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General aviation and small unmanned aircraft systems are less redundant, may be less thoroughly tested, and are

flownat lower cruise altitudes than commercial aviation counterparts. These factors result in a higher probability of a

forced or emergency landing scenario. Currently, general aviation relies on the pilot to select a landing site and plan a

trajectory, even though workload in an emergency is typically high, and decisions must be made rapidly. Although

sensors can provide local real-time information, awareness of more distant or occluded regions requires database

and/or offboard data sources. This paper considers different data sources and how to process these data to inform an

emergency landing planner regarding risks posed to property, people on the ground, and the aircraft itself. Detailed

terrain data are used for selection of candidate emergency landing sites.Mobile phone activity is evaluated as ameans

of real-time occupancy estimation. Occupancy estimates are combined with population census data to estimate

emergency landing risk to people on the ground. Openly available databases are identified and mined as part of an

emergency landing planning case study.

Nomenclature

c = country code
D = day of the week
d = date
Gls = set of candidate landing sites
g = grid cell number
h10m = starting time of 10 min time interval of the day
nc = total number of country codes
ng = total number of grid cells
nt = total number of time intervals
Ra = risk based on landing area
Rh = risk to people on ground
Rls = overall landing site risk
Rp = risk to property on ground
Rv = risk to vehicle
t = time, min
t10m = starting time of 10 min time interval, min
Wh,Wp,Wv,Wa = weights associated with landing site risks
w = A� transition cost weight
Θ = median of maximum aggregated SMS and call activity during a day, for a day of the week
λcensus = occupancy from census data
λ̂census = normalized occupancy from census data
λrt = real-time occupancy estimation
λ0 = A� fixed transition cost element
Φ = median of aggregated SMS and call activity for each grid cell, day of the week and time interval of the day
Φgrid = sum of Φ for all grid cells
Φ̂ = normalized Φ
ϕ = aggregated SMS and call activity
ϕ̂ = normalized ϕ
ϕ1 = activity in terms of SMS-in
ϕ2 = activity in terms of SMS-out
ϕ3 = activity in terms of call-in
ϕ4 = activity in terms of call-out
ϕ5 = activity in terms of internet
�ϕi = modified activity feature for heat map plot
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ϕiavg = average activity in terms of feature i throughout the entire database
ϕgrid = sum of ϕ for all grid cells

I. Introduction

T RIPLY redundant commercial transport aircraft are rarely forced to land off-runway, but emergency landings are occasionally required today
in general aviation and experimental aircraft operations. General aviation (GA) and small unmanned aircraft systems (UAS) cannot rely on

triply redundant systems due to cost and weight considerations. Furthermore, GA and UAS operations will not be cost-effective should a team of
two well-trained pilots be required to continuously supervise each flight, reducing pilot decision redundancy relative to commercial transport
operations. UAS will likely require autonomous safe emergency landing capability before large-scale integration into the National Airspace
System, particularly when operating over populated areas. GA andUAS applications, therefore, motivate further research in sensing, datamining,
and autonomy algorithms that reduce risks for scenarios requiring a forced or emergency landing.

Emergency landing is an important case in which aviation is forced to interact with the “nonaviation” world. If landing on a conventional
runway or helipad is not a feasible option, pilots must now choose a landing site based on what they can spot through the aircraft windows, prior
knowledge of the nearby terrain, and (at best) a hurried examination of charts. Current cockpit avionicsmay display the closest airport runways as
well as other visual navigation landmarks (e.g., radio towers and buildings) but do not propose off-airport landing sites. Emerging information
sources offer new opportunities to improve flight safety. For example, automatic dependent surveillance–broadcast (ADS-B) receivers are
currently available to provide local air traffic data in support of detect-and-avoid automation. Although ADS-B is a significant advance, aviation
need not remain insular with respect to data feeds. Current data storage and transmission technology opens a whole new world of information
sources that can be exploited in real time to improve aviation safety and to address new challenges unmanned aviation will introduce [1].

Emergency landing should take into account the fact that the risk to people on the ground is a function of dynamic day-to-day events as well as
phenomena captured in a static database. For example, an empty soccer field can be an excellent small UAS emergency landing area. However, a
school soccer field is likely to be populated during school hours and during an after-school practice or game. Time of day generally impacts risk as
a function of overflown region type. For example, districts with a high concentration of bars and nightclubs are expected to have high occupancy
on a Friday night but relatively low occupancy on a Monday morning.

Different data sources can be combined to maximally inform decision algorithms for emergency landing. Onboard sensors can provide real-
time information [2]. Such information, however, is restricted by sensor field of view, occlusion, and range constraints. Onboard databases can
provide an emergency landing planner information over a much larger reachable landing area [3]. Data link enables updated information to be
accessed in real time. Databases and data link can also be used to determine low-risk UAS flight paths or for UAS highway definition as proposed
by [4].

This paper proposes the Fig. 1 algorithm for exploiting onboard sensors, static database information, and real-time data link for emergency
landing. This approach augments the decision strategy and static data proposed in [3]with data link and a list of specific landing sites vetted during
preprocessing. In the case of an emergency, the onboard decision algorithm can fuse database and data-link information with locally acquired
sensor data to decide between landing locally based on onboard sensor feedback versus flying to a known landing site beyond immediate sensor
field of view but inside the reachable area or footprint, considering the aircraft’s remaining range estimate. Candidate landing sites can be stored
before flight in an onboard database with an associated risk model that may be augmented in real time with data-link information. Planning the
path to the lowest-risk landing site must also take into account and minimize risk exposure during the flight using overflown region information
from onboard databases with possible real-time data-link augmentation. Once the aircraft reaches the vicinity of the candidate landing site,
onboard sensors can again be used to assess local riskwhile an alternate landing sitemay also be considered for caseswhere the originally planned
site would introduce unexpectedly high risk. The limited amount of stored energy must be taken into consideration to ensure that the aircraft
eventually chooses to land rather than crashing en route once energy stores are fully depleted.

This paper investigates nontraditional data sources for emergency landing site selection and planning. In a previous publication, the authors
explored this idea through the incorporation of a road database to identify potential off-field emergency landing sites [5]. This work more
generally examines data sources that can be used to define candidate landing sites and improve risk estimates through data-link information
transmission. This work complements robotics and aerospace publications focused on real-time sensor data processing for local risk estimation
and planning; both are essential to safe autonomous emergency landing. Contributions of this work are focused on the two dashed bordered
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Fig. 1 Proposed decision logic for autonomous aircraft emergency landing. This paper exploits novel data link and database resources to define
minimum-risk landing sites and approach paths.
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modules of Fig. 1. The first contribution of the paper is to explore an emerging information source, the mobile phone activity database, for
occupancy estimation. This idea has received recent attention outside aerospace [6–9] but to date has not been applied to aviation.

The second contribution of the paper is to propose a method to explore geographic information system (GIS) databases to identify candidate
emergency landing sites and to evaluate their risks to people on the ground, property damage, and aircraft damage or loss. This paper takes full
advantage of open data to provide contextual information that provides amore informed risk assessment of candidate landing sites than in previous
work [1,3,10]. The proposed method allows consideration of temporal (time-of-day) influence on the computed risk of each landing site,
something recognized but not used in [3], and that has been addressed at only a basic level in [1]. Moreover, this paper proposes the use of mobile
phone data to estimate risk in the case of special events that increase the number of people in the vicinity of candidate emergency landing sites.

