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Abstract 
Coordinating the motions of multiple robots operating in 

a shared workspace without collisions is an important ca- 
pability. We address the task of coordinating the motions of 
multiple robots when their trajectories (defned by both the 
path and velocity along the path) are specijied. This prob- 
lem of collision-pee trajectory coordination arises in weld- 
ing and painting workcells in the automotive industry. We 
identify suficient and necessary conditions for collision-free 
coordination of the robots when only the robot start times 
can be varied, and defne corresponding optimization prob- 
lems. We develop mixed integer programming formulations 
of these problems to automatically generate minimum time 
solutions. This method is applicable to both mobile robots 
and articulated arms, and places no restrictions on the num- 
ber of degrees offeedom of the robots. The primary advan- 
tage of this method is its ability to coordinate the motions of 
several robots, with as many as 20 robots being considered. 
We show that, even when the robot trajectories are specijied, 
minimum time coordination of multiple robots is NP-hard. 

1 Introduction 
Coordinating the motions of multiple robots without col- 

lisions as they perform a task in a shared workspace is an 
important capability. We focus on coordinating the motions 
of multiple robots constrained to follow specified trajecto- 
ries. By trajectory, we mean both the geometric specifica- 
tion of the path and the velocity at which the robot traverses 
the path. We outline this trajectory coordination problem 
and define corresponding optimization problems where the 
goal is to find the minimum-time collision-free robot coor- 
dinations when only the robot start times can be changed. 

There are a number of applications in which this trajectory 
coordination task is the exact problem to be solved. Con- 
sider scheduling the motions of multiple robots in a welding, 
spray painting, or assembly workcell to minimize the cycle 
time. Since the robots have overlapping workspaces, we 
must coordinate their motions to avoid collisions between 
robots. We assume that the given trajectory of each indi- 
vidual robot should not be modified since it may take into 
account collisions with stationary obstacles, have a desired 
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velocity profile, or have desired wait times at critical points. 
Alternative approaches to minimizing the completion time, 
such as velocity tuning of the robots, may be inappropriate; 
for example, a painting robot must follow a given trajectory 
to spray paint uniformly. 

We identify sufficient and necessary conditions for 
collision-free coordination of multiple robots and formulate 
the task as an optimization problem using a mixed integer 
programming formulation that can be solved using commer- 
cial solvers. We use collision detection software to iden- 
tify potential collision conditions. The primary advantage of 
this method is its ability to handle many robots, each with 
several degrees of freedom. We place no restrictions on the 
number of degrees of freedom of the robots. This approach 
also applies to mobile robots and Automated Guided Vehi- 
cles (AGVs) moving along fixed paths with specified trajec- 
tories, and can also incorporate the motions of manipulator 
arms on mobile robots. 

The paper is organized as follows. Section 2 briefly dis- 
cusses related work. Section 3 defines the problem, formu- 
lates a set of optimization problems, and describes sufficient 
conditions for collision-free motion of multiple robots. Sec- 
tion 4 presents a mixed integer programming formulation 
for coordinating the motions of multiple robots with spec- 
ified trajectories. Section 5 discusses necessary conditions 
for collision-free motion and describes a follow-the-leader 
strategy. Section 6 describes useful extensions to the basic 
problem. Section 7 discusses the computational complexity 
of the coordination problem. Section 8 describes our pre- 
liminary implementation of the planner and experimental re- 
sults. Section 9 outlines directions for future work. 

2 Related Work 
Motion planning for multiple robots is a broad research 

area (see [ll] for an overview). In the most general case, 
the problem is to have each robot move from its initial to its 
goal configuration, while avoiding collisions with static ob- 
stacles or with other robots. This problem is highly under- 
constrained, and very few researchers have attempted to deal 
with it directly. Hopcroft, Schwartz, and Shark [7] showed 
that even a simplified two-dimensional case of the problem 
is PSPACE-hard. 
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A slightly more constrained version of the problem is ob- 
tained when all but one of the robots have specified trajec- 
tories. This is essentially the problem of planning a path 
for a single robot among moving obstacles, which has been 
treated by Reif and Sharir [ 171 and Kant and Zucker [9]. One 
can generalize this problem to obtain a heuristic solution to 
the problem of planning the motions of multiple robots. Erd- 
mann and Lozano-Perez [3] assign priorities to robots and 
sequentially search for collision-free paths for the robots, in 
order of priority, in the configuration-time space. At each 
iteration, previous robots are treated as moving obstacles. 

