
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/309259552

A Comprehensive Tutorial on Software Defined Network: The Driving Force

for the Future Internet Technology

Conference Paper · August 2016

DOI: 10.1145/2979779.2983928

CITATIONS

24
READS

903

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Social network analysis View project

Load balancing in distributed systems View project

Kshira Sagar Sahoo

National Institute of Technology Rourkela

40 PUBLICATIONS 151 CITATIONS

SEE PROFILE

Sagarika Mohanty

National Institute of Technology Rourkela

4 PUBLICATIONS 46 CITATIONS

SEE PROFILE

Mayank Tiwary

SAP Research

36 PUBLICATIONS 143 CITATIONS

SEE PROFILE

Brojo Kishore Mishra

GIET University

102 PUBLICATIONS 147 CITATIONS

SEE PROFILE

All content following this page was uploaded by Brojo Kishore Mishra on 01 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/309259552_A_Comprehensive_Tutorial_on_Software_Defined_Network_The_Driving_Force_for_the_Future_Internet_Technology?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/309259552_A_Comprehensive_Tutorial_on_Software_Defined_Network_The_Driving_Force_for_the_Future_Internet_Technology?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-network-analysis-3?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Load-balancing-in-distributed-systems?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kshira_Sahoo?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kshira_Sahoo?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Institute_of_Technology_Rourkela?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kshira_Sahoo?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sagarika_Mohanty?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sagarika_Mohanty?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Institute_of_Technology_Rourkela?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sagarika_Mohanty?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mayank_Tiwary?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mayank_Tiwary?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SAP?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mayank_Tiwary?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brojo_Mishra2?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brojo_Mishra2?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brojo_Mishra2?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brojo_Mishra2?enrichId=rgreq-736ee35cde55fde92c074f9e9b3818fb-XXX&enrichSource=Y292ZXJQYWdlOzMwOTI1OTU1MjtBUzo3MjE0NTI2ODkwMjcwNzNAMTU0OTAxOTEzMzg3Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Comprehensive Tutorial on Software Defined Network:
The Driving Force for the Future Internet Technology

Kshira Sagar Sahoo
National Institute of

Technology,Rourkela
India,769008

kshirasagar12@gmail.com

Sagarika Mohanty
IGIT, Sarang

Odisha
India,759146

sagarikam_23@yahoo.com

Mayank Tiwary
C.V. Raman College of

Engineering, Bhubaneswar
India,752054

mayanktiwari09@gmail.com

Brojo Kishore Mishra
C.V. Raman College of

Engineering
India,752054

brojokishoremishra
@gmail.com

Bibhudatta Sahoo
National Institute of

Technology,Rourkela
India, 769008

bibhudatta.sahoo@gmail.com

ABSTRACT
These days the usage of network is growing at a faster pace,
at the same time a lot of challenges is facing by the net-
work administrator, to tackle the frequent network access
by the users. The network infrastructure is growing rapidly
to meet the business need, but it requires re-policing and
reconfiguration of the network. But managing the under-
lying infrastructure becomes more complicated to handle
the unprecedented network demand. The Software Defined
Network (SDN), is the next generation Internet technology,
which not only solves the ossification of the Internet, but also
creates innovations and simplifies the network management.
The key idea behind SDN is separation of control plane from
the data plane, as a result, devices in the data plane simple
becomes the forwarding device and transfer all the decision-
making activities in a centralized system called a controller.
Among many, OpenFlow is the standard and most popular
SDN protocol that interacts between controller and forward-
ing devices. In this article, we will give an overview of the
basic architecture of SDN and OpenFlow, SDN-controller
interaction and benefits of SDN.

CCS Concepts
•Computer systems organization → Distributed ar-

chitectures; •Networks → Network Architectures ;

Keywords
Software Defined Network; OpenFlow; controller;
flow-table;virtualization;

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. Assuch, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

AICTC ’16, August 12-13, 2016, Bikaner, India
c© 2016 ACM. ISBN 978-1-4503-4213-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2979779.2983928

