
Specification and Evaluation of
Geofence Boundary Violation Detection Algorithms*

Mia N. Stevens1, Hossein Rastgoftar2, and Ella M. Atkins3

Abstract— This paper studies two methods of geofence
boundary violation detection. The first method is Ray Casting,
which iterates over each geofence boundary edge to determine
if a given position of interest is inside the geofence. The second
method, called Triangle Weight Characterization (TWC), subdi-
vides the geofence domain into a finite number of triangles, then
iterates over each triangle to determine if the given position of
interest is inside the geofence. We apply the TWC and Ray
Casting methods to case studies that include both keep-in and
keep-out geofence boundaries.

I. INTRODUCTION

Unmanned aircraft systems (UAS) continue to proliferate
and now can be operated commercially with little overhead
through the FAA’s Part 107 rules [1]. UAS applications
range from last-mile package deliveries to agricultural and
infrastructure inspection to disaster relief support, not to
mention hobbyist flights. A micro-scale UAS or micro-air
vehicle (MAV) may pose little risk to people or property, but
such a vehicle has limited range and cannot carry payload
beyond a small camera. Even small UAS can pose a safety
risk through both fast-spinning propellers and impact. NASA
is working with industry and academic partners to develop
a UAS Traffic Management (UTM) system of which a key
component is electronic geofencing [2].

Geofences assign each UAS an empty flight volume in
which they are authorized to operate. The geofence can also
be used as a mechanism to assure a low-flying UAS only
operates low over a property with landowner permission. A
geofence can be classified as a keep-in (inclusion) geofence
or a keep-out (exclusion) geofence. The keep-in geofence
defines a bounded flight volume for the UAS, while the keep-
out geofence defines general volumes to avoid as well as cut-
outs within a keep-in geofence. A keep-out geofence marks
a no fly zone for the UAS. Public properties such as national
monuments and private properties such as a backyard pool
may be protected by low-altitude keep-out geofencing.

Given defined geofence boundaries, the geofence system
consists of two logic units: the detection of geofence vio-
lations and the response to a geofence violation. There are
many possible responses to a geofence violation including
but not limited to alerting the pilot, cutting the aircraft

*This work was supported in part by a subcontract from Soar Tech-
nology, Inc. under Phase II SBIR Contract No. FA8650-15-C-2629.

1Mia N. Stevens is a Robotics Institute PhD Candidate, University of
Michigan, Ann Arbor, MI 48109, USA minist@umich.edu

2Hossein Rastgoftar is an Aerospace Engineering Postdoctoral
Scholar, University of Michigan, Ann Arbor, MI 48109, USA
hosseinr@umich.edu

3Ella M. Atkins is an Aerospace Engineering Professor, University of
Michigan, Ann Arbor, MI 48109, USA ematkins@umich.edu

power, or an alternative guidance scheme designed to respect
the geofence boundaries [3]. This paper focuses on the
detection of geofence violations through the application of
two algorithms: Ray Casting [4]–[6] and Triangle Weight
Characterization (TWC) [7]–[9].

Section II introduces the geofence violation detection
framework and the algorithms being considered. Sections III
and IV discuss the details of the Ray Casting and Triangle
Weight Characterization (TWC) algorithms respectively. Sec-
tion V presents a series of geofencing case studies to compare
the geofence boundary violation detection algorithms. Sec-
tion VI discusses areas for future work including the usage of
geofencing in urban areas and the incorporation of UAS into
the existing airspace, and Section VII presents conclusions.

II. BACKGROUND

Assumptions made in this work are listed in Tables I and
II. An assumption of constant flight altitude enables this
paper to focus on algorithms that detect lateral geofence
boundary violations. Note that these algorithms will be
extended in future work to remove the constant altitude
assumption.

TABLE I: Assumptions of each geofence violation detection
system.

Geofence boundaries are drawn conservatively such that there
is sufficient time to detect and react to a boundary crossing

Geofence boundaries remain unchanged for the duration of a flight

Geofences contain vertical and lateral boundaries to define the
airspace available to the UAS

Vertical geofence boundaries (altitude ceiling and floor) are
constant above ground level (AGL) or mean sea level (MSL)

Flights occur at constant altitude so only lateral boundaries
need to be considered

Each geofence consists of exactly one keep-in geofence and any number
of keep-out geofences

TABLE II: Assumptions of each keep-in and keep-out ge-
ofence.