If the problem is further constrained so that the paths 
of the robots are specified, one obtains a path coordina- 
tion problem. O’Donnell and Lozano-Perez [ 161 developed 
a method for path coordination of two robots. LaValle 
and Hutchinson also addressed a similar problem in [12], 
where each robot was constrained to remain on a specified 
configuration space roadmap during its motion. The work 
most closely related to ours is that of Leroy, Laumond, and 
Simeon [ 141. They perform path coordination for over a hun- 
dred robots. However the size of the largest subset of robots 
with intersecting paths is 10. 

In this paper, we address an even more constrained ver- 
sion of the multiple robot motion planning problem: the tra- 
jectory coordination problem where the trajectory of each 
robot, including the time derivatives along the path, is spec- 
ified. Previous work on trajectory coordination has focused 
almost exclusively on dual robot systems (Bien and Lee [ 11, 
Chang, Chung and Lee [2]). Shin and Zheng [19] show that 
for a two-robot system, generating time-optimal trajectories 
for each robot independently and then delaying the start time 
of one of the robots leads to a minimal finish time provided 
the collision region satisfies a strong connectivity assump- 
tion. (A sufficient condition for this assumption is that the 
robots may collide only once during their motion.) 

The trajectory coordination problem for multiple robots 
is closely related to jobshop scheduling problems (Garey, 
Johnson, and Sethi [5] ,  Lawler et al. [ 131). Here space is the 
common resource, and there are additional trajectory con- 
straints. We model coordination of robots with fixed tra- 
jectories as no-wait jobshop problems (Sahni and Cho [18], 
Goyal and Sriskandarajah [6]). 

3 Problem Formulation 
The general problem that we are trying to solve can be 

expressed as an optimization problem: Given a set of robots 
with specijied paths and velocity profiles on those paths, find 
a set of parameterizations for these paths such that the total 
execution time for the ensemble of robots is minimized, the 
velocity constraints on the paths are satisfied, and no colli- 
sions OCCUI: 

To make this problem more precise, we first turn to a brief 
review of paths and their parameterizations (Section 3.1). 

This will lead to a precise and straightforward characteriza- 
tion of the set of parameterizations under which the robots’ 
velocity profiles remain invariant. We then develop a charac- 
terization for collisions that can occur between robots (Sec- 
tion 3.2), and a set of sufficient conditions for collision-free 
coordination of the robots (Section 3.4). 

3.1 Trajectories and Their Parameterizations 
We denote the ith robot by Ai, a configuration space by 

C, and a configuration by q E C. By path we mean the 
geometric specification of a curve in configuration space 

Y : c E 10711 -!(e) = q E c 
A differentiable function r given by 

r : t E [O, TI ++ r ( t )  = E [O,  11 

with ~(0) = 0 and r (T)  = 1 is a reparameterization of the 
path y. For our problem, t is a time variable, and T is some 
constant such that all robots will have completed their tasks 
prior to time T. A path together with a parameterization 
defines a trajectory. By trajectory we mean a path with the 
velocity of the robot specified at every point along the path. 
We will often simplify notation, and denote a trajectory as 

( t )  rather than explicitly representing the parameterization. 
For our problem, robot velocities are specified a priori. 

One way to do this is to specify an original parameterization 
for y, say r, such that the time derivatives of r provide the 
desired velocity profile. Thus, any reparameterization, say 
r’, that gives the desired velocity profile will be such that, for 
any value along the path, the time derivatives of T‘ and r 
agree. It is easy to show that all such reparameterizations are 
obtained by merely changing the start time of task execution. 