Third, this paper contributes the first fusion of mobile phone activity data with census data to provide a real-time estimate of risk posed to an
overflown population. Such risk can then be stored in a table or matrix format potentially updated before each flight for use by an onboard flight
planner [3,11]. Benefits and limitations of the examined databases and proposed risk evaluation strategy are analyzed and illustrated with a case
study over the Milan, Italy, metropolitan area, for which a mobile phone dataset is openly available.

This paper is organized as follows. Section II presents previous work in emergency flight planning and use of mobile phone activity for
occupancy estimation. Section III presents and analyzes theMilan, Italy,mobile phone activity database, whereas Sec. IV describes the population
census and map databases used in this work. Section V presents the methods applied for emergency landing site identification and real-time
occupancy estimate as well as flight path planning. Section VI presents a complete case study from data preprocessing steps through final
emergency flight planning. Sections VII and VIII offer a discussion and conclusion, respectively.

II. Related Work

A. Emergency Flight Planning

The keys to successful emergency management are “aviate, navigate, communicate”. Aviate translates to maintaining stable control of the
aircraft. Navigate translates to assessing the situation with respect to the current flight plan. If the situation indicates a near-term emergency
landing, a landing site must be selected, and a feasible flight plan to that site must be rapidly computed and executed. With data link, any aircraft
declaring an emergency will have top priority supporting an assumption that deconfliction with other air traffic is not required.

For fixed-wing airplanes, emergency landings on airport runways are the first choice if they are reachable based on aircraft location and the
nature of the emergency situation. Runway choice is usually performed using traditional aviation databases providing information such as runway
properties, airport facilities, andwind [12]. The risk associatedwith the planned flight to each landing site can also be incorporated into the landing
site decision [13].

If safe flight to a traditional runway is infeasible, an off-airport emergency landing site must be selected. One option proposed in particular for
rotorcraft is to identify and select a landing site using only onboard sensors. Vision systems can be used to simply identify flat surfaces that are
considered safe [14] or to make a more complex safe landing site decision based on a combination of texture and flatness [15]. Other researchers
proposed edge detection as a basis for candidate landing site identification [2]. Landing site identification from a point-cloud model that can be
generated from lidar sensors was also proposed [16].

The major disadvantage of using only sensors for landing site identification is their limited range and dependency on aircraft orientation [3].
The safest landing site can indeed be behind the aircraft, just beyond sensor range, or obscured by an obstacle. Although landing sites might be
identified over the course of several flights based on sensor data, several available nonaviation or “nontraditional” databases can also assist in
landing site selection. Table 1 presents an overview of nontraditional databases referenced in the aviation literature.

Several applications have been proposed for these databases. For example, Rackliffe et al. [1] combined different information sources in the
form of a GIS data to produce a raster (i.e., a cost matrix) that can be used for landing site identification, selection, and flight planning. Such a
matrix can be two-dimensional [11] or three-dimensional [3]. The case study presented in [5] relied only on databases to identify candidate landing
sites directly from the raw vector data and used some of the properties of road segments identified as landing site candidates for utility evaluation.
The algorithm proposed in [17] uses as landing site the point in the aircraft reachable areawithminimum total landing cost based on different data
such as population and land use information.

Another approach is to use databases as information sources for features not available from onboard sensors [2]. An integrated approach was
proposed in [10], where features are found using a combination of sensor and database information. In their work, databases were used as prior
knowledge in a maximum-likelihood classifier for terrain type.

During an emergency scenario, three risks are identified: endangering humans, property damage, and aircraft damage. ForUAS, risk to humans
only occurs when the UAS collides with a manned aircraft or crashes into a populated area. Previous work [10,11] has aimed tominimize risk at a
potential emergency landing area. Table 2 presents a summary of factors identified in related research.‡

Table 1 Nonaviation database sources used in previous work

Information type Reference Source

Digital elevation map [2,11] Shuttle Radar Topographic Mission
[3] U.S. Geological Survey, National Elevation Set

Man-made structures/buildings [3] New York City Primary Land Use Tax-Lot Output
[10] Ordinance Survey of Northern Ireland
[11] OpenStreetMap

Surface/terrain type [3] U.S. Geological Survey, National Land Cover Dataset
[10] Ordinance Survey of Northern Ireland
[11] OpenStreetMap

Roads [5] OpenStreetMap

Population [3] U.S. Census

‡Mejias et al. [2] did not specifically define how each feature is associated with each risk factor. Table 2 was constructed comparing these reference data sources
with other references that associate such data sources with a specific risk.
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Two observations are made regarding previous work to estimate risk to people on the ground. First, multiple researchers have relied on the
distance to man-made objects or buildings, a collision metric. A collisionmetric can translate to UAS accident risk but does not carry information
about the number of people potentially exposed to a UAS accident. Second, most risk metrics in previous work are static (constant) over time,
whereas the human occupation of an area can vary substantially over time. Rackliffe et al. [1] described how GIS information could be used to
provide a time-dependent risk estimate based on a binary safe/not-safe raster classification. For example, sports arenasmight be considered unsafe
during weekend events and safe during the regular week.

Once landing site candidates are identified, a flight plan to each site can be constructed. Landing sites can be prioritized before flight planning
[5,12] with subsequent focus on a single site, or sites can be prioritized with additional consideration of flight plan risks after the plan is computed
[3,11,13]. Flight planning can be based on database, sensor, or combined information. As in landing site selection, there is a tradeoff between
reliance on real-time information within the local field of view versus consideration of longer-range information, which can be outdated or
incomplete.

B. Mobile Phone Databases for Population Estimation

Mobile phones are one of the most successful innovations of the newmillennium. Their widespread usage and persistent network connectivity
provide a new way to monitor real-time area occupancy with minimal overhead. Studies that rely on mobile phone traffic datasets appeared in
2006, and their use is increasing at a rapid rate. An extensive survey of this new research area is presented in [6]. The authors organize the studies in
three main areas: social analysis, mobility analysis, and network analysis. Each has distinct subdivisions, ranging from epidemics to networking
solutions.

There are different strategies for data collection from a mobile network [6]. One of the simplest and most explored datasets generated from
mobile phones is call detail reports (CDRs).Mobile carriers generate one report each time amobile phonemakes a call or a transaction initially for
billing purposes. Those reports consist of the caller ID, recipient ID, call time, and duration. They also include information regarding the cell tower
used for the caller/recipient. This information can be processed to estimate the geographic position of the phone during the call. When multiple
towers are detectable from a mobile phone, positioning techniques such as observed time difference of arrival can also be used to improve cell
tower geolocation [18].

