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Abstract— This paper considers a new clustering algorithm
for processing time-evolving road anomaly reports. Two cluster
categories, main and outlier, are defined to deal with outliers
as well as to capture the evolving nature of road anomalies.
The Mahalanobis distance is exploited to quantify the similarity
between a new report and the existing clusters. The clusters are
maintained online and the Woodbury matrix inverse lemma is
used for their recursive updates. The proposed clustering algo-
rithm can localize isolated anomalies and compress information
for densely distributed anomalies. A simulation is presented to
demonstrate the efficacy of the proposed algorithm.

Index Terms— Evolving clustering algorithm, Mahalanobis dis-
tance, road anomaly report, Woodbury matrix inversion lemma.

I. INTRODUCTION

Mobile sensing and data sharing offer new opportunities to
advance intelligent transportation systems. Modern vehicles
are equipped with sophisticated sensors and control units that
can be exploited to obtain road and environmental information
in real time. References [1]–[3] provide examples of traffic
density estimation, road friction coefficient estimation and
pothole detection, respectively. Sensed information can be sent
to a server, e.g., the cloud, to be further processed, crowd-
sourced, then shared with other vehicles and road agencies.

Road anomalies such as potholes or bumps are annoying
events that can cause ride discomfort and vehicle damage.
If available, anomaly maps can be used to enhance route
planning, improve suspension control [4], [5] and inform road
maintenance activities. Anomaly detection algorithms have
been developed in previous work. For example, a pothole
detector with three external accelerometers was developed
using machine learning techniques in [3]. In [6] and [7], we
developed a road anomaly detection algorithm based on a
half-car model by exploiting a multi-input observer. Promising
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Fig. 1. Vehicle-to-Cloud-to-Vehicle anomaly detection and information
sharing.

detection performance was demonstrated in a test vehicle using
standard sensors.

Vehicles that perform road anomaly detection can be
integrated into a Vehicle-to-Cloud-to-Vehicle framework as
illustrated in Figure 1. Such vehicles used as mobile sensors
can be either special vehicles or customer-owned vehicles
who choose to participate in the program. Once anomalies
are detected, anomaly locations, e.g., from Global Positioning
System (GPS) coordinates, are sent to the cloud, where a
clustering module is implemented to process raw anomaly
reports. Clusters with high credibility score are stored in a
cloud database where their locations can later be broadcast to
other vehicles and road agencies. Clusters with low credibility
score are stored in a buffer and not shared. In this paper,
we develop a novel clustering algorithm that can process raw
reports and retrieve useful anomaly information. The desired
clustering algorithm has the following properties:

• No assumptions on the number of clusters. The number
of road anomalies may not be known in advance and
is continuously evolving. New anomalies can develop
and old anomalies can disappear once repaired. The
algorithm hence should not assume a constant number
of clusters [8], [9].

• Ability to handle outliers. False alarms can sometimes
occur. The clustering algorithm should be able to dis-
criminate outliers and not broadcast outlier information
to vehicles and road agencies.
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• Consideration of anomaly evolution. Road anomalies
are evolving, that is, new potholes may occur and old
potholes may be fixed. The clustering algorithm must be
able to deal with change in aggregated reports.

• Localization of isolated anomalies and information
compression for stretched (densely spaced) anomaly seg-
ments. The algorithm should also be able to accurately
localize isolated anomalies and, from the perspective of
road information sharing, it is desirable to aggregate
information from a segment with densely spaced multiple
anomalies.

• Memory and computation efficiency. We envision a fleet
of vehicles that are equipped with anomaly detectors (e.g.,
the ones developed in [6]) travelling around to enable
sufficient coverage. Therefore, the clustering algorithm
needs to process large-scale data streams as efficiently
as possible. Cluster information should be stored in a
compact data structure and updated with minimal com-
putational overhead.