1. INTRODUCTION
In a traditional network packet forwarding, managing hard-
ware devices, monitor the data flow are managed by a single
hardware device. Conventionally, when a packet received by
the routing device called a router, it applies a set of rules
to get the shortest path and the desired destination for the
packet. Generally, the data packets which are meant for
the same destination follow the same procedure. This op-
eration is carried out by most of the inexpensive routing
devices. Some expensive devices can treat different packet
according to the priority level of the packet. Some router
vendors provide the flexibility to manage the queue size such
that congestion control and traffic control can manage in an
efficient way. But the underlying devices poses a low perfor-
mance for the unpredictable traffic demand. Another major
limitation of the traditional IP-based network is that the
underlying hardware requires a huge expense, in case any
new adoption. In other words, it is difficult to reprogram.
This has been made possible by implementing all the routing
rules in a centralized software module rather than embed-
ding in a hardware device, so that the administrator has
more control over the network traffic hence network perfor-
mance can be greatly improved. The above principle called
Software Defined Network (SDN). The goal of SDN is to
decouple the control and data plane. All the routing deci-
sion and controlling mechanism installed in a device called
controller. The controller sends command to the data plane
which consists of router and switch to manage the data pack-
ets. Control plane may consist of one or more than one con-
troller in a network depending upon the size and usage of the
network [1]. Initially, it was developed and tested as a part
of the Ethane project at Stanford University. But later it
became more popular when VMware acquired the brainchild
of the SDN developer Nicira network. Gradually many open
source products developed their framework to allow develop-
ers to create and test various SDN products. Open-Daylight,
Cisco like most big organizations started their research wing
for SDN [3].
The main objective of this paper is to give an overall idea
about SDN/OpenFlow technology. Authors in [17] describe
the concept of SDN in a very interesting way by asking a

various question to the reader. Similar to this author in
[11] present an OpenFlow survey on 2-layer SDN architec-
ture. In [6], Jarraya et al. highlighted numerous research
issues related to the different layers of SDN. As compared to
the above survey articles, this paper mostly emphasized on
SDN/OpenFlow interaction mechanism between the devices
and the controller along with the other integral part of the
SDN.
After going through various research papers, magazines and
visit miscellaneous blogs we prepare this article that will
build a clear picture about SDN related technology to the
reader. The main contributions of this paper are: we pro-
vide a complete tutorial on SDN related technologies like
SDN /OpenFlow architecture, controller and switch interac-
tion, benefits of SDN etc. In the next section of this article,
the limitation of current network technology has been ad-
dressed, then explored how these limitations are overcome
by SDN technology. After discussing the basic principle on
SDN, we have briefly discussed on OpenFlow architecture in
section III. We end this article by discussing the benefit of
SDN usage and standardization effort towards SDN in the
conclusion part.

2. ROUTING MECHANISM IN LEGACY
NETWORK AND SDN NETWORK

A typical IP-based network consists of a set of routers and
switches. A set of nodes such as the laptop, mobile devices,
desktop, etc. is being served by the router. The routing
mechanism between the traditional network and the SDN
network is described below.

2.1 Traditional Network
In the traditional network scenario, routers execute a spe-
cific algorithm to send the incoming packets to the next hop.
For example, to access one website, let the data packets have
to move through 10 routers, it means 10 router has to run
the routing algorithm to serve one request made by the end
user. In practice, there are million web users accessing the
same web content simultaneously, which create a lot of pro-
cessing overhead at the router.
In a typical network scenario router can perform two tasks.
The first one is the router regularly updating routing tables
to get the status of the network, which is commonly known
as control plane operation. The second task is to forward
the incoming data packets, to the correct destination based
on the locally stored routing tables, this is commonly known
as forwarding or data plane operation. A cost effective rout-
ing algorithm takes decisions based on the routing table of
the local devices, determine the shortest path between the
source and destination with a minimum time delay and max-
imum throughput. If the size of the network topology grows
the routing table size also relatively increase, which creates a
lot of delay since routing information exchange periodically
to keep update the network status. Computational burden
on the router considerably increase if one of the nodes fails in
the network, finding an alternate route other router carries
out the same process.

2.2 SDN Network
Since traditional routing devices facing a lot of challenges,
SDN overcome it by separating the control plane and data
plane. SDN assigns the control plane to an external device
called controller, which manages all the routing decisions.
Here routers do not have to do computationally expensive

North bound API

 (e.g. RESTful,Frenetic)

Southbound API (e.g. OpenFlow,ForCES etc)

In
fr

a
s
tr

u
c
tu

re

L
a
y
e
r

C
o

n
tr

o
l
L

a
y
e

r
A

p
p

li
c
a

ti
o

n

L
a
y
e
r

Figure 1: SDN Architecture comprises of applica-

tion, control, and infrastructure layer.

tasks. All protocols execute in the central controller that
takes all the routing decisions. The controller always moni-
tors the global view of the whole network, which can possibly
through some well-defined APIs.

3. ARCHITECTURAL DESIGN OF SDN
This section will describe the architecture and principal com-
ponents of SDN. The fig 1 gives an overall structure of SDN
architecture which has describe below.