Once user locations are determined, it is possible to estimate the population density or occupancy based on aggregated mobile traffic.
Researchers have established connections between the underlying population distribution obtained from census estimates with
telecommunications data [19]. A recent study demonstrated that “presence” information (i.e., an estimate of the number of users in a certain space
based on their last interactionwith themobile network) can provide better correlationwith census data [7]. The same study also proposed amethod
to evaluate real-time population distribution and showed reasonable results, although ground truth was not available. One method to
independently evaluate real-time occupancy or presence was proposed using soccer match attendance and the number of flights arriving and
departing [8]. Soccer stadium resultswere reported better than airport results, although the authors did not determinewhether themodel developed
for one particular space such as the stadium is valid for other areas of the city. Amore detailed analysis of the effect of a soccer game on themobile
network was performed in [20]. Detecting events from unusual mobile phone activity was studied in [9]. The authors also evaluated the use of
Twitter feeds for event detection and identification. Bagrow et al. [21] offer a detailed study of the impact of events on network usage including
differences between planned and unexpected events.

Real-time occupancy is also related to human mobility. The survey of Naboulsi et al. [6] also includes work in this area. Isaacman et al. [22]
proposed a model of human mobility in a metropolitan region based on CDR and propose and evaluate the use of census data when a CDR
database is not available. Althoughwork to date has applied mobile traffic data to mobility studies [6], these results also support the use of mobile
phone activity data to estimate risk to the local population during an emergency aircraft landing. This paper proposes the fusion of mobile phone
activity with other data sources for overall risk assessment within an emergency landing flight planner.

III. Mobile Phone Activity Database

Although companies worldwide are collecting and processing large-scale mobile phone data for internal purposes, many of these databases are
not openly available due to data privacy and proprietary concerns. Cellular phone service providers are particularly sensitive to data sharing for
these reasons. Fortunately, companies sporadically open data sets to support research and education challenges (e.g., Orange’s Data for
Development and the Telecom Italia Mobile Big Data Challenge). The latter competition’s 2014 data became an open database in December
2014,§ providing a rich source of data analyzed to provide a mobile phone occupancy estimation metric for this paper.

A. Telecom Italia Mobile Big Data Challenge 2014 Database

The Telecom Italia Mobile (TIM) open database contains information for two Italian areas: the Milan metropolitan area and the Trentino
territory. In addition to cellular usage data, it contains time-stamped data such asweather, precipitation, air quality, socialmedia data, news, and, in
the case of Trentino territory, electrical current usage. This initial investigation of mobile phone data usage for aviation only considers
telecommunication activity datasets for the city of Milan collected over the months of November and December 2013.

Table 2 Risk estimation for emergency landing scenario used in previous work

Risk Reference Assessed using

People on ground [2,10] Distance to man-made objects
[3] Population density
[11] Distance to buildings

Property damage [2,10] Distance to man-made objects
[3] Distance to buildings
[11] Distance from power lines and transportation ways

Aircraft damage [2,3] Terrain slope and type
[10] Terrain type and roughness
[11] Terrain slope and roughness

§“Dandelion API— Open Big Data,” https://dandelion.eu/datamine/open-big-data [retrieved 12 December 2015].
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The TIM database is generated by aggregating data fromCDRs. Spatial and temporal aggregation combined with unit-of-measure blurring are

used for privacy and proprietary reasons [19]. Database entries are summarized next (see footnote §), including definitions of associated symbols.
1) Location: g, grid cell number. Data are provided for each of 10,000 square cells covering theMilan region. Each cell has size 235 × 235m.

Grid geographical locations are available in a separate database defining each square grid element by its four vertex or corner coordinates.
2)Time interval: t10m, a time stamp inUNIX timemarking the beginning of a 10min period overwhich the reported datawere collected. This

work assumes that t10m is already preprocessed to represent local Milan time in minutes, where t10m � 0 represents an interval starting at
midnight (0000 hrs), 1 November 2013.
3) Country code: c, country of origin for the phone receiving/sending the communication.
4) SMS-in:ϕ1, activity in terms of the received short message service (SMS) inside grid tile g during time interval t10m; data are sent from the

nation identified by country code c.
5) SMS-out: ϕ2, activity in terms of transmitted SMS, inside grid tile g, during time interval t10m and received by the nation identified by

country code c.
6)Call-in: ϕ3, activity in terms of received calls inside grid tile g, during time interval t10m, and issued from the nation identified by country

code c.
7) Call-out: ϕ4, activity in terms of issued calls inside grid tile g, during time interval t10m, and received by the nation identified by country

code c.
8) Internet: ϕ5, activity in terms of Internet traffic inside grid tile g, during time interval t10m, and by the nation of the users performing the

connection identified by country code c.
The original CDRs used to compute ϕi are generated every time a phone receives or sends an SMS (ϕ1 and ϕ2), every time a phone receives or

issues a call (ϕ3 and ϕ4), and every time a user starts or stops an Internet connection plus every time 15min or 5MB of usage occurs since the last

CDR (ϕ5) (see footnote §).

B. Mobile Phone Activity Data Analysis

After decompression, the first database processing step was to aggregate datasets over all country codes because CDR-based grid occupancy

estimates should not be biased by country of information origin, user origin, or destination. Aggregation represents the following computation:

ϕi�g; t10m� �
Xnc
c�1

ϕi�g; t10m; c� (1)

where nc is the total number of country codes in the database. To reduce data storage and transmission overhead, the database omitsϕi�g; t10m; c�
for each case where no data exchange was performed during one of the considered time periods. This may result in �g; t10m�, for which
ϕi�g; t10m; c� � 0; ∀ i ∈ f1; 2; 3; 4; 5g, being omitted from the data. The aggregation step inserts zero-value �g; t10m� lines as needed to fully

populate the data set. This processing step aggregates mobile activity data into a single data file with 1,440,000 lines of seven entries for each

24 h day.
Because numerical entries in the open database are blurred to address privacy and proprietary data concerns,¶ the only information available is

that the provided data respect trends (e.g., a higher SMS-in number indicates a higher number of received SMS). Moreover, although the scale of

SMS and calls are comparable, Internet access scales differently (see footnote §). To plot grid occupancy estimates from telecommunication

exchanges as a heat map, the maximum ϕimax
, minimum ϕimin

, and average ϕiavg value for each grid or field across the entire database were

computed and recorded. For example, ϕiavg is computed from

ϕiavg �
Png

g�1

Pnt
t10m�1 ϕi�g; t10m�
ngnt

(2)

where ng and nt are the total number of grid cells and time intervals, respectively. During processing, it was observed that the ϕi intervals are too

large to support linear interpolation between theminimum andmaximumvalue for each cell. Instead, a value of 40 times the overall average of the

fieldwas set as amaximum or saturation limit for both interpolation and clipping of outlier values.Mathematically, heat maps are created with the

following modified features �ϕi:

�ϕi�g; t10m� � min

�
ϕi�g; t10m�
40ϕiavg

; 1

�
(3)

This valuewas considered adequate to generate heatmaps for each �g; t10m� pair. Figure 2 presents a typical heatmap constructedwith database

feature call-out (ϕ4�g; t10m�) with 10min local time interval starting at 10:00 a.m. presented in the figure as an image overlaid with GoogleMaps.