In general, clustering algorithms partition data into
groups based on underlying patterns. These algorithms are
widely applied in the fields of image processing [10],
data mining [11], and diagnostics and prognostics [12].
Many clustering algorithms are designed to deal with static
data [8], [13], [14], that is, cases where all data are available
in advance. These algorithms are not applicable to processing
anomaly reports since the reports are dynamic and time-
evolving. Recently, clustering algorithms have been developed
to deal with evolving data streams. The CluStream algo-
rithm [9] exploits micro-clusters to summarize information for
a set of data points. The micro-clusters are updated online
with new stream inputs and a weighted k-means algorithm is
applied offline on the micro-clusters to obtain the final clusters.
While good accuracy can be obtained, the algorithm assumes
a constant number of clusters so it cannot be used in our
problem. In [15], a streaming k-means clustering algorithm
is developed with a divide-and-conquer strategy. It optimizes
a k-means objective function and can generate more than k
clusters. However, the obtained clusters are hypercircles which
cannot be used to compress information for stretched anomaly
segments. Also, this approach does not easily handle outliers
and the evolving nature of anomalies.

An extended Gustafson-Kessel algorithm is developed
in [16], where Mahalanobis distance is exploited to measure
the similarity between clusters and new data points. The cluster
center and covariance matrix are updated recursively with
new data inputs. Updated clusters are hyperellipsoids with
arbitrary orientation. The algorithm is applicable to real-time
pattern recognition and information compression. However,
the algorithm in [16] is only applicable to spatial data and
cannot handle directly dynamic data with temporal features
such as road anomaly reports. Also, the algorithm in [16] is
not able to deal with outliers and cannot capture the road
anomalies that change over time.

In this paper, we develop a novel clustering framework that
satisfies all specified requirements. We exploit Mahalanobis
distance as the similarity metric. Two cluster types, the outlier
cluster and the main cluster, are defined based on their

computed credibility values. The credibility values are
reflected in accumulated reports, that is, cluster credibility
grows with the increased number of reports. A decaying
function is used to discount the credibility with time to deal
with situations that road anomalies disappear due to repair.
A cluster feature vector is defined by a weight, center, covari-
ance matrix inverse, creation time and a label. Clusters are
updated in a single-pass setting. A Woodbury matrix inversion
lemma [17] is exploited to simplify the covariance matrix
update and avoid possible singularity issues in numerical
computations. Clusters are pruned based on their weights and
creation time to deal with outliers as well as anomaly changes
over time. Memory and computations are light and simulation
results demonstrate the efficiency of the proposed clustering
algorithm.

The paper is organized as follows. Section II presents
background on Mahalanobis distance and its relation to the χ2

distribution. Section III is devoted to the discussion of cluster
feature definition and the clustering algorithm. Simulation
results are described in Section IV, followed by a summary
and discussion in Section V.

II. BACKGROUND

A. Mahalanobis Distance and χ2 Distribution

The Mahalanobis distance measures the similarity between
a point and a cluster of points [18]. It generalizes a notion of
number of standard deviations between a point and the mean
of the cluster for multi-dimensional data. The distance grows
as the point moves away from the mean along each principal
component axis. As a result, the distance is unitless and scale-
invariant, and accounts for the distribution and correlations of
the cluster data. Let x ∈ R

n be a data point. Let μ and � be
the mean and covariance matrix of a cluster of points denoted
by C, respectively. The Mahalanobis distance between x and C,
D(x, C), is defined as:

D(x, C) =
√

(x − μ)T�−1(x − μ). (1)

Note that Mahalanobis distance in (1) coincides with the
Euclidean distance between x and μ in a special case with
� being the identity matrix.

Suppose the data points are normally distributed around
the cluster center μ with covariance �, i.e., X ∼ Nn(μ,�),
where Nn represents the multivariate normal distribution of
dimension n. Define

Z = �− 1
2 (X − μ) = [Z1, Z2, · · · , Zn]T.