Without loss of generality, we will consider only the case 
where the start times for the robots are delayed, i.e., 

in which tqtaTt 2 0 is the time at which robot Ai begins 
its motion, and ri is the originally specified parameteriza- 
tion. Note that this equation also implies that di remains 
motionless until tatart. This restriction on possible reparam- 
eterizations leads to the following optimization problem. 

Optimization Problem I: Given a set of robots with spec- 
ified trajectories, find the starting times for the robots such 
that the total execution time for the ensemble of robots is 
minimized and no collisions OCCUI: 

We now turn our attention to a set of sufficient conditions 
for collision-free motion for this optimization problem. As 
will be seen in Section 4, these sufficient conditions lead 
to an optimization problem that can be solved using mixed 
integer linear programming. 
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3.2 Collision Zones: Geometry 
Here we develop the representation for the relevant inter- 

actions between robots, using the above terminology for an 
individual robot moving on a path with a specified velocity 
profile. 

-We first develop notation to represent the set of points 
at which the ith robot, Ai, could possibly collide with the 
j t h  robot, dj. For a specific value of si, the subset of the 
workspace that is occupied by the ith robot is denoted by 
A,(yi(<i)). A collision between two robots corresponds to 
the situation in which Ai ( r i  (C) )  n d j  (rj ( C j ) )  # 0. For the 
ith robot, we denote by PBij the set of values of Ci such 
that when robot A, is at configuration ri(<i) there exists a 
configuration of another robot, d j ,  such that the two robots 
collide: 

PBij = {Ci 1 3 Cj E [O, 11 s.t- di(ri(t))ndj(rj(Sj)) # 0) 
In other words, PBij is the set of all points on the path of 
robot di at which A, could collide with d j .  (Our choice of 
the notation PBij derives from the usual convention of using 
the notation CB to denote points in the configuration space 
at which collisions occur.) 

The set PBij can be represented as a set of intervals 

PBi, = c:j17.. ., C31) (2) 
where each interval is a collision zone, and the subscripts s 
and f refer to the start and finish of the kth collision, in- 
dexed by the superscript k, and m denotes the number of 
collision zones for the robot d i  with d j .  There is a natu- 
ral correspondence between the collision zones of PBij and 
the collision zones of FBji. In particular, for each collision 
zone in PBij there is at least one collision zone in PBji that 
could result in collision of the two robots. We will refer to 
these corresponding pairs of collision zones as collision zone 
pairs, denoted by PZij. The set of collision zone pairs can 
be represented by a set of pairs of intervals: 

(3) 
Note that the superscript k serves to index the set of collision 
zone pairs. As we show in Section 3.4, it is straightforward 
to use PZij to establish a set of sufficient conditions for col- 
lision free scheduling of the robots. Note that P&j and PZji 
contain equivalent information. 

Conceptually, collision zone pairs are generated by com- 
puting the volume swept by each robot and determining 
where it intersects the volume swept by another robot. The 
intersection regions of the swept volumes of pairs of robots 
give the collision zone pairs. Figure 1 is an example of 
two translating robots with specified trajectories that over- 
lap in two collision zones. For this example PB12 = 
{[Q, 4, [a3, ~ 4 1 )  and PB21 = @I, b], [b3, b]}. Calli- 
sions can occur only when E (al, a21 and C2 E [bl , b2] 
or when C1 E [a3,a4] and <2 E [b3,b4]. Thus, PZ12 = {< 

pzij = {< IC;, ~ $ 1 ,  [ C ~ S ?  C;~I 

[a1,a21,[b1,b21 >,< [a3,a4l,[b3,b4] >}. 

I I 

bl b2 ' ' b3 b4 
a2 

Initial Goal 

Figure 1: Example with two translating robots. 