The geofence boundary is not self-intersecting as shown in Figure 1

The geofence boundary is specified as a list of vertices, e.g., GPS
Latitude/Longitude or relative position points, in clockwise or
counterclockwise order

A geofence violation occurs when the UAS is outside the
keep-in geofence or inside a keep-out geofence. The flow

2017 International Conference on
Unmanned Aircraft Systems (ICUAS)
June 13-16, 2017, Miami, FL, USA

978-1-5090-4494-8/17/$31.00 ©2017 IEEE 1588

(a) Acceptable lateral geofence
boundary.

(b) Unacceptable lateral geofence
boundary.

Fig. 1: Examples of valid and invalid (unacceptable) lateral
geofence boundaries using the same vertex list.

Given a geofence
with keep-in
and keep-out
components
g = [gi, go]

New position
of interest
r = (x, y)

Position of in-
terest within

keep-in geofence?
PointInPolygon(r,gi)

Geofence
violated.

Geofence
violation
response.

Position of in-
terest within

keep-out geofence?
PointInPolygon(r,goj)

For each keep-out geofence:

No

Yes

Yes

No

Fig. 2: General geofence violation detection algorithm for
a single keep-in geofence and a known number of keep-out
geofences.

chart in Figure 2 shows the basic procedure of assessing
whether or not a geofence violation has occurred, which is
also presented in Algorithm 1. The input parameters are r and
g. r= (x, y) is the current UAS lateral plane position to check
for geofence violation. The geofence is specified by g =
[gi,go] where gi is the keep-in geofence boundary polygon
and go = {go1, ...,gon } is the set of keep-out boundaries.
go j is the jth of n keep-out geofence boundary polygons.
The PointInPolygon() function is either the Ray Casting
algorithm or the TWC algorithm. The loop is executed for
every new state estimate, as long as a geofence violation
has not occurred. A detected geofence violation causes the
geofence system to transition from the violation detection
subsystem to the violation response subsystem, which is not
addressed in this work.

The detection of a lateral geofence violation can be consid-
ered an application of the point-in-polygon problem, which
is commonly discussed in the field of computer graphics. The
algorithms presented in this work, Ray Casting (see Figure 3)
and Triangle Weight Characterization (see Figure 4), are two
solutions to this problem. Ray Casting projects an infinite ray
from the position of interest then loops over each edge of the
considered polygon to determine if an even or odd number of

Algorithm 1 Geofence Boundary Violation Detection

Input: r is the position of interest
g = [gi,go] gi is the keep-in geofence, go is the list of
keep-out geofences

Output: true if r does not violate g, otherwise false
1: if not PointInPolygon(r,gi) then
2: return false
3: end if
4: for all go j in go do
5: if PointInPolygon(r,go j) then
6: return false
7: end if
8: end for
9: return true

Given position
of interest (r)
and geofence
polygon (p)

s is an infinite
ray in the

+y direction,
originating at r

#intersects = 0

Is rx within
buf of ex?

ex,buf =
ex − 2 ∗ buf

ex,buf = ex

Is r within buf
of e or ebuf ?

Does s
intersect ebuf?

Increment
#intersects

Last edge?

Is #intersects
even?

r is outside p r is inside p

For each edge e of p:

Yes No

No

Yes Yes

Even

Odd

No

No

Yes

Fig. 3: Ray Casting algorithm. This algorithm becomes
Fast Ray Casting when the yellow highlighted sections are
excluded.

edges are intersected. Zero or an even number of intersects
indicates that the position of interest is outside the polygon;
an odd number of indicates that the position of interest is
within the polygon. TWC divides the polygon into triangles
during an initialization procedure that is executed once per
flight. Then, for each position of interest, TWC loops over
each triangle of the polygon to determine if the position of
interest is contained within that triangle. If the position of
interest is within a triangle, then, it is within the polygon
and the loop terminates; otherwise the position of interest is
outside each triangle and outside the polygon.