It is straightforward to show that Z ∼ Nn(0n, In), where
0n and In represent the zero vector of dimension n and
identity matrix of dimension n, respectively. As a result, the
Mahalanobis distance in (1) between X and C is:

D2(X, C) = ZT Z = Z2
1 + Z2

2 + · · · + Z2
n, (2)

which means that D2(X, C) is chi-square distributed with
degrees of freedom n, i.e., D2(X, C) ∼ χ2

n . The chi-square
value is often associated with a p-value, which is defined
as the probability of obtaining a result equal to or “more
extreme” than what is observed. The chi-square distribution
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TABLE I

CROSS-REFERENCE TABLE OF p-VALUE, CONFIDENCE INTERVAL AND

SIGMA BAND FOR n = 1, AND χ2 VALUES FOR n = 1, 2, 3

is frequently used in statistical hypothesis testing. The value
(1− p) is known as the confidence interval that represents the
probability of D2(X, C) < χ2

n (p). The cross references of the
p-value, confidence interval and the sigma values (σ , standard
deviation) for n = 1 and χ2

n values for some low dimensions
are given in Table I.

B. Preliminaries

In this subsection, we introduce the following lemma that
will be used in subsequent developments.

Lemma 1 [17]: Let A, B, C, D be matrices of appropriate
dimensions. Suppose matrices A, C , and C−1 + D A−1 B are
nonsingular, then

(A + BC D)−1 = A−1 − A−1 B(C−1 + D A−1 B)−1 D A−1.

(3)

Lemma 1 is often referred to as the Woodbury matrix inversion
lemma.

III. ANOMALY REPORT STREAM

CLUSTERING ALGORITHM

In this section, we develop a new clustering algorithm
to process road anomaly report streams that satisfies all the
desired properties specified in Section I. We first introduce a
notion of cluster features, followed by the detailed description
of our clustering algorithm.

A. Cluster Features

The main goal of our clustering algorithm is to obtain anom-
aly information by processing aggregated anomaly reports
from vehicles. To achieve this goal, we represent each cluster
Ci , i = 1, 2, · · · , c, with a tuple,

Ci = (wi , vi , �−1
i , t0

i , Li ), (4)

where wi = ∑Mi
k=1 f (t − tik) is the weight of cluster Ci

with Mi being the number of anomaly reports in the cluster.
The time instants t and tik denote the current time instant
and the time instant that xik , the kth report in cluster i , was
merged to cluster i , respectively. Time stamps t and tik have
a common time unit, for example, in days. The function f (τ )
is a decreasing function of elapsed time to discount cluster
weights. In this paper, we use f (τ ) = α−λτ where α > 1
and λ > 0 are two positive scalars. Specifically, based on our
numerical experiments, we recommend α = 2. The decaying
functions with different λ’s are illustrated in Figure 2.

Fig. 2. Decaying function f (τ ) used to discount cluster weights based on
elapsed time for different λ’s.

The weight wi reflects the credibility score of the cluster
where high wi corresponds to high credibility. Note that the
weight of a newly received report is one and the weight decays
as a function of the elapsed time.

The cluster center vi is defined as a weighted mean:

vi =
∑Mi

k=1 f (t − tik)xik
∑Mi

k=1 f (t − tik)
, (5)

and �i is the weighted covariance matrix of the cluster
defined as

�i =
∑Mi

k=1 f (t − tik )(xik − vi )(xik − vi )
T

∑Mi
k=1 f (t − tik)

. (6)

We track the inverse of �i , instead of �i , for the convenience
of recursive computations as detailed in Section III-C. The
time stamp t0

i > 0 represents the time instant when cluster Ci

is first created.
The variable Li ∈ {m, o} in (4) serves as a label indicating

the cluster type. We specify two cluster types, main clusters
(m-clusters, Li = m) and outlier clusters (o-clusters, Li = o).
The m-clusters are the clusters with high credibility that
are believed to represent true anomalies. The credibilities of
clusters are reflected in the cluster weight wi , where high
wi implies high credibility. On the other hand, o-clusters
represent outliers due to false alarms or those represent-
ing true anomalies that do not yet have high aggregated
weights.