3.3 Collision Zones: Timing 
The collision zone pairs describe the geometry of possible 

collisions, but for scheduling the robots, we are interested in 
the timing of the collisions. Thus, it is useful to develop 
a corresponding representation for the times at which two 
robots might collide. For a specified parameterization, ~ i ,  
the set of times at which it is possible that robot A, could 
collide with robot d j  is given by: 

7 B i j ( 7 i )  = { t  I Ai(ri(Ti(t))) nAj(rj(Cj)) # 0, 
for some Cj E [0, I], i # j }  

= TtT1 (Paij). 

As with PBij, the set 7 B i j  (q) can be represented by a set 
of intervals, indexed by superscript k, the endpoints of which 
are obtained by applying the inverse parameterization (i.e., 
T~:~) to the endpoints of the intervals of PBij given in (2): 

7 ~ i j  ( ~ i  = 17; C C ! ~ ) ,  7;' (~!f 11 (4) 

We refer to each interval as a collision-time interval. 
As with collision zones, there is a natural correspondence 

between collision-time intervals in TBij and 'TBji ,  and we 
refer to these pairs as collision-time interval pairs. For the 
two robots, A, and d 3 ,  we denote the set of all collision- 
time interval pairs by CZi , .  We represent CZij as a set of 
pairs of intervals 

c z i j  = {< >, . . . , < 1:,1; >}, ( 5 )  

where the first interval If of each pair < I t ,  1; > corre- 
sponds to robot Ai and the second interval I t  corresponds 
to robot d j .  During the time interval I:, d i  is in a specific 
collision zone and Aj is in a corresponding collision zone 
during time interval I t .  Note that CZij and CZji contain 
equivalent information. The interval pairs in CZij ( T ~ ,  T ~ ) ,  

indexed by k, can be determined from the mapping specified 
in (3) by applying the appropriate inverse parameterization 
to the endpoints of the collision zone intervals in each colli- 
sion zone pair. That is, 

C Z i j ( T i i T j )  = {< [ ~ i  -1 (C i s ) ,T i  k -1 ( C i f ) ] ,  k 

-1 k 
[Tj-l(g..),Tj (Cjf)I >I. (6) 
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Note that if 1; and 1; do not overlap, then the two robots 
cannot be in the kth collision zone pair simultaneously, and 
therefore no collision will occur in this collision zone pair. 
This observation forms the basis for the sufficient conditions 
given in Section 3.4. 

For notational convenience, we introduce the variables 
T;3 and T$f given by 

Tj"s = T j  (<!8 ) (7) 

T:f = Tj  (<;f (8) 

enters (resp. exits) the kth collision zone if t;tart = 0. 
where T;3 (respectively T j f )  denotes the time at which dj 

Note that with multiple robots, the notation Tj". is ambigu- 
ous since it does not specify the particular other robot that 
is involved in the collision. When we use this notation, the 
context will make clear which other robot is involved. See 
Figure 2 for a graphical illustration of these quantities. 

Figure 2: Timelines for robots A1 and d2. The bold lines 
correspond to the collision-time intervals for the robots. 

Since our parameterizations are restricted to those that 
only delay the robot start times, we will always have param- 
eterizations of the form 

(9) 

for each value of C E [0,1]. Inverting the parameterizations 
T' and T we obtain 

(10) 

T'(t + tstart) = < = T(t) 7 

T'-'(<) = T- ' (c )  + tstart. 

Using this notation, we can write CZ, (T;, 7;) as 

C & ~ ( T ; ,  T,!) = { < [Ti! + titart,T$ + titart], 
[?I3 + tgtart, Tjf + tjtart] >, 

< [Tg + tatart, T$ + t;tart], 
[T' + tqtart , TTf + tjtart1 >}. 