III. RAY CASTING

The Ray Casting algorithm determines whether or not
the position of interest, r, is inside a given polygon, p,

1589

Given position
of interest (r)
and geofence
polygon (p)

Divide p into
y-monotone

polygons

Divide each
y-monotone poly-
gon into triangles

Is r within triangle?

Last triangle?

r is outside p r is inside p

For each triangle of p:

No

Yes

No Yes

Fig. 4: Triangle Weight Characterization algorithm. Blue
highlight indicates initialization steps that are only executed
once per flight.

by projecting an infinite ray from r (see Figure 5). If the
infinite ray intersects an odd number of polygon edges,
then r is contained in p, otherwise, r is outside of p. A
basic outline of the Ray Casting algorithm is shown in
Algorithm 2. The algorithm is based on the formulation
presented by Narkawicz and Hagen [4]. Because the Ray
Casting algorithm iterates over all edges of p and does not
have an initialization step, if the geofence boundaries change
from one time step to the next, code execution and results
of the Ray Casting algorithm are not impacted.

In this implementation, the ray is cast in the positive y-
direction, as seen in Figure 5. To prevent the infinite ray from
intersecting a corner of the polygon, a buffer distance, bu f ,
is defined. Any corner of p with an x-value within bu f of rx
is perturbed by −bu f ∗2 along the x-axis. An alternative to
perturbing the vertices that coincide with the rx would be to
count each intersection of that vertex as count = count+1/2
instead of count = count +1 [5].

Lines 9− 11 of Algorithm 2 (and highlighted in yellow
in Figure 3) state that if the position of interest, r, is
within the buffer distance, bu f , of the edge currently being
considered, then r is considered outside polygon p. This is
an important check to run because bu f could be defined
to account for uncertainty that might exist in the state
estimate of the UAS. These lines are highlighted because

Fig. 5: Ray Casting [4].

Algorithm 2 PointInPolygon() - Ray Casting

Input: p is a simple polygon
r is the position of interest
bu f is a buffer distance

Output: true if p contains r, otherwise false
1: count = 0
2: s is an infinite ray in the +y direction, originating at r
3: for all edges e in p do
4: if rx is within bu f of ex then
5: ex,bu f = ex −2∗ bu f
6: else
7: ebu f = e
8: end if
9: if r is within bu f of e or ebu f then

10: return false
11: end if
12: if s intersects ebu f then
13: count = count +1
14: end if
15: end for
16: if count is odd then
17: return true
18: else
19: return false
20: end if

their inclusion (denoted Ray Casting) or exclusion (denoted
Fast Ray Casting) significantly impact the runtime of the
algorithm, as shown below in Section V.

IV. TRIANGLE WEIGHT CHARACTERIZATION (TWC)

The second boundary violation detection algorithm, Tri-
angle Weight Characterization, consists of an initialization
step and a run-time step as shown in Algorithm 3. The
initialization step must be executed for all keep-in and keep-
out geofences when the system first activates. If there are
any changes to any of the geofence boundaries after the
original initialization, each keep-in or keep-out geofence
that is changed must be initialized again. The initialization
step subdivides each of the original geofences from simple
polygons to y-monotone polygons [9] and then to triangles

1590

[8]. The run-time step checks whether the position of interest
is within each triangle. If the position of interest is inside any
of the triangles, then it is within that polygon. Otherwise, it
is outside the polygon.

Algorithm 3 PointInPolygon() - Triangle Weight
Characterization
Input: p is a simple polygon

r is the position of interest
Output: true if p contains r, otherwise false

Initialization:
1: Divide p to m y-monotone polygons
2: for all y-monotone polygons M in p do
3: Divide polygon M to n triangles
4: end for
Run-Time:

5: for all N triangles in p do
6: if N contains r then
7: return true
8: end if
9: end for

10: return false

A. TWC Initialization

To divide an arbitrary geofence boundary into non-
intersecting triangles, we implement the triangulation method
described in Garey et al. [8] which relies on the regularization
algorithm presented by Lee and Preparata [9]. To visualize
the subdivision of an arbitrary polygon, TWC is applied to
the polygon shown in Figure 6. TWC initialization consists
of two steps: divide the polygon into monotone polygons
[9], and subdivide each monotone polygon into triangles [8].
Each of these steps is executed with respect to the y-axis but
would also work if applied to the x-axis.

