlab. This imposes constraints of the application of this method to larger problems. However, we give results below for 
reasonably large KB’s.

4.4.2. Gradient descent using the Jacobian
Gradient descent using the Jacobian should have q-quadratic convergence when starting not too far from a solution, but 

may hit a local (non-solution) minimum otherwise. The method iterates until within tolerance of a solution as follows:

1. Determine the Jacobian
J = ∇E

2. Move toward lower sentence error
x̄k+1 = α ∗ J (x̄k) + x̄k

Consider Nilsson’s Modus Ponens example:

K = A1[0.7] ∧ (¬A1 ∨ A2)[0.7]
which gives rise to:

E(1) = −0.7 + x(1)

E(2) = −0.7 + (1 − x(1)) + x(2) − (1 − x(1))x(2)

Fig. 1 shows the convergence path for some random initial values (all ending at [0.7; 0.571]T for the atom probabilities).
Given a knowledge base and an assignment of probabilities to the set of atom and conditional probability variables, its 

quality can be determined by the final sentence error. If it is low, say less than 0.01, then it is a useful approximation. 
Of course, the gradient descent method can be run from several initial starting vectors and the best result selected. Better 
methods for initial point selection (other than random) are discussed below.
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Fig. 1. Convergence Tracks for 4 Random Starting Points for Modus Ponens; This Assumes Independent Variables.

Fig. 2. Newton’s Method Results for 100 KB’s.

5. Experiments and results

We have tested this approach on sets of randomly generated knowledge bases. This involves selecting a number of 
variables (n), specifying a maximum number of sentences to generate, as well as the maximal length of any one sentence. A 
set of sentences is generated which satisfies these constraints, and then a set of probabilities is produced for the complete 
conjunction set, and from these the sentence probabilities are computed. This ensures that there is a solution, although it 
does not preclude the existence of other solutions (generally a non-zero measure subset of the unit hypercube). We have 
applied this to both independent and non-independent variable knowledge bases.

5.1. Independent variables

A set of 100 KB’s was generated with independent variables, with n = 5, the maximum number of clauses 30, and the 
maximal clause length of 5. Fig. 2 shows the number of iterations required by Newton’s method to solve PSAT; the blue 
trace shows when initial points are far from the known solution, and red when they are near (within 0.5 vector norm). The 
mean number of iterations is 4.26 when starting near, and 12.63 when starting far. The method fails on 6 of the 100 KB’s. 
As for gradient descent, Fig. 3 shows the number of required iterations. Although a few KB’s require over 1000 iterations, 
the mean number of iterations required when starting near a solution is 21.19, and when starting far is 171.58. Note that 
the search is terminated when a sentence error of less than 0.01 is reached. We have also generated larger KB’s and run the 
method on those and solved problems with up to 1000 variables and 300 sentences. These are produced by generating a set 
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Fig. 3. Gradient Descent Results for 100 KB’s. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Newton’s Method Results for 100 KB’s.

of atom probabilities and computing clause probabilities from those, then finding the independent solution and comparing 
the atom probabilities. This avoids the necessity of producing a representation for the full PSAT probability distribution over 
possible worlds.

5.2. Non-independent variables

The equations must include variables for whatever conditional probabilities arise from the sentences, and are thus a bit 
more complicated. Fig. 4 shows the number of iterations required for Newton’s method on 100 random general KB’s with 
the same parameters as above, except that lenmax = 3. In this case, solutions were found for 75 of the 100 KB’s, and the 
mean number of iterations was 3.91 when starting near the known solution (within 0.1 of any atom probability), and 10.27 
when starting far from it. Fig. 5 shows the results for gradient descent (which found solutions for all the KB’s) and had 
mean number of iterations 662.17 for far starting points and mean number of iterations 638.61 for near points.

What these results indicate is that Newton’s method should be tried first given the low iteration cost, and then gradient 
descent used if Newton’s Method fails. Also, note that even though in the case of failure (i.e., local minimum found), the 
methods were allowed to re-start at new random initial locations. Gradient descent was re-started this way and then only 
tried 2 alternate points. When Newton’s Method finds a solution is does so with the initial guess; when it failed, it did so 
for both near and far initial starting points.