3.4 Sufficient Conditions for Collision-free 

To prevent collisions between two robots di and dj, it 
is sufficient to ensure that the times at which Ai could col- 
lide with robot dj do not coincide with the times at which 

Scheduling 

dj could collide with robot Ai, which can be assured if the 
two robots are not in any collision zone pair belonging to 
PZ, at the same time. This amounts to ensuring that there 
is no overlap between the two intervals of any collision-time 
interval pair for the two robots. If 1; n 1; = 0 for every 
collision-time interval pair < I:, 1; >E CZij(~i, ~ j ) ,  then 
no collision can occur. (Note that it is not necessary to also 
check the interval pairs in CZji, since preventing collision of 
dj with di necessarily prevents collision of of dj with di.) 
This sufficient condition leads to an optimization problem: 

Optimization Problem 11: Given a set of robots with spec- 
$ed trajectories, Jind the starting times for the robots such 
that the total execution time for the ensemble of robots is 
minimized and no two intervals of any collision-time inter- 
val pair overlap. 

In Section 4, we will present a Mixed Integer Linear Pro- 
gram that solves this optimization problem. The sufficient 
condition is clearly not a necessary condition. For example, 
in a follow-the-leader situation where the robots move in the 
same direction along their paths in the collision zone, the fol- 
lower robot is delayed unduly since it waits for the leader to 
exit the collision zone before it enters the collision zone. For 
now, we note that this is a conservative strategy that guar- 
antees that no collision occurs between the two robots. We 
will discuss an alternative strategy that provides the mini- 
mum time collision-free schedule in Section 5 .  

3.5 Assumptions 

collision-free coordination of the robot trajectories: 
We make the following assumptions to generate a 

1. 

2. 

3. 
4. 

5 .  

6.  

4 

The only moving obstacles in the workspace are the 
robots, and the specified trajectory for each robot does 
not result in collisions with any static obstacles. 
Each robot does not collide with the other robots when 
they are at their start or goal configurations. 
The starting velocity of each of the robots is zero. 
Each robot path is monotonic, that is, the robot does not 
back up along its path. 
Each robot executes its specified trajectory, with no 
changes to its specified velocities, once it starts mov- 
ing. 
The robot motions are sampled at sufficient resolution 
so that no collisions occur during the motion between 
successive collision-free configurations. 

An Integer Programming Formulation 
We first develop a mixed integer linear programming 

(MILP) formulation for Optimization Problem I1 for the two 
robot case, and then the general case with multiple robots. 
t:tart is the start time for robot di, which is to be computed, 
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and Ti is the motion time required for robot Ai to traverse 
its entire trajectory when starting at time t!tart = 0. 
4.1 The Two Robot Case 

First consider trajectory coordination of two robots A, 
and dj. Assume the trajectory of each robot is given and 
that the robots can collide with each other in only one re- 
gion and that the robots do not collide multiple times in the 
region. For each robot, identify its collision zone and com- 
pute the time interval during which it is in its collision zone. 
The collision-time interval [Ti,, Tif] of robot Ai, where sub- 
scripts s and f indicate start and finish times respectively, in- 
dicates when robot dj can collide with it. The collision-time 
interval [Tjs, Tjf] of robot dj is similarly computed. 

The maximum completion time for the two robots is equal 
to the time when the last robot completes its task, i.e., 
maximum {tftart + T. tstart + Tj}. Since we wish to min- 
imize the completion time while ensuring the robots are not 
in their collision zones at the same time, the trajectory coor- 
dination problem can be stated as: 

a’ 3 

Minimize max{titart + Ti, tjtart + T.} 3 

subject to 
titart + Tij < tjtart + Tj, or tgtart + Ti, > tjtart + Tjf 
t y  2 0 
t j ta r t  2 0 

Since the objective function and the constraints are not 
linear, we transform them to a linear form. Let the max- 
imum time for robots A, and dj to complete their mo- 
tions be tcomplete. Clearly tcomplete 2 titart + Ti and 
tcomplete 2 tjtart + Tj. The disjunctive “or” constraint can 
be converted to an equivalent pair of constraints using an in- 
teger zero-one variable Sij and M ,  a large positive number 
([15]). Here M can be chosen to be Ti + Tj. When robot 
Ai enters the collision zone first, Sij = 0 and the constraint 
titart + Tif < tjtart + Tj, is active, and when robot dj 
enters the collision zone first, 6ij = 1 and the constraint 
tjtart + Tjf < titart + Ti, is active. The equivalent MEP 
formulation is: 