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

Fig. 6: Randomly generated example geofence. Black - keep-
in geofence.

1) Polygon to Monotone Polygons: A y-monotone poly-
gon is defined as a polygon for which all lines parallel to the
x-axis intersect a maximum of two edges of the polygon. In
order to divide a polygon into monotone polygons, we iterate
through the vertices from highest to lowest y-position, then
from lowest to highest y-position, adding edges between ver-
tices to create monotone polygons. Vertices with equivalent

y-values are iterated over from left to right. [9] The original
algorithm creates new edges between existing vertices both
inside and outside the original polygon, but geofencing is
only interested in the area of the original polygon, so edges
added that are outside the original polygon are ignored.
An edge is determined to be outside the original polygon
when the order of the edge vertices of the newly defined
polygon is opposite the order of the original polygon vertices,
i.e., clockwise versus counterclockwise. Because some of
the newly-generated edges are ignored, this algorithm is
executed for each newly created polygon until no new edges
are added. This ensures that the polygons being returned
are all y-monotone. In Figure 7, each y-monotone polygon
is shaded a different color; the original polygon has been
divided into five y-monotone polygons.

Fig. 7: Randomly generated example geofence. Each back-
ground color indicates a separate y-monotone polygon. Dot-
ted lines indicate triangle boundaries. Solid lines indicate the
original polygon boundaries.

2) Monotone Polygon to Triangles: For each monotone
polygon, the vertices are iterated over from highest to lowest
y-value, iteratively adding edges to create triangles. Because
the polygons are already y-monotone, all created edges are
inside the polygon and therefore kept. For the example
geofence, this algorithm is run five times, once for each
monotone polygon. Figure 7 illustrates the TWC triangles
by dotted lines.

B. TWC at Run-Time

To determine if a position of interest, r, is inside the
geofence polygon, we check if r is inside each triangle. Let
vertices of the ith triangular cell be located at ri1 = (xi1, yi1),
ri2 = (xi2, yi2), and ri3 = (xi3, yi3). Because a triangle is a 2−D
convex hull, positions of the ith triangular cell satisfy the
following rank condition:

Rank
[
ri2 − ri1 ri3 − ri1

]
=

[
xi2 − xi1 xi3 − xi1
yi2 − yi1 yi3 − yi1

]
= 2. (1)

Therefore, position of an arbitrary point r = (x, y) in the
motion plane can be uniquely expanded as

r =ri1 +wi2

(
ri2 − ri1

)
+wi3

(
ri3 − ri1

)
=

(
1−wi2 −wi3

)
ri1 +wi2ri2 +wi3ri3 .

(2)

1591

Setting wi1 =
(
1−wi2 −wi3

)
, Eq. (2) can be rewritten as

r =
3∑

k=1
wik rik (3)

where

3∑
k=1

wik = 1. (4)

Considering Eqs. (3) and (4), distance weights wi1 , wi2 ,
and wi3 are obtained from

xi1 xi2 xi3
yi1 yi2 yi3
1 1 1



wi1

wi2

wi3

 =

x
y

1

 . (5)

The distance weights satisfying (5) can expressed as
follows:

wi1 (x, y) =
(
xi3 − xi2

) (
y− yi2

)
−

(
yi3 − yi2

) (
x− xi2

)(
xi3 − xi2

) (
yi3 − yi2

)
−

(
yi3 − yi2

) (
xi3 − xi2

)
wi2 (x, y) =

(
xi1 − xi3

) (
y− yi3

)
−

(
yi1 − yi3

) (
x− xi3

)(
xi1 − xi3

) (
yi1 − yi3

)
−

(
yi1 − yi3

) (
xi1 − xi3

)
wi3 (x, y) =

(
xi2 − xi1

) (
y− yi1

)
−

(
yi2 − yi1

) (
x− xi1

)(
xi2 − xi1

) (
yi2 − yi1

)
−

(
yi2 − yi1

) (
xi2 − xi1

)
. (6)

wik (x, y) = c (k = 1,2,3 and c is a constant.) is a line par-
allel to a triangle side not passing through ik . As examples,
wi1 = c is a line parallel to triangle side i2−i3, wi2 = c is a line
parallel to triangle side i3 − i1, and wi3 = c is a line parallel
to triangle side i1− i2. Also, wik (xi j , yi j) = δk, j , where δk, j is
the Kronecker delta defined as follows:

δk, j =

{
1 j = k
0 j , k

. (7)

In Fig. 8, the x− y motion plane can be divided into seven
sub-regions based on the signs of distance weights wi1 , wi2 ,
wi3 . As seen, distance weights are all positive inside the ith

triangular cell.