We note that the m-clusters and o-clusters can be inter-
changed as weights change. This allows new anomalies
to become m-clusters and removed (repaired) anomalies to
become outliers. Two thresholds hm and ho, ho > hm > 0,
are introduced to capture the interchange capability. For an
m-cluster, if few reports are obtained and the cluster weight
decays such that wi < hm , then cluster i will be relabeled an
o-cluster. For an o-cluster, if the cluster weight, with aggre-
gated reports, increases such that wi > ho then the cluster is
relabeled as an m-cluster. The constraint hm < ho ·α−λ avoids
clusters repeatedly switching labels. The thresholds hm and ho

can be set as a function of annual average daily traffic for each
road segment.
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Fig. 3. Clusters in the forms of ellipsoids.

On the other hand, if an o-cluster fails to become an
m-cluster after a certain period of time To, it means that the
o-cluster corresponds to false alarms and should be deleted
from the outlier buffer. We check all the o-clusters periodically,
e.g., at the end of each day. If t − t0

i > To, we then delete Ci

from the outlier buffer, where t is the current time and t0
i is

the cluster creation time.
The obtained clusters are hyperellipsoids with orientation

determined by the principal axes of their covariance matri-
ces �i . The cluster representation can localize true location
for isolated events and can compress information for a stretch
of anomaly events with arbitrary orientation as illustrated
in Figure 3. A stretch of three anomalies is included in
Cluster 1 with an orientation aligned with the road. Moreover,
it can accurately indicate the anomaly location for an isolated
anomaly as in Cluster 2.

The m-cluster information is stored in a cloud database and
can be shared between vehicles for route planning, suspension
control [4], or other purposes. The information can also
inform road agencies to schedule maintenance activities. The
o-clusters are stored in a buffer that is not shared with other
users.

B. Cluster Maintenance Algorithm

In this paper, we develop an algorithm (Algorithm 1 below)
to process road anomaly report streams. When a new anomaly
report arrives, there are two possible scenarios. First, if the
newly arrived report is “close” to some existing clusters, then
the data should be merged into the “closest” one. On the
other hand, if there is no existing cluster or the data is not
close to any of the existing clusters, a new cluster should
be created and centered at the newly reported location. The
“closeness” or similarity of the newly reported location and
existing clusters is measured by the Mahalanobis distance
discussed in Section II-A. These scenarios (or conditions)
are characterized by the if statements at Steps 4 and 9 in
Algorithm 1.

Note that since the Mahalanobis distance is unitless and
scale-invariant, we are able to directly process GPS coordi-
nates without transforming them to state plane coordinates in
Euclidean space.

Algorithm 1 Anomaly Report Stream Clustering Algorithm
Constant Parameters: p, α, λ, ho, hm , To, γ
Inputs: C, X
Outputs: C+
1: top:
2: do
3: Read next report xk ∈ X
4: if no cluster exists, then
5: Initialize the first cluster C1:

w1 = 1, v1 = x1, �−1
1 = γ I2, L1 = o, t0

1 = t .

6: else
7: Calculate the Mahalanobis distances to all existing

clusters:

D2(xk, Ci ) = (xk − vi )�
−1
i (xk − vi )

T, i = 1, · · · , c,

where c is the number of clusters.
8: Find the closest cluster as:

i∗ = arg min
i=1,··· ,c D

2(xk, Ci ).

9: if D2(xk, Ci∗ ) ≤ χ2
2 (p), then

10: Update the covariance matrix inverse of Ci∗ using
(13) and (14).

11: Update the center of Ci∗ using (10).
12: Update the weight of Ci∗ using (9).
13: if Li∗ = o and wi∗ > ho, then
14: Set Li∗ = m and update the cloud database

with Ci∗ .
15: else
16: Create a new cluster and increment c = c + 1.
17: Initialize the new cluster Cc as:

wc = 1, vc = xk, �−1
c = γ I2, t0

c = t, Lc = o.

18: while More than m minutes before the end of day t
19: Within m minutes to the end of day t :
20: Update the cluster weights:

w+
i = wi · α−λ, i = 1, 2, · · · , c.