Minimize tcomplete 
subject to 
tcomplete - titart - Ti 1 0 
tcomplete - tgtaTt - T.  3 -  > 0 
t i ta r t  + T. - tjstart - Tjs - M6.. < 0 zf 23 - 
start + T. - t i t a r t  - Ti, - M ( 1  - 6. .) < 0 

$art 2 0 3f 23 - 

tgtart > 0 
Sij E @,I> 

4.2 The Multiple Robot Case 
In the general case, multiple robots, pairs of which may 

have multiple collision regions, must be coordinated. Here 
< [TA, T$], [T$ , Tjf] > denotes the kth collision-time in- 
terval pair for the two robots di and dj. Let Nij denote 

the number of collision-time interval pairs for robots Ai 
and dj, i.e., Nij = ICZijI and let Nrobots be the num- 
ber of robots. The binary variable dijk is defined to be 0 
if robot Ai enters its kth collision zone with robot dj before 
robot dj and to be 1 if robot dj enters its corresponding 
kth collision zone before robot Ai. A valid value for M is 
M = Cz;bots Ti. The MILP formulation to coordinate the 
motions of the robots is: 

Minimize tcomplete 
subject to 

tcomplete - titart - Ti 2 0, 1 I i 5 Nrobots 
titart + Tk - tjtart - T: - Maijk 5 0, 

forall < [TZk,,T$],[Tj,,T;f] >E CZij, E z f  

for 1 5 i < j 5 NTobots 

forall< [TA,T$],[Tjk,,T;f] >ECZij, 
for 1 5 i < j 5 Nrobots 

start + ~k - tatart - ~k - M (  1 - Sijk) 5 0 
t j 3f 2 

sijk E (0 ,  I } ,  1 I i j 5 Nrobots, 1 2 k 5 Nij 
titart 2 0, 1 5 i 5 Nrobots. 

The resulting solution is guaranteed to be a collision- 
free trajectory coordination strategy for all the robots. The 
completion time constraints and collision-time interval con- 
straints are necessary for only those robots that may col- 
lide. Note that the MlLP always has a feasible solution - 
move the robots in sequence with only one robot in motion 
at any given instant. Figure 3 shows the timelines for two 
robots with multiple collision intervals, and Figure 4 shows 
the collision-free sequencing of the start times of the robots. 

I 

T1 T2 time 

Figure 3: Timelines for robots A1 and A2 with multiple col- 
lision intervals. 

t;m time 

Figure 4: Collision-free timelines for robots A1 and d2, 
with robot being delayed at its start. 
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5 Necessary Conditions for Optimality 
We have so far computed start times to ensure that no 

two robots are simultaneously in their shared collision zones. 
This criterion for collision avoidance can be overly conser- 
vative, for example, when two robots di and dj are moving 
in the same direction in a collision zone pair. We can reduce 
the completion time and derive the necessary conditions for 
collision avoidance in such cases by permitting the robots to 
play "follow the leader". Assume robot di moves first in 
its collision zone and dj follows it. We need to compute 
how much earlier the lead robot di should start moving in 
its collision zone, before the follower robot dj can enter its 
collision~zone, to avoid a collision. 

Shin and Zheng [19] proved that for two robots with a 
single collision region, delaying the start time of one of 
the robots provides the time-optimal trajectory modification. 
They compute the minimum delay time for the collision-free 
coordination of two robots that have a single collision zone 
pair by using a bisection search. The delay time of the fol- 
lower robot, or equivalently, the lead time of the lead robot, 
is initialized to a value that guarantees the lead robot will 
exit its collision zone before the follower robot enters its col- 
lision zone. The minimum lead time in the collision zone for 
which the lead robot can still avoid a collision with the fol- 
lower robot is then computed using bisection search. 