Fig. 8: Division of the motion plane into seven sub-regions
based on the signs of distance weights wi1 , wi2 , and wi3

If the distance weights of one of the triangles are all
positive for the position of interest, then the position of
interest is within the polygon.

Remark: If a geofence area is sufficiently large, it may
not be approximated by a planar surface. For this case, the
geofence domain can be considered as a spherical surface
with longitude φ and longitude λ. The proposed TWC
method can still be applied for boundary violation checking
over a spherical surface. By substituting x, xi1 , xi2 , xi3 , y, yi1 ,
yi2 , yi3 by φ, φi1 , φi2 , φi3 , λ, λi1 , λi2 , λi3 , weights wi1 (φ,λ),
wi2 (φ,λ), and wi3 (φ,λ) can be obtained from Eq. (6). Similar
to the planar domain, the UAS is enclosed by the ith sector
over the spherical geofence surface, if wi1 (φ,λ), wi2 (φ,λ),
and wi3 (φ,λ) are all positive.

V. CASE STUDIES

To evaluate the execution time of the Ray Casting, Fast
Ray Casting, and TWC algorithms, we generated 1000
random positions of interest and recorded the total time
required to run each geofence violation detection algorithm
for each position of interest. These tests were done for 50
randomly generated geofences with 3 to 20 vertices, a total
of 900 unique geofences. These geofences represent cases
where there is a defined keep-in geofence with zero keep-
out geofences. The results are shown in Figure 9. Figure 9(a)
presents the time required to evaluate all 1000 positions of
interest for each geofence, grouped by number of vertices,
and colored by algorithm. Figure 9(b) plots the median total
time of geofences with each number of vertices for Fast Ray
Casting and TWC. The presented plots do not include the
time required for the TWC initialization. The initialization
time can be ignored in this analysis because we are assuming
that the geofence boundaries are not changed or updated
during a given flight, so the initialization of TWC can occur
prior to the UAS takeoff.

A. Cases

We executed the Ray Casting, Fast Ray Casting, and
TWC boundary check algorithms over three specific ge-
ofences: a randomly generated boundary, a path confined to
a specific region over the Hudson river in the New York
City region, and a simplified geofence boundary over this
same region. The map-based geofence case studies were
generated using Google My Maps by selecting the latitude
and longitude coordinates of the vertices of the keep-in and
keep-out geofences as shapes. In addition to the geofence
boundary vertices, a Home position was created inside each
of the keep-in geofences to be used as the local origin.
The geofence case study maps were downloaded as .kml
files and imported into MATLAB using the add-on function
kml2struct(), which generates structures for each shape
with arrays of the latitude and longitude of each vertex
[10]. These arrays of geofence vertices and the local origin
were then converted into meters using the MATLAB add-
on function deg2utm(), which converts vectors of latitude
and longitude into UTM coordinates (WGS84) [11]. Once
all map features are expressed in meters, the geofence
vertices are redefined relative to local origin. The map-
defined geofence boundaries use the same functions as the
randomly-generated examples.

1592

(a) Execution times for each geofence boundary (50 per vertex count).
Ray Casting - green triangles. Fast Ray Casting - red circles. Triangle
Weight Characterization - blue stars.

(b) Median execution times for each geofence boundary vertex count.
Fast Ray Casting - red circles. Triangle Weight Characterization - blue
stars.

Fig. 9: Summed execution time for geofence violation check of 1000 positions of interest as a function of number of geofence
boundary vertices (3−20 vertices), 50 unique geofence boundaries generated for each.