21: Check the m-clusters:
22: if Ci is an m-cluster and wi < hm after the update, then
23: Set Li = o; delete it from the cloud database; send it

to the outlier buffer.
24: Check the o-clusters:
25: if Ci is an o-cluster and t − t0

i = To, then
26: delete Ci from the outlier buffer.
27: increment the day count: t = t + 1.
28: go to top.

Let C and C+ define the set of old cluster features
and updated cluster features, respectively. Let X define the
sequence of anomaly reports. Suppose there are c existing
clusters when a new report xnew = (lon, lat) arrives. Then
based on (1), the squared Mahalanobis distance between
data point x and cluster Ci = (wi , vi , �−1

i , t0
i , Li ),



1984 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 7, JULY 2017

i = 1, 2, · · · , c is calculated as

D2(x, Ci ) = (x − vi )
T�−1

i (x − vi ). (7)

The cluster, i∗, with the minimum distance can be obtained as

i∗ ∈ arg min
i=1,··· ,c D

2(x, Ci ). (8)

Finding the “closest” cluster i∗ using (7) and (8) is illustrated
by Steps 7 and 8 in Algorithm 1.

GPS data measurements are, in general, normally distrib-
uted [19]. With the weighted mean formulation of cluster
center (5), it is typically the case that the cluster center, with
aggregated reports, converges to the true anomaly location
(See Figure 11 in Section IV). This justifies an assumption
made in rationalizing some of the thresholds used by the
proposed algorithm that the new reports are normally distrib-
uted around the cluster center. As discussed in Section II-A,
suppose x is normally distributed around vi∗ with covariance
matrix �i∗ . Then D2(x, Ci∗) ∼ χ2

n , where n = 2 is the
dimension of x . We thus define a threshold parameter χ2

2 (p) to
determine whether a data point is close enough to the cluster
and can be included in the cluster. The bound can be different
between urban and rural areas due to GPS accuracy charac-
teristics. Consequently, if the squared Mahalanobis distance
to the closest cluster is within the bound D2(x, Ci∗) ≤ χ2

2 (p)
then we merge x into cluster i∗, which is captured by Step 9
in Algorithm 1. The weighted mean vi∗ , weighted covariance
matrix �i∗ , and cluster weight wi∗ are, respectively, updated as

w+
i∗ = wi∗ + 1, (9)

v+
i∗ = wi∗vi∗ + x

wi∗ + 1
, (10)

�+
i∗ = wi∗�i∗ + (x − vi∗ )(x − vi∗ )T

wi∗ + 1
, (11)

where the superscript “+” designates updated value. The
weight and mean updates are given by Steps 11 and 12 in
Algorithm 1, respectively. Note that the inverse of covariance
matrix update at Step 10 in Algorithm 1 does not use (11).
Instead, we exploit the Woodbury Inverse Lemma to simplify
the computations as will be discussed in the next subsection.

Suppose a cluster i∗ is an o-cluster and after the update, the
weight wi∗ becomes greater than threshold ho. In this case we
relabel cluster i∗ as an m-cluster and its information is stored
on a cloud database and shared with vehicles and agencies.
This relabeling procedure is presented by Steps 13 and 14
in Algorithm 1.

On the other hand, if D2(x, Ci∗) > χ2
2 (p), that is, the data

is outside all cluster boundaries, we increment c = c + 1 and
assign a new cluster Cc to x ,

Cc = (1, x, γ In, o, t), (12)

where γ > 0 is a scalar that initializes the covariance matrix
inverse and t is the current time (in days). This initialization
is illustrated by Steps 15-17 in Algorithm 1.

At the end of each time period, the weight of each clus-
ter is decayed by multiplying it with α−λ. We check the
weights of all m-clusters: if any m-cluster has a weight less
than hm , then it is removed from the database and sent to

o-clusters in the outlier buffer. The o-cluster weights are
also updated. If the cluster creation day of an o-cluster is
less than the current day minus To, a time duration thresh-
old to delete o-clusters if they fail to become m-clusters,
then the cluster is removed from storage. These relabeling
and pruning procedures are characterized by Steps 20-26 in
Algorithm 1.