We extend this idea of computing the necessary condi- 
tions for collision avoidance to multiple robots, where pairs 
of robots may have multiple collision zone pairs. Given two 
robots di and d j  that have more than one collision zone 
pair, we treat each collision zone pair independently when 
computing the lead times using bisection. For the kth col- 
lision zone pair, we compute the minimum time q7td that 
robot di must lead robot dj by at the start of its kth collision 
zone to avoid a collision, and the minimum time q;td that 
robot dj must lead robot di by at the start of its lcth colli- 
sion zone to avoid a collision. The corresponding follow-the- 
leader constraints are tgtaTt+Ti",+Tiljekad < t;taTt+Tts when 
Ai leads through the collision zone, or tjStaTt +qks +Tjftd < 
t:taTt + Tb when d j  leads through the collision zone. 

The maximum value of TjfZd is T f ,  the time taken for 
robot di to traverse its kth collision zone. Since T$ld 5 
T:, we define a new variable Ti", = min{qt + T$Fd, T$} 
where T& = Ti", + T t .  Tt, the collision-free entry time, 
is the time from start in robot Ai's trajectory, when di en- 
ters its kth collision zone pair before dj, at which robot dj 
can enter its collision zone without causing a collision. Sim- 
ilarly, define Tj". = min{Tfs + TjfZd, T$}. The updated 
follow-the-leader constraints are t:tart + Ti", < tjstaTt + q: 
when Ai leads through the collision zone, or tjtaTt + Tte < 
tgtart + qt when dj leads through the collision zone. The 
robots di and dj do not collide when their start times sat- 
isfy these follow-the-leader constraints over all their colli- 

sion zone pairs. 
To extend this formulation to multiple robots, we include 

these disjunctive constraints for every pair of robots that can 
potentially collide. The minimum completion time over all 
robots is obtained using the following formulation: 

The solution to the above MILP solves Optimization Prob- 
lem I and gives the minimum time coordinated trajectories of 
the robots when only their start times can change. 

6 Extensions 
Our problem formulation so far has focused on single 

body robots with specified trajectories. We now discuss use- 
ful extensions to the basic formulation. 

6.1 Articulated Robots 
To coordinate articulated robots with multiple links, we 

consider motions of the individual links. An articulated 
robot R consists of a set of links (Ai}. Let R[i] be the robot 
to which link di belongs. The motions of links of an artic- 
ulated robot are separated by constant time offsets. Let di 
begin moving time TF after the first moving link of R[i] be- 
gins moving. That is, t:taTt = tgg[t + TP where tg:rt is 
the start time of robot R[i]. Let Nlinks  be the total number 
of robot links. Note that the start time and motion time of a 
link may depend on the start and motion times of links that 
precede it in the articulated chain. Thus the formulation for 
a set of articulated robots is: 
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The completion time constraints are necessary for all links 
of a robot that can potentially have a collision. The collision- 
time interval constraints are necessary for only those robots 
that have one or more links involved in a potential collision. 

6.2 Specifying Sequencing Constraints 
In certain tasks, it may be necessary for one robot to com- 

plete a particular operation or reach a certain point before 
another robot performs a subsequent operation. This can oc- 
cur in sequenced assembly tasks, or in welding workcells 
where the primary welds must be completed before sec- 
ondary welds. Consider the requirement that A, has to reach 
qi before dj reaches Q. For the unmodified trajectories, let 
the time taken for di to reach gi be Tpi and for dj to reach 
Q be Tqj . The sequencing constraint can then be written as 
t;tart + Tqi < tjstart + Tqj. Such constraints for multiple 
robots can be easily added to the formulation. 