To test the boundary check algorithm using a randomly-
generated geofence boundary consisting of a keep-in ge-
ofence with 30 vertices and four keep-out geofences with
4 vertices each, we use the MATLAB command rand()
to generate 50,000 random (x, y) positions of interest. The
random positions of interest are then tested for geofence
boundary violation. The results are displayed in Figure
10. The positions determined to be outside the boundaries
are shown in red, and the positions judged to be inside
the boundaries are shown in blue. The absence of red
points within the boundaries and of blue points outside the
boundaries indicates that the boundary violation detection
algorithm is functioning properly.

The first case study defines geofence boundaries as shown
in Figure 11(a). This scenario simulates a case where a
UAS has been given permission to fly over the river near a
populated area but is not allowed to fly over the surrounding
cities or islands. It is represented as a keep-in geofence with
17 vertices and three keep-out geofences with 6, 6, and 9
vertices respectively. Additional keep-out geofences could be
defined to prevent the UAS from flying over ships traveling
along the river. This scenario mimics what will likely be a
common model where large UAS are confined to flying at
higher altitudes shared by manned aircraft each following
a preplanned and approved flight path, or at low altitudes
shared with other unmanned aircraft potentially with no
preplanned flight path. In this scenario, the geofence system
acts to allow the UAS to fly its desired route while also
preventing the UAS from straying too close to populated
regions.

The second case study defines geofence boundaries as
shown in Figure 12(a). This setup simulates a case where a
UAS has been given permission to fly over all areas within
a geofence area with the exception of sensitive (keep-out)

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

(a) Black - keep-in geofence. Green - keep-
out geofences.

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10

15

20

(b) 50, 000 randomly generated positions of in-
terest. Blue - within geofence. Red - violating
geofence.

Fig. 10: Randomly generate example geofence.

1593

(a) Home icon - local origin. Green - keep-in geofence. Red - keep-
out geofences.

(b) 50, 000 randomly generated positions of interest (in kilometers).
Blue - within geofence. Red - violating geofence.

Fig. 11: Case Study 1 - River flight near urban area.

regions surrounding the World Trade Center Memorial and
the Statue of Liberty. It is represented as a keep-in geofence
with 4 vertices and two keep-out geofences with 4 and
6 vertices respectively. Note that this work presumes the
existence of a separate detect-and-avoid system for terrain,
buildings, and other aircraft enabling geofence boundaries
to be defined by airspace permissions not obstacles, e.g.,
tall Manhattan structures. Indeed, the UAS may acquire
permission to fly between buildings and over populated areas
given mission need. In this scenario, the geofence system
serves to prevent the UAS from straying too far from its
operator or into an airspace sector the UAS does not have
permission to occupy given (future) beyond line-of-sight
(BLOS) operational approval.

(a) Home icon - local origin. Green - keep-in geofence. Red - keep-
out geofences.

(b) 50, 000 randomly generated positions of interest (in kilometers).
Blue - authorized flight location. Red - location violating a geofence
boundary.

Fig. 12: Case Study 2 - Urban area flight.

B. Evaluation of Case Studies

For each of these cases, Ray Casting, Fast Ray Casting,
and TWC algorithms were applied to 50,000 randomly
generated nearby positions of interest. The time (in seconds)
required to run all 50,000 points for each of the methods is
presented in Table III and Figure 13. These run times are for
a MATLAB implementation on a Windows laptop; an imple-
mentation in a compiled language such as C would execute
more rapidly but with comparable relative factors. In order
to minimize the impact of any background processes on the
execution times, the MATLAB execution script interspersed
the execution of each of the three algorithms being tested.

Based on the results presented in Figure 9 and Table III,
it would be easy to conclude that either Fast Ray Casting
or TWC were good choices for the geofence violation

1594

TABLE III: Case Study Results Table - run time in seconds
for 50,000 randomly generated points of interest

Random Case 1 Case 2

Ray Casting 65.31 s 54.12 s 23.33 s

Fast Ray Casting 9.46 s 7.25 s 5.36 s

(TWC Initialization) (0.25 s) (0.23 s) (0.16 s)
Triangle Weight Characterization 9.19 s 8.32 s 4.12 s

Random Case 1 Case 2
0

10

20

30

40

50

60

70

T
im

e
 (

s
)

Fig. 13: Run time for 50,000 positions of interest. Ray
Casting - green. Fast Ray Casting - red. Triangle Weight
Characterization - blue.

algorithm, and that Fast Ray Casting algorithm would be
the best choice since it does not require an initialization
step, unlike TWC. However, neither of those algorithms
include the buffer distance that is incorporated into Ray
Casting, which allows for state estimation error bias. As such,
Ray Casting could provide value that justifies the additional
overhead. In future work TWC could be augmented to take
the buffer distance check into account, providing another
comparison point between the two algorithms.