Note that anomaly reports are processed in a single pass;
that is, they are all processed exactly once. Anomaly informa-
tion is summarized in cluster features without storing separate
reports. This reduces memory and computation resources
requirements in comparison to algorithms that store individual
reports.

C. Recursive Computation of Matrix Inverse

The expression (11) provides a simple way to update the
covariance matrix for clusters. However, after each update, the
inverse of the covariance matrix must be computed to estimate
Mahalanobis distance from next arrived point as in (7). This
recursive computation of matrix inverse may cause singularity
issues due to numerical ill-conditioning. As an alternative, we
exploit Lemma 1, the Woodbury matrix inversion lemma, to
address this issue.

Let A = wi
wi+1�, B = x −vi , C = 1

wi+1 , and D = (x −vi )
T.

From (3) and (11), it follows that

(�+
i )−1 = ( wi

wi + 1
� + (x − vi )

1

wi + 1
(x − vi )

T)−1

= wi + 1

wi
�−1

i − wi + 1

wi
�−1

i (x − vi )
[
(wi + 1)

+(x − vi )
T wi

wi + 1
�−1

i (x − vi )
]−1

·(x − vi )
T wi

wi + 1
�−1

i

= (1 + 1

wi
)�−1

i

(
In − Ki�

−1
i

)
, (13)

where

Ki = (x − vi )
[
wi + (x − vi )

T�−1
i (x − vi )

]−1
(x − vi )

T.

(14)

Note that calculation of Ki in (14) requires only a scalar
inversion. Recursive matrix inversion computations with (13)
replace numerical matrix inversion with a simple algebraic
calculation. This technique greatly simplifies the calculation
and resolves possible singularity issues. The update of the
covariance matrix inverse using (13) and (14) is illustrated
by Step 10 in Algorithm 1.

D. Parameter Selection Discussion

The following parameters must be specified to implement
the proposed clustering algorithm.

• p-value. The p-value is required to obtain a chi-square
value bound χ2

2 (p) based on Table I. This bound controls
the distance over which reports can be merged to an
existing cluster, affecting the cluster mean and covari-
ance updates (10) and (11). This parameter depends on
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GPS accuracy that may vary from urban to rural areas.
We recommend to use p = 0.0027.

• α and λ in the decay function. This pair of positive
parameters is used in the decay function to control
dependence on old data. Large α and λ lead to less
dependence on old data. We recommend to use α = 2
and tune λ only based on data. Note that maintenance
information from road agencies can be incorporated to
change decay rate if we know anomalies in certain areas
have been repaired.

• Thresholds ho > hm > 0. These two thresholds define
the criteria for switching between an m-cluster and an
o-cluster. These thresholds depend on the annual average
daily traffic in each of the road segments. The higher the
average daily traffic is, the higher ho and hm should be.
The parameters hm and h0 also depend on the perfor-
mance of the road anomaly detector, e.g., false positive
(false alarm) rate and false negative (missed detection)
rate.

• Time unit and pruning period To. Since the life cycle
of road anomalies is typically at least a few days, it is
reasonable to use “day” as the time unit. The time
duration parameter To controls how long we keep an
o-cluster. If an o-cluster exists more than To days and
does not change to an m-cluster, we remove it from
memory.

• Inverse covariance matrix initialization parameter γ . The
parameter γ > 0 is used to initialize the inverse covari-
ance matrix in a new cluster. Simulation results show that
γ = 108 works well.

• Time parameter m. The time parameter m depends on
how long it needs to update the cluster weights. For
example, m = 3 means that the last 3 minutes of each
day are used to update the cluster weights. New reports
are not processed during that time.

More comments on parameter selection are made next in the
simulation section.

E. Computation and Memory Efficiency

Computation and memory efficiency is one of the require-
ments specified in the Introduction section. Towards this end,
the proposed clustering algorithm is designed that it processes
anomaly reports in a single-pass fashion, that is, all reports
are processed only once. All needed cluster information is
maintained in the tuple specified in (4). The Woodbury Matrix
Inversion Lemma is exploited to further simplify the cluster
updates.