This time shows intense activity commensurate with weekday business hours. The greatest intensities highlight downtown, Central Rail Station,

and Milan Linate Airport terminal. Note that the available database region is larger than that presented in Fig. 2, but in this section, results are

restricted to the depicted window to take full advantage of Google Maps labels.
The differences between Fig. 2 and both graphs shown in Fig. 3 reflect the differences between weekday, weekend, and night time periods on

the volume of mobile communication activities. This observation reveals the first limitation of using mobile phone data for occupancy

measurement. During the overnight hours, people reduce their phone use, but a significant fraction of these people remain in the city even if they

“disappear”with respect to theCDRs. Figure 4 shows the sumof SMSand call total grid activity at each time interval of the database. Thevariation

betweenweekdays andweekends is clear as well as variations within each day. Note that, forMilan, 1st November is a holiday and that Christmas

week has a significantly different pattern.
Even though activity levels diminish, night-time mobile activity combined with land use data has been used to estimate occupancy or

population using census data as a ground-truth comparison [19]. Khodabandelou et al. [7] proposed the use of mobile activity and census data to

provide a real-time population estimate. Amodel was established using overnight values and census data. Then, such amodel was also applied to

¶An aviation data providerwould be better able to negotiatewith cellular service providers to ensure that accurate (unblurred) data are representedwhile respecting
privacy and proprietary concerns.
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other times of the day. Instead of switching between exclusive use ofmobile phone activity or census data, ourwork proposes to fuse both datasets
to estimate grid occupancy.

Figure 5 illustrates one of the main benefits of the mobile activity database: its ability to estimate real-time grid occupancies that can
significantly differ from statistical (expected) values. On 22nd December 2013, a famous rivalry soccer match, Internazionale versusMilan, took
place.Network activity on this date is presented in Fig. 5.Regions of high activitywere noted just before, during the half-time interval (not shown),
and just after the game. During the game, however, the region does not light up significantly even though a huge concentration of people occupies
the stadium. Figure 6 presents the sum of SMS and call activities for the grid cell that represents the stadium plotted with respect to the time of the
day forweekdays. Each line corresponds to one day. This figure shows the pattern for SMSand call activities in different game days and in contrast
to other days. These results confirm the soccer match behavior observed in [20] for two games in Brazil as well as the gradual increase in activity
before the game, a characteristic of planned events as per [21].

Fig. 3 Low mobile phone activities related to weekend or late-night time intervals.

Fig. 2 Typical business-hour mobile phone activity: downtown (1), rail station (2), and airport terminal (3).
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High usage profiles would allow an aircraft planning an emergency landing to recognize and avoid this populated area despite a soccer field

normally holding promise as a relatively safe off-runway landing site.** The use of a “presence” term discussed in Sec. II.B couldmitigate the risk

of lowmobile phone activity periods being recognized as a low occupancy. Such data, however, are available only in the 2015 dataset, which is not

yet publically available.

The heat maps presented previously used call-out feature ϕ4. This option follows [19], which reports that the call-out feature gave the highest

correlationwith population data from traditional census databases. Figure 7 shows heatmap trends for othermobile activity features over the same

after-match time interval as call-out in Fig. 5. Note that SMS-in and SMS-out clearly also show higher activity around the stadium areas. Call-in

data are similar to call-out data and are thus not shown here. Internet activity, however, shows a significantly different map. In fact, Internet data is

not considered a good proxy for human activity due to Internet traffic generated by applications running in the background [7].

Fig. 6 Total mobile phone activity at San Siro cell on different weekdays.

Fig. 4 Total mobile phone SMS and Calls activity throughout the database time period.

Fig. 5 Call-out activities during a soccer match: a) before start, b) during, and c) after end.

**San Siro Stadium is partially covered, which poses additional constraints to an emergency landing, but it is used as a general example.
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C. Proposed Mobile Phone Activity Data Preprocessing

Although the use of “heat maps” gives good insight about the mobile phone activity database, a different preprocessing algorithm is proposed

for application to landing site risk evaluation and real-time estimation of overflown area occupancy for the flight planner.
First, mobile calls and SMS data are aggregated per the original 10 min report intervals, an approach also used by other researchers [9,23]:

ϕ�g; t10m� �
X4
i�1

ϕi�g; t10m� (4)

Next, this work performs different time aggregations using three time-related variables. First, the time interval of the day h10m is defined as

h10m � t10m mod 1440 (5)

Note that there are 144 ten minute intervals in a day. Second, date d is defined for each day, which covers 144 particular values of t10m. Third,
days of theweekD ∈ fDweekday; Dsaturday; Dsundayg are defined as per Fig. 4. EachD can be interpreted as a set of particular values of d. The “other
days” values are not used because theywould correspond to holidays, during whichmobile phone activity is anomalous (see Fig. 4) relative to the

other three groups.
The median of aggregated SMS and call activity is computed for each cell, each day of the weekD, and each interval of the day h10m using an

approach similar to the method from [9]:

Φ�g;D; h10m� � median
t10m∈D;t10m mod 1440�h10m

�ϕ�g; t10m�� (6)

Two other parameters are computed for real-time occupancy estimation. First, the total activity on the grid is computed as illustrated in Fig. 4:

ϕgrid�t10m� �
Xng
g�1

ϕ�g; t10m� (7)

Note that total activity can also be computed from median values:

Φgrid�D; h10m� �
Xng
g�1

Φ�g; h10m; D� (8)

The total activity figure is used to normalize the activities in each cell at a given time t:

ϕ̂�g; t10m� �
ϕ�g; t10m�
ϕgrid�t10m�

(9)

The median values for each day of the week and hour of the day can also be normalized:

Φ̂�g;D; h10m� �
Φ�g;D; h10m�
Φgrid�D; h10m�

(10)

Second, the median of the maximum total activity on each day for every day of the week is computed:

Θ�D� � median
t10m∈D

�
max
t10m∈d

�ϕgrid�t��
�

(11)

Fig. 7 Activity in terms of different features just after a soccer match.
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This work uses median values instead of simple means. The median is also a measure of central tendency, but it is very insensitive to the
presence of outliers [24]. Examples of data outliers are the high values during specific events such as soccer games illustrated in Fig. 6.

IV. Other Databases

This work fuses data from mobile phone activity with census data to estimate occupancy. Although similar databases have been used for
nonaviation applications in previous work (see Sec. II.B), this paper proposes a novel fusion strategy as well as a new use case: estimation of the
risk posed to people and property on the ground during a manned or unmanned aircraft emergency landing scenario.

A. Italy Census Data

The Italy 2011 Population and Housing Census (“Censimento della popolazione e delle abitazioni”) is publicly available††,‡‡ with data
aggregated into different geographic categories. Thiswork uses themost detailed divisions, “sezione di censimento”, which approximately follow
city blocks. This results in a nonuniform grid representation of the data. This work uses one of the available census parameters: “resident
population — total”.

Data are available for each administrative region of Italy. Preprocessing begins by downloading census table results and census geographic
divisions. This paper considers census datawithin a boundary around theMilan areawheremobile phone data are also available. The census grid is
clipped to the zone of interest, and data from census results are incorporated into the appropriate census data cells. For illustration, population
density was computed from each census grid’s population divided by the grid’s area. Results are presented in Fig. 8, where downtown Milan is
marked by a star. Note that there are different areaswith low population density close to downtown.Although some areas represent parks and open
areas, other regions represent business zones.