VI. DISCUSSION

The difference between Ray Casting and Fast Ray Casting
is that Ray Casting includes a check of the position of
interest’s proximity to the geofence boundaries. The edge
proximity check is a useful feature because it enables to
usage of a buffer distance to allow for state estimation
imprecision. Further work is required to extend the current
TWC algorithm to include an edge proximity check similar to
the Ray Casting algorithm. This extended TWC algorithm is
expected to run more quickly than the Ray Casting algorithm
because it will only need to check the proximity of the
position of interest for triangles near geofence edges.

Another direction for future work is to use the geofence
triangulation from TWC to plan UAS flight paths that do not
violate the geofence. For a single keep-in geofence with no
keep-out geofence regions, if the UAS is inside the geofence,
the triangle of the geofence that contains the UAS is known.
To plan a path to another location within the geofence
without violating the geofence boundaries, we can exploit

the fact that for geofences with more than three vertices,
each triangular subdivision shares an edge with at least one
other (adjacent) triangle. Given the current UAS position
r(tk)= (x(tk), y(tk)), the UAS path planner can choose r(tk+1)
to be within an adjacent triangle and plan to move on the
line segment connecting r(tk) and r(tk+1). By the nature of
TWC, any straight line path within a triangle will not violate
the geofence boundaries. Similarly, every point along the
straight line path from one triangle into an adjacent triangle
will not contain a geofence boundary violation. As a result,
any path that begins and ends within a keep-in geofence can
be generated by planning only straight line paths between
waypoints in the same triangle or in adjacent triangles.

For cases where the flight path has already been planned,
the geofence boundary violation checks can be used to
validate the flight path prior to takeoff by sampling points
along the flight path and ensuring that no point violates the
geofence boundaries. The sampling of the path needs to be
fine enough that likelihood of a geofence violation occurring
between sample points is negligible. The time required to
complete this check is not a mission critical factor because
this check is executed prior to takeoff. If a geofence boundary
violation is detected in the planned flight path either the flight
path must be updated to avoid the violation or a modification
to the geofence boundaries must be requested to enable the
desired flight path. Once the planned flight path is declared
free of geofence boundary violations, the only violation risks
during flight are from system failure, environmental factors,
or changes to the geofence due to emergency flight vehicles.

This work focused on the evaluation of static geofence
boundaries where the geofence boundaries either never
change or are only analyzed for a single time step. Ge-
ofence boundaries could also change over time, moving from
static to dynamic geofencing. When the geofence boundary
changes, there are three possible actions that the geofence
system can take to incorporate updated information:

1) Complete the current iteration of Algorithm 1 with
the old geofence boundaries and incorporate the new
geofence boundaries in the next iteration,

2) Complete the current iteration of Algorithm 1 with the
new geofence boundaries and use the new geofence
boundaries in the next iteration,

3) Halt the current iteration of Algorithm 1 and imme-
diately begin a new iteration with the new geofence
boundaries.

Actions 1 and 2 cause a maximum of one iteration us-
ing incorrect geofence boundaries. Action 3 is unique in
that it does not use any incorrect data, but may cause
problems if the geofence / UAS system is not robust to
timing inconsistencies in the geofence boundary violation
detection algorithm. Dynamic geofences are important for
the incorporation of UAS into the manned airspace because
they enable changes to geofence boundaries in emergency
situations such as when a law enforcement vehicle or a
medical helicopter requires the airspace previously allocated
to the UAS geofence. The proposed approach is sufficiently

1595

fast that it is directly applicable to dynamic geofencing with
a high-frequency (multi-Hz) update, so typically any of the
presented options for handling geofence boundary updates
will be sufficient.