Finally, Fig. 6 shows the maximal individual atom probability error comparing the atom probabilities from the actual 100 
general KB’s to the atom probabilities found by the numerical solver. The mean of the max atom probability error for near 
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Fig. 5. Gradient Descent Results for 100 KB’s.

Fig. 6. Maximum Atom Probability Error for 100 General KB’s (Near Starting Points in red and Far Starting Points in blue).

starting points is 0.09, while for far starting points is 0.10. This is very promising in that the discovered solutions are near 
the actual underlying solution for most KB’s.

5.3. Trajectory visualization and finding good initial guesses

As pointed out above, if the initial guess is too far from a solution, these methods may not converge. Thus, it would help 
to be able to identify good starting points. In order to get insight into the convergence sequence, we have developed a visu-
alization method which maps n-D points to 2-D points. Given a point, ā, in n-D, define the corresponding 2-D coordinates 
as follows:

x =
n∑

i=1

(aicos(
(i − 1)π

n
)) (10)

y =
n∑

i=1

(ai sin(
(i − 1)π

n
)) (11)

Fig. 7 shows the convergence trajectories for four different initial points. The q-convergence of the method can be estimated 
by determining the ck ’s in the following equation:

| x̄k+1 − x̄∗ |≤ ck | x̄k − x̄∗ | (12)

Fig. 8 shows these values for the 100 tracks for gradient descent on the general KB’s. The plots indicate that the method is 
q-superlinear/quadratic.

Another interesting aspect of this visualization method is its use to find good starting points. Given fixed x and y in the 
plane, we have developed a method to obtain a unique point in the pre-image of Eqns (1) and (2). Each equation defines 
a hyperplane in n-space; taken together they represent a hyperplane of dimension n − 2. One way to understand the map 
defined by Eqns (1) and (2) is as an n-joint prismatic manipulator, where joint k translates in the direction θ = (k−1)π . 
n
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Fig. 7. Convergence Tracks for 4 Random Starting Points for 5-D Problem; x and y Values are Projections of 5-D Points to 2-D, and z Value is Sentence Error 
Value.

Fig. 8. Convergence step ratio for 100 general KB’s using Gradient Descent.

The manipulator’s workspace is a 2n-gon (as shown in Fig. 7). By uniformly sampling this workspace, and then finding 
pre-image points in n-D, the sentence error can be found, and then the lowest such value used to pick the initial point. Of 
course, since there is a potentially infinite number of pre-image points for each x and y location, other methods can be 
used to sample that subspace to find better starting points.

6. Conclusions and future work

We propose a novel approach to solve PS-SAT which avoids the computational complexity of previous methods as well 
as the error introduced using MC-SAT methods. Instead we solve a system of nonlinear equations derived directly from 
the meaning of the probability of the logical sentences. The experiments reported here show that solving these systems 
is possible and not overly complex (evidence shows q-superlinear/quadratic convergence). The number of variables and 
sentences used in these experiments is beyond current state-of-the-art work on directly solving PSAT (e.g., [3]). Moreover, 
the method is Fixed-Parameter Tractable, where the fixed-parameter k is the length of the longest clause, and the associated 
function is 2k .



14 T.C. Henderson et al. / Artificial Intelligence 278 (2020) 103199
Other future work includes the investigation of:

1. The problem encountered with Newton’s Method. It is possible that the Hessian as computed does not remain positive 
definite which can cause failure. It may be possible to address this with SVD methods.

2. The discovery of good initial starting points. For this, the trajectory visualization method will be studied; i.e., the inverse 
kinematics of the planar n-joint prismatic manipulator.

3. The exploitation of the method to support a knowledge base providing probabilistic logic and in the future, argumenta-
tion. Such a capability will provide decision makers and analysts a robust estimate of the confidence of a statement or 
the consequences of an action. The application domain for this is geospatial knowledge bases [1]. Given a query for a KB 
with independent variables, the solution to any logical formula may be found from the atom probabilities. However, for 
KB’s with non-independent variables, the equations resulting from the query may involve new conditional probabilities, 
and thus, requires the use of a solver when there is more than one unknown. Queries in the current version of NILS are 
restricted to disjunctions with less than four literals.
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