Census and mobile phone information must be provided with respect to a common geographic grid to facilitate their use in emergency flight
planning. This work uses the mobile phone grid as the common geographic grid. Therefore, census data are converted to the mobile phone grid.§§

For this transformation, each mobile phone grid cell is assigned the fraction of the population given by the census based on the fraction of the
overlapping area of both grid cells. This is the same approach used in [19]. The result is a census-based population value for each cell, λcensus�g�.
The final preprocessing step is to normalize the population or occupancy values:

λ̂census�g� �
λcensus�g�Png
g�1 λcensus�g�

(12)

The normalized grid occupancy values then sum to 1.

B. OpenStreetMap

OpenStreetMap is an openly available database that contains information such as roads, buildings, and businesses. Although substantial data
from government sources are currently available [1], the open database information surpasses “official” sources in several ways. For example, this
paper evaluates the city of Milan, characterized in official open data ¶¶ and the Copernicus Earth Observation data.*** The first official source

Fig. 8 Population density for the central Milan region. The star marks downtown.

††“Linked Open Data,” Instituto Nazionale di Statistica, Italy, http://datiopen.istat.it/dat/dataset/partizioniterritorialisubcomunali/Lombardia_Sezioni
Censimento.zip [retrieved 20 June 2016].

‡‡Data available online at http://www.istat.it/storage/cartografia/basi_territoriali/WGS_84_UTM/2011/R03_11_WGS84.zip [retrieved 20 June 2016].
§§All GIS processing used in this work was performed with QGIS and additional plug-ins. QGIS is a standard and open-source GIS software.
¶¶“Open Data del Comune Milano,” Comune di Milano, Italy, http://dati.comune.milano.it [retrieved 20 June 2016].
***“Copernicus— The European Earth Observation Programme,” Copernicus Program, http://land.copernicus.eu [retrieved 20 June 2016].
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provides different city data sets including, for example, school locations. Such locations are represented as points, whereas OpenStreetMap
provides an outline of each building that appears to compare well with sample satellite photos. Copernicus includes CORINE Land Cover 2012,
butOpenStreetMap has considerablymore detail. OpenStreetMap vector fields can receivemore than 900 labels. One shape can receivemore than
one label, such as a park that also has a fence. Shapes can overlap each other (e.g., a tree, represented by a node, can be inside a polygon that defines
a park). Information regarding one region can be downloaded and filtered for interesting labels. Therefore, it is possible for example to build a
database of all soccer fields in Milan.

V. Data Integration into Emergency Landing Planning

A. Emergency Landing Site Identification

Researchers have studied emergency landing site selection in previous work. One approach first identifies edge-free regions in real-time image
data as possible landing sites and matches the results with map data [2,10]. Candidate landing areas are then evaluated for risk, and the best one is
selected. A similar approach using lidar point-cloud data was proposed to optimize UAS landing site during a tracking mission [16]. An alternate
database-centric approach follows the architecture for GIS data use proposed by [1], using a matrix or cell grid with associated cost to represent
possible landing areas. The selected landing area may be a single cell [3] or a group of adjacent cells selected using a kernel [11].

This paper proposes the identification of candidate landing sites using database information only. A database-only strategy is required when
visible areas are unsafe or the aircraft/UAS does not carry sensors capable of characterizing local area safety. Instead of computing a risk
associated with each element in a grid [1], we propose infusion of GIS data in vector form. A candidate landing site can then be identified in an
initial search for safe touchdown area; then, the risk to people on the ground, property damage, and aircraft damage can be factored into decision-
making later. This approach is similar to that used by researchers relying on real-time sensor data. Selecting a landing site from vector data
maintains all available information that can be used for subsequent risk computation. It also allows incorporation of real-time data from mobile
phones if a data link is available.

Figure 9 presents the proposed data aggregation strategy separated into offline and online parts. The first offline preprocessing step is to identify
data attributes indicating an area suitable for landing versus hazards to avoid. For example, land covered by crops is generally considered suitable
for emergency landing, whereas electricity power lines are hazardous. Both information sets are extracted from the database. Hazardous elements
are then grown in area to provide a safety margin. This work uses a fixed value for the applied area buffer, but this value could depend on type of
hazard and height of buildings for example. The next step is to compare suitable and hazardous sites to eliminate any overlap between both. That
can result in new subelements, for example, if a large crop area is traversed by a power line.

A large number of candidate landing sites can result from this process, only some of which are actually suitable for landing. Unsuitable
examples include areas that are excessively small or narrow or that contain significant “gaps” that can represent obstacles. An automatic process to
reliably eliminate such unsuitable areas maps is to restrict suitable areas to those that safely contain a circle or a rectangle of a specified minimum
size. The associatedmathematics is still an active research area, especially for nonconvex polygons with holes (e.g.,Molano et al. [25]). Our work
applies a simplified approach inspired by [10] and illustrated in Fig. 10.

The procedure starts from candidate landing site areas represented in Fig. 10a by the regions inside the two boundary lines. First, candidate
landing areas are reduced using a buffer of negative distance. This distance corresponds to the radius of the minimum circular area acceptable as a
landing site. This value is related to the size and landing dynamics of the particular aircraft. Fixed-wing aircraft, for example, would require a
larger margin than a vertical-takeoff-and-landing aircraft. Particular failure cases might call for increased landing zone areas. This procedure
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Fig. 9 Landing site selection from database fusion.
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eliminates small landing areas and may divide one landing area into more than one region as illustrated in Fig. 10b. A “pseudocentroid” of each
safe landing area is then computed restricting it to bewithin the contracted area boundary as required to ensure that it offers a sufficient, safe area.
Figure 10c marks these pseudocentroids with stars. By construction, this point represents the center of a geographically suitable landing site with
minimum size of a circle of radius equal to the applied buffer (depicted by a circle in Fig. 10c). Note that this process is conservative (i.e., the
returned areas guarantee thatminimum-area constraints are satisfied). However, it is not “optimal”. For example, one regionmight support several
different circular landing areas, but only one will be returned by the algorithm. Moreover, candidate areas may have a larger simply connected
region in a location different from the one returned.

Although this work considered only automatic selection and classification of landing sites, an offline landing site identification process could
benefit from human supervision and information fusion with other data sources. Although the number of possible landing sites can be large,
human supervisionmay be necessary to build the required confidence in the data source and algorithm to accept automatic classification.Note that
suitable landing sites do not need to be determined for each flight and UAS. A candidate landing site can be defined for a maximum UAS size or
type for example. Regardless of how suitable sites are identified, the resulting areas can be considered candidate emergency landing sites.

For thiswork, all information contained in theGIS database for the landing area remains available even after landing site identification. For each
suitable label/area, an emergency landing risk model is then constructed with three types of time-varying risk: risk to people (humans) on the
ground (Rh), risk to property on the ground (Rp), and risk to the vehicle (Rv).