Consider now the computation and memory requirements
in the scale of a city. Suppose N clusters exist in the city.
For each cluster, all information needed to be stored is the
five features specified in (4), which can be described using
9 single-precision floating point numbers (note that cluster
center is a vector of dimension 2 and the covariance matrix
is 2×2). Based on IEEE 754-2008 standard [20], each single-
precision floating point number occupies 4 bytes. As a result,
the total memory needed is N×9×4 bytes. Let N be a million,
the memory requirement is only 36 M B , which is very light
for the scale of a city.

Fig. 4. Hierarchical strategy for cluster traversal.

The chronometric requirements are also light. Following
Algorithm 1, when a new report arrives, we first follow
Steps 7 and 8 in Algorithm 1 to traverse the N clusters
and find the one closest to the new report. To accomplish
this, we compute the Mahalanobis distance for all N clusters
following Step 7 in Algorithm 1. After we find the closest
cluster, we create a new cluster using Step 17 if Step 9 is
not satisfied. Otherwise, we update features of the closest
cluster using (9), (10), (13), (14) and Step 13 in Algorithm 1.
These computations are all algebraic and do not involve matrix
inversion (note that (14) is a scaler inversion). As a result, the
complexity for processing a new report is O(N).

The above computation process can be simplified by
dividing the city into zones and instead of checking all the
clusters, we first determine the zone where the report falls and
we then only check the clusters within the zone. As illustrated
in Figure 4, this hierarchical strategy can greatly reduce the
number of clusters we need to traverse. If the city is divided
into n zones and let ki represent the number of clusters
in Zone i , i = 1, 2, · · · , n, then the worst-case complexity
of the algorithm is further reduced to O(n + K ), where
K = maxi=1,··· ,n ki represents the largest number of clusters
in the zones.

IV. SIMULATION DEMONSTRATION

In this section, we present a simulation to demonstrate
that our algorithm possesses the desired capabilities which
we listed in the Introduction section. We simulate the algo-
rithm on the roads around North Campus of the University
of Michigan as illustrated in Figure 5. We include twelve
anomalies to verify the ability of handling multiple clusters
without pre-defined number of clusters. In order to show the
ability of localization of isolated anomalies and information
compression for stretched anomaly segments, the anomalies
are arranged in a way that anomalies 1-5 and 8-10 are
densely distributed while others are isolated . Four false alarms
locations are added in the simulation to test the ability to
handle outliers.

To demonstrate the ability of handling anomaly evolution,
the algorithm is simulated over a period of 15 days with
the following setup. From day 1 to day 5, anomalies 1-11
are present. On day 6, anomalies 8-10 are fixed, however,
anomaly 12 appears. The total number of reports is uniformly
distributed between 180 and 200 each day. The reports are ran-
domly generated around the true anomalies with a covariance
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Fig. 5. Road anomalies and false alarms.

TABLE II

PARAMETERS FOR SIMULATION

matrix corresponding to a 5 · I2 (m2) covariance in the state
plane coordinates [19]. Five false alarm reports are generated
around each of the four locations indicated as blue triangles in
Figure 5, inducing an average false alarm rate in the anomaly
data of 10.5%.

Note that parameters hm , ho, To, α, and λ depend on the
road dynamics, e.g., traffic density, anomaly life cycle etc.
and should be tuned cooperatively. If ho is too high, we may
discard true anomalies. At the same time, if ho is too low,
we may mishandle outliers and treat them as true anomalies.
As for ho, if it is too low, it takes a long time to discriminate
fixed anomalies and is thus not memory-efficient. On the other
hand, if it is too close to ho, the o-clusters and m-clusters may
interchange frequently. We thus require that hm < ho · α−λ.
The parameters To, α, and λ can then be similarly tuned to
satisfy system requirements.