Num. of 
robots 

7 Complexity 
The integer programming formulation of our problem 

suggests it is an NP-complete problem ([4]). We fist con- 
sider the decision version of the No-wait Jobshop Schedul- 
ing problem (Sahni and Cho [18], Goyal and Sriskandara- 
jah [a]), which is NP-complete. Each job consists of an or- 
dered set of tasks, where each task is to be performed by a 
specific processor. The tasks for each job must be executed 
in sequence without breaks between them. Each processor 
can perform no more than one task at any time instant, and 
each job can be worked on by only one processor at any time 
instant. The goal is to minimize the makespan (i.e., the max- 
imum time of completion of any task). 

The above problem can be transformed to our Multiple 
Robot Scheduling problem. Let each job j model the tra- 
jectory of robot Aj. Let each task t k I j ]  model the kth tra- 
jectory segment for robot dj, where each trajectory segment 
is a contiguous collision zone segment or collision-free seg- 
ment. Let processor pi model the region ~ i ,  where each re- 
gion contains one or more trajectory segments. No two tra- 
jectory segments that are in the same region can be executed 
at the same time. The length of each task is the time taken 
by the robot to traverse the corresponding segment. The goal 
is to minimize tlie completion time of the robots. It follows 
that the decision version of the Multiple Robot Scheduling 
problem is NP-complete, and that the optimization problem 
is NP-hard. 

Num. of Collision MILP 
collision detection time 

8 Implementation 
We have implemented software in C++ to coordinate the 

motions of polyhedral robots with specified trajectories (Fig- 
ure 5) and have a preliminary implementation for articulated 
robots. We compute the collision zones using the PQP col- 
lision detection package (Larsen et al. [lo]). The robot con- 
figurations are specified at constant time intervals. To de- 
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Figure 5:  Overhead view of the paths of 20 robots, with their 
initial configurations indicated by solid cubes. 

zones time (secs) (secs) 
2 < 1  0.02 

10 
15 

27 9.8 0.11 
65 23.4 0.53 

t 5  I 10 I 2.4 I 0.02 I 

I 20 I 79 I 36.8 I 1.83 I 
Table 1: Comparison of sample run times for 100 frames. 

tennine the collision zones, each robot is stepped through 
its trajectory, and at each trajectory point, all the remain- 
ing robots are moved through their complete trajectories to 
detect collisions. So for N robots where each robot has T 
trajectory points, collision detection is performed O(N2T2)  
times. 

Using the computed collision-time interval pairs, we 
generate the corresponding MILP formulation and solve 
it using CPLEX [8], a commercial optimization package. 
See Table 1 for runtime data on a Sun Ultra 10 for sin- 
gle body robots. Note that the problem complexity de- 
pends primarily on the number of collision zones, to a 
lesser extent on the number of robots, and is relatively 
independent of the number of degrees of freedom of the 
robots. Our preliminary experiments indicate that the MILP 
time dominates the running time as the number of colli- 
sion zones increases. Example animations may be seen at 
www.cs.rpi.edu/"sakella/multiplerobots/. 
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9 Conclusion 
We have developed an optimization formulation that en- 

ables the minimum time collision-free coordination of mul- 
tiple robots with specified trajectories when only their start 
times can be changed. The principal advantage of our MILP 
formulation is that it permits the collision-free coordination 
of a large number of robots (up to 20 robots). The problem 
complexity depends on the number of robots and the num- 
ber of potential collisions, and is relatively independent of 
the number of degrees of freedom of the robots. Although 
the optimal trajectory coordination of multiple robots is NP- 
hard, the availability of efficient collision detection software 
and integer programming solvers makes this approach prac- 
tical. 

There are several issues for future work. Developing poly- 
nomial time approximation algorithms for the task of select- 
ing start times and characterizing the quality of these solu- 
tions is important. An alternative approach to minimizing 
the completion time is modifying trajectories by tuning the 
velocity of each of the robots. Identifying the conditions 
under which we can do this, and developing techniques to 
generate the optimized trajectories is important. Exploring 
stochastic versions of the task that involve timing uncer- 
tainties would be useful. Finally, exploring applications of 
this work in computer graphics for choreographing anima- 
tion characters is another interesting direction. 
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