††† The landing site risk model includes additionally a parameter
describing landing area risk Ra. The total risk Rls associated with each candidate landing site ls is given by a weighted sum:

Rls�g; t� � �Wh Wp Wv Wa �

2
664
Rh�g; t�
Rp�g; t�
Rv�g; t�
Ra�g�

3
775 (13)

The final step of landing site database preprocessing is to connect the candidate landing site positions to the grid used for flight-path planning.
This is done by associating each candidate landing area center to a cell of the path planner grid. Note that, because of the varying resolution of
different datasets, one grid cell may have more than one candidate landing site, and so this study uses the simple approach of selecting the site in
each grid with lowest total risk Rls. The final output of landing site preprocessing is a set of candidate landing sites and associated risks:

Gls�t� � f�gj; Rj�gj; t��jj � f1; 2; : : : ; nlsgg (14)

where nls is the total number of candidate landing sites. Before a flight, the UASwill be loadedwith the candidate landing sites around its planned
flight route. In the case of an in-flight emergency, the flight planner will use setGls and the time t to estimate the risk associated with each landing
site classified as suitable based on GIS information. Planned events that are expected to attract an unusual occupancy concentration (e.g., a soccer
match) can be loaded into the vehicle and used to increase the level of risk to people on the ground, although no specific event data interface is
examined in this work.

Mobile phone activity discussed earlier can provide a means of estimating occupancy to supplement expected trends and scheduled event data.
A cloud-based real-time system can monitor mobile phone activity and compare incoming data with historical trends. If an anomaly is observed,
specific information can be sent to the aircraft via data link,‡‡‡ and landing site risk can be reevaluated. Occupation anomalies (updates) can be
found from a median model [9] for each landing site in cell g given the current �D; h10m�:

ϕ�g; t10m� > �1� k�Φ�g;D; h10m�; t10m ∈ D; t10m mod 1440 � h10m ⇒ Anomaly � true (15)

An anomaly is detected every time the activity in one cell is greater than a factor �1� k� from the median. Higher values of k require a greater
amount of cell phone activity to be classified an anomaly,which increases the recall butmay decrease precision [26].Note that, because themobile
phone database offers data at 10 min intervals, the risk at each landing site is also updated at 10 min intervals. In addition, note that, distinct from
[9], ourwork does not apply a separate threshold to select large events only. Thiswork is instead interested in events that affect prior risk values due
to people on the ground. Even if such events are small in terms ofmobile phone activity, they can change the risk of a landing area.Moreover, in the
case of planned events, an anomaly would only be only reported if the mobile phone activity indicates more than the expected number of people.

B. Real-Time Occupancy Estimate

Census data provide information about where people live (i.e., where they usually sleep) but not where people travel during the day. Mobile
phone activity can indicate where people are, but the level of activity varies significantly depending on the time of day. The ideal scenario for

c)b)a)
Fig. 10 Process of eliminating unsuitable landing sites.

†††This work assumes that an aircraft has declared an emergency and is in contact with air traffic control, and so no collision risk is modeled, given that the
distressed aircraft has priority handling.

‡‡‡Such data link might also be made available through a mobile phone network.
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occupancy estimation would be for every person to conduct exactly one mobile phone transaction during each time interval. In this case,
occupancy would be directly proportional to mobile phone activity. In reality, not every person is using the phone; some are conducting many
transactions per time interval, and data may not be available from all cellular service providers. Note that a presence data feature can provide a
reasonable occupancy estimate so long as presence data are available across all carriers.

Independent of these challenges, it is reasonable to assume the accuracy of an occupancy measure from mobile phone activity increases with
increased phone activity. This paper therefore proposes to combine normalized mobile phone aggregated SMS and call activity ϕ̂ and census
occupancy λ̂census to compute an occupancy estimate λrt�g; t10m� for each grid cell g and time t:

rλ � min

�
ϕgrid�t10m�

Θ�D� ; 1

�
; t10m ∈ D (16)

λrt�g; t10m� � �1 − rλ�λ̂census�g� � rλϕ̂�g; t10m� (17)

Here, rλ represents how the total activity on the grid compares to the usual maximum for that day of the week. Note that Eq. (16) simply
distributes the weight given to the census and mobile phone estimates. Moreover, total grid occupancy is always normalized to 1, consistent with
an assumption that the population inside the overall grid is constant.

Although Eq. (16) uses real-time mobile phone data, it can be approximated using the historical median if ϕgrid�t10m� is substituted by
Φgrid�D; h10m� and ϕ̂�g; t10m� is substituted by Φ̂�D; h10m� with t10m ∈ D and h10m � t10m�mod1440�. With this procedure, aircraft without
data link are able to use information stored before a flight in onboard databases.

C. Data Use in Emergency Path Planning

The candidate landing site, its risks, and occupancy data can be used by a flight planner to compute an emergency landing path or trajectory.
Avariety of motion planning algorithms has been proposed for UAS. A 2009 survey of motion planners applicable to UAS is presented in [27].
Examples ofmore-recentmotion planners includeRRT-AR� [28], fast-marching squared [29], semi-Lagrangian schemes [30], and fast-marching
trees [31]. Although these newer methods may be considered more suitable for continuous configuration spaces and may be able to handle
differential constraints, this paper makes use of conventional A� algorithm to illustrate the use of the candidate landing site risk assessment and
occupancy estimates proposed in this article. This information can be similarly employed for different motion planners by considering occupancy
estimates and landing site risks in motion planner cost functions.

Consider an application of occupancy data to a two-dimensional path planning algorithm applicable to a small UAS transiting over a city.
A conventionalA� algorithm is applied, and the search space corresponds to themobile phone grid. This search space is increased with additional
states associatedwith each landing site (i.e., there are two possible states associatedwith each grid cellg containing a candidate landing site: flying
or landed). Goal nodes correspond to landing states of each grid position with a candidate landing site. This work assumes that the small UAS is
flying at a constant altitude above buildings, and thus no obstacles are considered.

The A� search graph assumes that the aircraft (small UAS) can only move to eight adjacent cells (north, northeast, east, southeast, south,
southwest, west, or northwest), or the aircraft can land if it is over a candidate landing site grid. Actual transition cost from cell g to cell g 0 when
selecting action a is given by

C�g; a; g 0� �

8>>>>><
>>>>>:

w
h
1
2
λrt�g; t10m� � 1

2
λrt�g 0; t10m� � λ0

i
a ∈ fN;E; S;Wg

���
2

p
w
h
1
2
λrt�g; t10m� � 1

2
λrt�g 0; t10m� � λ0

i
a ∈ fNE; SE; SW;NWg

Rls�g; t� a ∈ fLandg; g ∈ Gls

(18)

In the case of routine transit to an adjacent flight grid, the cost of action a is equal to the product of a weight w and the sum of real-time
occupancy of both traversed cells g and g 0 and a transition cost λ0. Note that, in the case of diagonal movement, the cost is scaled proportionally to
the increase in flight distance relative to a nondiagonal transit. Weight w can be set to adjust prioritization of overflight versus landing risk. For
transitions to a landing state, the cost is equal to the landing site risk Rls�g; t�.

The A� search node heuristic value is computed assuming that real-time occupancy is zero for all cells, then using the minimum-cost value
computed over all candidate landing sites. The heuristic considers a feasible flight path given the search grid structure and available actions.
Specifically, it assumes that the aircraft moves in a diagonal line until reaching the same row or column of the landing site and then proceeds in a
nondiagonal path to the landing site:

dj�g; gj� �
����drows�g; gj�–dcols�g; gj�

���� (19)

h�g� � min
gj∈Gls

�
wλ0

�
dj �

���
2

p ����drows�g; gj� − dj�g; gj�
����
�
� Rls�gj; t�

	
(20)

In the preceding expression, drows�g; gj� and dcols�g; gj� are the number of cells in the column and row directions between the current cell and a
candidate landing site cell, respectively. This heuristic is consistent and thus assures optimality of each A� graph search.