Being able to handle geofence boundary updates is partic-
ularly important in crowded airspace, such as urban regions,
where other aircraft could be incorporated into the geofence
system as additional keep-out geofence regions. This would
allow multiple UAS to operate in the same or overlapping
keep-in geofences without fear of a midair collision, as long
as the position of each UAS is broadcast at a known regular
interval. This setup does not protect against uncooperative
UAS or systems that are unable to broadcast their positions
such as kites or simple RC aircraft. A separate sense and
avoid system is needed to avoid unknown obstacles.

The inclusion of sense and avoid system in addition to
a geofencing system is critical to safe flight. In an urban
environment, there are obstacles to be avoided other than
other aircraft, including buildings, power lines, and street
lights. These are objects that are known and constant, but to
exclude each individual object would be impractical. The is-
sue is further complicated by the existence of urban canyons,
where GPS is denied due to the surrounding buildings. In
these areas, even if every obstacle were designated a keep-
out geofence, accumulated state estimation error might make
it impossible for the geofence to guarantee a collision free
flight. In these cases, the addition of a sense and avoid system
could enable safe flight through a keep-in geofence region
without relying on the specification of every obstacle as a
keep-out region.

When operating at higher altitudes, in shared airspace
with manned aircraft, large UAS can still benefit from
geofencing. The keep-in geofence ensures that the UAS does
not exit its designated flight envelop and keep-out geofences
ensure separation from all manned and unmanned aircraft is
maintained.

VII. CONCLUSION

This paper has discussed the application of two point-in-
polygon algorithms, Ray Casting and Triangle Weight Char-

acterization (TWC), to the problem of geofence boundary
violation detection. Fast Ray Casting and TWC execute in
approximately the same amount of time, but only TWC
requires an initialization step. Results show that all three
algorithms are consistently and rapidly able to accurately
characterize UAS geofence violation status. Future work in-
cludes extension of TWC to evaluate boundary proximity and
full consideration of dynamic geofence boundary updates.

REFERENCES

[1] U. S. Government, “Operation and certification of small unmanned
aircraft systems,” in Title 14 Code of Federal Regulations, Part 107.

[2] P. H. Kopardekar, “Safely enabling uas operations in low-altitude
airspace,” 2017.

[3] M. N. Stevens and E. M. Atkins, “Multi-mode guidance for an
independent multicopter geofencing system,” in 16th AIAA Aviation
Technology, Integration, and Operations Conference, 2016, p. 3150.

[4] A. Narkawicz and G. Hagen, “Algorithms for collision detection
between a point and a moving polygon, with applications to aircraft
weather avoidance,” in 16th AIAA Aviation Technology, Integration,
and Operations Conference, 2016, p. 3598.

[5] D. Alciatore and R. Miranda, “A winding number and point-in-
polygon algorithm,” Glaxo Virtual Anatomy Project Research Report,
Department of Mechanical Engineering, Colorado State University,
1995.

[6] K. Hormann and A. Agathos, “The point in polygon problem for
arbitrary polygons,” Computational Geometry, vol. 20, no. 3, pp. 131–
144, 2001.

[7] H. Rastgoftar and S. Jayasuriya, “Evolution of multi-agent systems as
continua,” Journal of Dynamic Systems, Measurement, and Control,
vol. 136, no. 4, p. 041014, 2014.

[8] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan,
“Triangulating a simple polygon,” Information Processing Letters,
vol. 7, no. 4, pp. 175–179, 1978.

[9] D.-T. Lee and F. P. Preparata, “Location of a point in a planar
subdivision and its applications,” SIAM Journal on computing, vol. 6,
no. 3, pp. 594–606, 1977.

[10] MathWorks, “kml2struct - File Exchange - MAT-
LAB Central,” accessed: 2017-02-25. [Online]. Avail-
able: https://www.mathworks.com/matlabcentral/fileexchange/35642-
kml2struct

[11] ——, “deg2utm - File Exchange - MAT-
LAB Central,” accessed: 2017-02-25. [Online]. Avail-
able: https://www.mathworks.com/matlabcentral/fileexchange/10915-
deg2utm

1596