Parameters in Table II are used in the Matlab simulation.
The p-value is chosen as suggested in Section III-D that
corresponds to 3σ bands. In order to show that the outliers are
discriminated over the 15-day period, we choose the pruning
period To = 5. Based on the simulation setup, there are
around 18 reports for each of the anomalies every day and
ho is set to 80 to allow the true anomalies to grow into
m-clusters in To + 1 days (since we check the weight at the
end of day). Note that if ho > 100, then true anomalies will
be discarded. The parameter α of the decaying function is set
to 2 as suggested and the parameter λ is tuned so that the
cluster formed by anomalies 8-10 changes to an outlier at
the end of this simulation since they are fixed on Day 6.
The parameter hm needs to satisfy hm < ho · α−λ and it is
selected as 50.

Note that anomalies 1-5 and anomalies 8-10 are groups that
can be included in one cluster each for the benefits of memory
efficiency. A snapshot at the end of day 1 is illustrated in
Figure 6. With aggregated reports, the weight of each cluster
increases. The cluster that covers anomalies 1-5 has a weight

Fig. 6. Snapshot at the end of day 1.

Fig. 7. Information compression for anomalies 1-5.

Fig. 8. Snapshot at the end of day 5.

of more than ho = 80 and is labeled as an m-cluster with red
ellipsoid. All other clusters’ weights are below ho and these
clusters are labeled as o-clusters with black ellipsoid.

The clustering algorithm can compress information about
densely distributed anomalies as illustrated in Figure 7. Anom-
alies 1-5 are included in one cluster that indicates a long stretch
of road anomalies. This long stretch can be visualized on a
map to warn drivers. Note that the maximum band can be
compressed as it is controlled by the chi-square number χ2

2 (p).
With a larger p, the algorithm is able to discriminate “closer”
anomalies.

A snapshot at the end of day 5 is illustrated in Figure 8.
With aggregated reports, the clusters formed by anomalies 1-5
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Fig. 9. Snapshot at the end of day 10.

Fig. 10. Snapshot at the end of day 15.

Fig. 11. Horizontal distance error of anomaly 6.

and anomalies 8-10 have greater weights than ho thus they are
m-clusters represented by red ellipsoids.

Based on the simulation setup from day 6, anomalies 8-10
are repaired and anomaly 12 is developed. A snapshot at the
end of day 10 is shown in Figure 9. Since the outliers fail to
become m-clusters in T = 5 days, the outliers are removed
from the outlier buffer. This illustrates the algorithm’s ability
to deal with outliers. Also, since anomalies 8-10 are fixed and
no new reports are aggregated, the weight decreases due to
the decaying function.

Finally, a snapshot at the end of day 15 is shown in
Figure 10. The weight of the cluster formed by anomalies
8-10 continues decreasing based on the decaying function.
As a result, at the end of day 15, the weight becomes less
than hm = 50. The cluster is relabeled as an o-cluster and is
moved to the buffer that is not shared with interested parties.

The horizontal distance error between the true anomaly
position and the cluster center for anomaly 6 is illustrated in
Figure 11. Note that with aggregated reports, the cluster center

converges to the true anomaly location. Similar convergence
results are obtained for the other isolated clusters.

The simulations show that the algorithm is able to handle
outliers and can successfully capture the evolution of anom-
alies. As discussed in Section III-E, the computation and
storage requirements are also light.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an anomaly report stream clustering algorithm
was developed to process road anomaly reports that can be
integrated into a Vehicle-to-Cloud-to-Vehicle framework. The
cluster information was summarized in a feature vector that
was recursively updated with new reports. The Mahalanobis
distance was exploited to measure the similarity between a
reported location and existing clusters. The obtained clusters
are hyperellipsoids with arbitrary orientations. The Wood-
bury matrix inversion lemma was employed to facilitate the
recursive computation of the covariance matrix inverse. The
developed algorithm can reject outliers and capture the evolv-
ing road anomalies with a combined o-cluster and m-cluster
strategy. The proposed algorithm can also localize isolated
anomalies and compress information for stretched anomaly
segments with light memory and computation requirements.

Future work will include a more comprehensive study of
parameter selection based on real-world data.
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