VI. Case Study

A. Emergency Landing Site Identification

OpenStreetMap labels presented in the Milan data set were investigated for landing site suitability. Following basic pilot knowledge, the
suitable landing site search goal is to identify open spaces with few obstacles. The resulting labels are collected into groups that pose similar risks
during an emergency landing. Results of this investigation are presented in Table 3. This table illustrates the information currently available from
OpenStreetMap.

Map labels selected in Table 3 do not include all that could be suitable for an emergency landing. Two main simplifications were used. First,
only “polygons” or “multipolygons” were used in this work as suitable landing areas. Smaller rivers, for example, are mapped as lines with
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information about cell width. Use of these regions would require additional preprocessing to compute the landing area and thus is left for future

work. The same applies to any kind of traffic element such as roads or rails, which were considered as obstacles and not potential landing sites.

Second, any airfield or helipad area is not considered in this work as a landing site candidate, although grass areas close to runways were

automatically included by the proposedmethod. Note that some areasmay have two labels overlapping; in this case one unique label for each area

is selected.
Even though the labels in Table 3 represent areas generally free of obstacles, certain obstructions may still be present. Power lines, for example,

can traverse open fields, and a sports ground can be coveredwith a partial or full roof. Table 4 presentsmap labels used to identify things that could

be hazardous for a landing. In this case, any map element type is used, including points and lines. Highways and railways were included because

they can overlay farm, parks, and sports ground. Although not exactly an obstacle, the presence of a path or a track (both mapped under the

highway tag) may increase the chance of nonmapped small obstacles such as light poles and fences. Using highways as emergency landing sites

was considered in different work [5].
Figure 11 presents the hazard layer considered at a small part of the interest region west of downtown Milan. A 10 m buffer is applied to all

hazards. The identified landing sites in the same region are presented in Fig. 12. Different map labels are presented in different colors, and the

result of a 30mnegative buffer is visible by the darker areas. Each computed centroid ismarkedwith a star. Figure 12 also shows themobile phone

database grid that is used for path planning. Note that one grid cell may offer more than one landing site due to granularity differences between the

different databases.
An example risk model based on landing site groups and time of day is presented in Table 5. Characteristics of each landing site group are

combined with UAS properties and landing requirements to classify UAS landing risk at different times of the day. For example “sports grounds”

Table 4 Selected and grouped OpenStreetMap labels classified as hazardous for emergency landing

Key Value Description

Building All Cells containing individual buildings or groups of connected buildings

Power All but cable Electrical power generation and distributions systems; value “cable” is used in the database to
describe underground or underwater cables; overground lines are represented by the value “lines”

Man-made All Man-made (artificial) structures that are added to the landscape

Highway All but tunnel Road, street, or path

Railway All but tunnel Railways, including mainline services, subways, heritage lines, and trams

Natural Tree Lone or clusters of trees
Tree row Line of trees
Rock A notable rock or group of rocks
Stone Freestanding stone (e.g., glacial erratic)

Table 3 Selected and grouped OpenStreetMap labels classified as suitable for emergency landing

Key Value Description

Group 1: Parking lot

Amenity Parking Car parking lot

Group 2: Grass

Land use Grass Areas covered with grass
Land use Village green An open green space for general recreation; may include pitch, nets, and so on; usually municipal but possibly also private

colleges or companies
Land use Recreation ground An area of common land, usually grass, in the center of a village

Group 3: Greenfield

Land use Greenfield Land scheduled for new development where were previously no buildings; represents a greenfield scheduled to become a
construction site

Group 4: Brownfield

Land use Brownfield Land scheduled for newdevelopmentwhere old buildings have been demolished and cleared; a brownfield that is scheduled
to turn into a construction site

Group 5: Meadow

Natural Meadow An area of land primarily vegetated by grass and other nonwoody plants, usually mowed for hay
Natural Grassland Land where vegetation is dominated by grasses and other herbaceous (nonwoody) plants, except for ornamental grass,

mowing for hay, etc.
Natural Heath Bare lower-lying uncultivated land with bushes but little or no tree cover
Leisure Garden Location where flowers and other plants are grown in a decorative and structured manner or for scientific purposes

Group 6: Sports ground

Leisure Pitch A field for playing football/soccer, cricket, baseball-style sports, and skate parks
Leisure Golf course Land hosting a golf course
Leisure Stadium A major sports arena with substantial tiered seating
Leisure Track Running, cycle-racing, greyhound, horses, etc.

Group 7: Water

Natural Water Lakes, etc.
Waterway Riverbank Designation of larger rivers and waterways; can define an area between opposite riverbanks

Group 8: Farmland

Land use Farmland An area of farmland used for tillage and pasture (animals, crops, vegetables, flowers, fruit growing)
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are more often occupied by people at night but do not often contain valuable property and do not pose a significant risk to the vehicle. Landing on
“water” reduces the chances of harm to people and property on the ground, but a water landing is likely to damage most contemporary UAS. Risk
values are abstracted to scales of low, medium, and high for illustration. A careful discussion with stakeholders would be required to establish
acceptable risk levels. When a significant event increasing occupancy is detected, the risk to a human on the ground is elevated one level. For this
case study, the following risk levels were defined:

Risk � fLow;Medium;Highg � f0; 0.5; 1g (21)

The reduced area after the application of the negative buffer illustrated in Fig. 9 is used as ameasurement of the risk associated with the landing
area Ra. These reduced areas were computed for all identified landing sites, and 20, 40, 60, and 80% quantiles were determined. For each
candidate landing site then, Ra ∈ f0; 0.25; 0.5; 0.75; 1.0g in an inverse relation to the quantile of its reduced area (i.e., large landing areas
corresponds to lower Ra values).

In this case study, the landing site final risk is computed using a uniform distribution of weights:

Wp � Wh � Wv � Wa � 0.25 (22)

Fig. 12 Candidate landing site areas. Colors indicate groups from Table 3.

Fig. 11 Hazard map features with a buffer of 10 m.
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For event detection, this case study uses k � 1 (i.e., an event is detected if the mobile activity in a grid cell is greater than twice the median for

that cell and time of day). Figure 13 presents the histogram of computed risk of candidate landing sites for 4th December 2013 at 08:30 p.m.

Because of risk model characteristics, risk values are distributed in a discrete set (i.e., all landing sites represented by each bar in Fig. 13 have the

exact same risk). Note the significant concentration of landing sites with intermediate risk values.

Figure 14 presents the cells that contain candidate landing sites overlaying theMilanmap. There is a clear contrast between downtown and city

outskirts in the number of identified landing sites. The black rectangle represents approximately the area presented in Figs. 11 and 12. The

connection between candidate landing site position and their assigned grid cell can be observed when comparing the star distribution and grid in

Fig. 12 to highlighted cells in Fig. 14.

Cells in Fig. 14 are colored based on computed landing risk for the same day and hour of Fig. 13. Higher risk cells are colored dark red.

Candidate landing sites are divided between selected colors based on its quantile. Candidate landing site whose computed risk was affected by an

event detected bymobile phone activity are presented in Fig. 14 by the lack of a black border around the cell. The diamond in the same figuremark

the position of San Siro Stadium and the selected date and time corresponds to a soccer game. Note that an event was detected in the cells close to

the stadium as expected.

B. Flight Planning

This case study uses a path cost λ0 � 5.10−5 (i.e., half of the occupancy value if it was uniformly distributed over the grid). Weightw is used to

balance the importance given to landing site risk and path risk. Moreover, it allows for different scales to be used by both risk measurements.

Landing site risk goes from0 to 1,whereas the transition risk based on occupancy has an order ofmagnitude 10−3. A lowvalue ofw results inmore

importance given to the landing site risk. Resulting paths would always go to the closest candidate landing site from the group with the minimum

value of landing risk (see Fig. 13). A high value ofw results in paths that mostly go to the closest candidate landing site independent of its landing

risk. This case study uses a value ofw � 50, resulting in balance and different results during the course of aweekday. Different values ofwwould

Fig. 13 Histogram of computed landing site risk on 4th December 2013, 08:30 p.m.

Table 5 Landing risk values for landing site groups

Group Description Time of day Risk to Humans Rh Property Rp Vehicle Rv

1 Parking lot Off-hours Medium Medium Medium
Business hours Medium High High

2 Grass Night (any) Low Low Low
Off-hours High Low Low

Business hours Medium Low Low

3 Greenfield Any Low Low Low

4 Brownfield Any Low Low Low

5 Meadow Night Low Low Medium
Off-business Medium Low Medium
Business Medium Low Medium

6 Sports ground Night Medium Low Low
Off-business High Low Low
Business High Low Low

7 Water Any Low Low High

8 Farm Any Low Low Medium
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be suitable for different failuremodes. For example, a low-energy scenario requires a near-term landing, and sow should be high,whereas awing-
flap failure for a fixed-wing UAS should adopt a small value of w because flaps are most critical for landing.

Figures 15 and 16 illustrate path planning solutions for different hours of a Friday morning. Note that these figures only present a part of the
downtown area included by Fig. 14. Paths are presented over a grid colored in accordancewith estimated real-time occupancy. Colors are divided
based in quantiles, and so the thresholds of each figure can vary. Nevertheless, the two figures show that the occupancy estimation method
produces logical results. People are expected to be at home early morning, and occupancy follows census data. During business hours, there is
increased occupancy in downtown, estimated primarily from mobile phone activity.

The initial state of the small UAS is indicated by a triangle. It is selected to be in a downtown region far from any candidate landing site. The
chosen landing site in each solution is indicated by a circle in each figure, whereas the selected emergency flight path is represented by a solid line.
For both cases, a “direct” path from the initial state to landing site is included for comparison. The direct path respects the search grid pattern as
given in the Eq. (20) heuristic.

During the early morning (Fig. 15), there are few people in downtown, and so the risk-optimal path is to transit over the downtown region and
land on the large brownfield that appears in Fig. 12.Note that landing site cost indicated in the figure legend is zero due to the low risk of the chosen
site and our choice of risk parameters in Sec. VI.A. The computed best path avoids overflying the areas with higher risk as expected. Figure 17
shows the same paths as Fig. 15, but instead of estimated occupancy, the underlined cells represent candidate landing sites as per Fig. 14.Note that
the small UAS flies close to multiple candidate landing sites but selects the one with a lower risk.

After the business hours begin, downtown has high occupancy, and so the planner returns a path that exits downtown to the south and lands in a
farm field (Fig. 16), which represents a higher landing risk than a brownfield but a lower overall path cost. These results illustrate the tradeoff
performed by the flight planner in overflight versus landing risk as well as the solution differences that might occur over a normal weekday.

VII. Discussion

Thiswork builds a landing flight plan based on occupancy observed to vary over time of day. Several improvements are possible in futurework.
First, other data such as terrain slope and building heights should be integrated for landing site selection and flight planning, respectively.
Obstacles or no-fly areas must also be taken into account by the flight planner. Second, sensor–database fusion is critical for the final landing
approach per themodel presented in Fig. 1. Third, for a real application, the different risk assessments made throughout the paper must be tailored
for a particular UAS and its failure modes.

Additional research is required to verify and improve the proposed occupancy model and associated cost metrics proposed in this paper. As
discussed in Sec. II.B, a variety of sensors and data processing methods could be used to further improve occupancy information from mobile
phone reports. These methods provide different space and time resolution as well as accuracy. This paper uses mobile-phone activity in a manner
that can characterize higher-than-usual occupancy without precisely defining the number of people or their location within a grid. Such data
would, therefore, need to be supplemented with onboard sensor data on approach to landing. On the other hand, occupancy grids used for flight
planning do not require high precision, and so mobile phone activity combined with census estimates will likely be adequate for use in
autonomous flight planning applications. Note that, although cell phone data can be sensitive and proprietary, there is at least one company in the
United States whose main business is to provide occupancy estimates based on mobile phone data provided by different carriers [32].

Fig. 14 Cells with candidate landing site areas colored according to risk.
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Fig. 15 Occupancy map and planned emergency landing path: 8th November 2013, 6:00 a.m.

Fig. 16 Occupancy map and planned emergency landing path: 8th November 2013, 9:00 a.m.
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A two-dimensional flight planner was considered in this paper because the focus was the inclusion of risk to people on the ground as an small
UAS overflies a region at constant altitude.With the extension to three dimensions, height abovegroundmight also scale risk to people on ground.
As discussed in Sec. V.C, more-advanced motions planners can be employed to provide lower-cost paths over a continuous state space that
considers differential constraints. Furthermore, the flight planner proposed in this paper is static (i.e., a flight plan is determined based on an initial
occupancy estimate and then executed to completion). A small UASwith a cruise speed of 50mph can cross one grid cell in approximately 10.5 s,
whereas mobile data used in this work are updated in 10 min intervals. This would allow the small UAS to cross 57 cells before new data are
available, supporting the single-plan generation strategy in this work. However, path planning could also use historical or recent dynamics in
mobile phone data to improve future occupancy predictions. Updates to flight plans based on unexpected occupancy changes can also be made.

Finally, although this paper is focused on emergency landing, detect-and-avoid is also a critical challenge for large-scale UAS deployment in
urban areas. A data link can significantly simplify this challenge through direct high-speed communication and coordination across all traffic.
Data link also offers emergency flight planners the ability to take into account other traffic to minimize the impact of the emergency path on other
UAS along with rapidly alerting other UAS of the emergency and associated landing plan.

VIII. Conclusions

This paper proposes the infusion of new data sources to guide an emergency landing planner to overfly regions and land at sites with low risk to
property, people on the ground, and the aircraft itself. The proposedmethod extracts candidate landing sites from a geographic information system
database, taking advantage of ground usage information to estimate landing risk, dependent on the time of the day. Publicly available mobile
phone data are combinedwith census data to provide real-time occupancy estimates. Landing site risk based on land use is combined withmobile
phone data to assess the overall risk posed by the aircraft to people on the ground. A flight planning case study in the Milan, Italy, region is
presented that considers both landing site risk and overflight risk computed from occupancy estimates.
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