3.1 Layers of SDN
In [13], ONF describes a high level architecture of SDN,
which functionally and vertically split into three layers.

• Infrastructure layer: This layer consists of forwarding
devices like the physical switch, router, etc. Software
switches which can be accessible via open interfaces,
also part of this layer. This layer is considered as for-
warding layer since it allows packet switching and for-
warding.

• Control Layer: The control layer is also referred as
control plane that comprises a set of software-enabled
SDN controllers. This layer allows the network admin-
istrator to apply custom policies to the physical layer
devices. About the controller functionalities will be
briefly discussed next.

• Application layer: Application layer deals with end-
user business applications that utilizes the SDN ser-
vices. Business application such as energy efficient
networking, security monitoring, network virtualiza-
tion etc.

3.2 INTERFACES OF THE CONTROLLER
The SDN controller can interact with these three layers,
through some standard open interfaces which have discussed
in the below section.

• Southbound interface: Southbound interface creates
a channel to interact with the controller and underly-
ing forwarding elements. OpenFlow is the standard-
ized protocol supported by ONF, is the widely used
southbound interface [13], which establishes a secured
link between the controller and forwarding devices.

The remote updating of the switchs′ flow table by the
controller is called programming in the SDN perspec-
tive. Later we have briefly discussed the OpenFlow
protocol and architecture. Another protocol called
ForCES is used for a long time for communication be-
tween controller and data plane components [2]. Though
ForCES and SDN have some common goal, but they
differ in many aspects. A nice comparison between
ForCES and OpenFlow have been discussed in [21].

• Northbound interface: The north bound APIs rep-
resents are interfaces between the controller and the
applications application layer.This interface helps the
application developers to manage the network through
the program. Since the network policies are dynamic in
nature in an SDN environment, hence the traditional
languages fail to achieve this. To program the network
devices Frenetic is used [4], that provides standard li-
braries and support modular programming that help
to design a high-level packet-forwarding policies for
switches. Similar to Frenetic, Pyretic is another pro-
gramming platform, which provides modular program-
ming and has increased abstraction layer that allow
the application developer to develop a more challeng-
ing application [14]. A control architecture for SDN
called Procera, which uses abstraction layers to hide
the details that are unimportant and reveal only the
relevant information to upper layers [22].

• East-west Bridge: In practice, a large scale enter-
prise network is partitioned into sub-networks, where
each sub-network is handled by a different controller
which has shown in Fig 2. In this multi-controller
based architecture, each network has the global net-
work view to communicate with the other domain and
exchange topology among the sub-domains. Directly
intra domain communicate cannot possible without the
help of a proper interface. East-west protocols solve
this problem by exchanging network view among the
controllers. Authors in [12] have proposed an east-
west bridge mechanism for intra-domain communica-
tion within SDN, that follows the peer- to-peer ex-
change mechanism of the network information.

4. THE OPENFLOW PROTOCOL
OpenFlow is todays best explored and is a standard pro-
tocol that exchange information between the control plane
and OpenFlow devices present in the data plane in an SDN
environment. This protocol is a multivendor standard and
maintained by the Open Networking Foundation (ONF) [?].
The ONF is a joint initiative by major software giants like
Google, Microsoft, and Microsoft etc. In the year 2011, the
first version V 1.1 came out to the market. Many vendors,
including Bell, IBM, CISCO, Juniper, etc., are using the
OpenFlow standard and add this functionality to their net-
work devices to make the device SDN compatible. Most of
the commodity networking hardware devices have started
using SDN enabling technology including HP, IBM, NEC,
Pronto,Juniper, Extreme, etc.

4.1 OpenFlow enabled Switch Architecture
To define a path from source to destination OpenFlow offers
a programmatic control of flows to the network administra-
tors. It allows a way to remove the overhead of routers

Controller

Controller

Controller

SDN domain 1

SDN domain 2
SDN domain 3

East-West bridge

Figure 2: Multiple SDN domains interact each other

through East-West interface.

Rule Action Statistics

Switch

port

MAC

src

MAC

Dest

Eth

type

VLAN

ID
IP src

IP

dest

TCP

src

TCP

dest

Figure 3: Different matching fields in a flow table.

packet processing for defining the path, and network man-
agement costs while escalating a network [8]. In an Open-
FLow architecture, the entire system consists of many Open-
Flow enabled devices, which are managed by one or more
OpenFlow controllers. Again the OpenFlow devices use one
or more flow tables. A flow could a set of packets with same
MAC IDs or IP addresss, packets with the same VLAN tag
or packets are arriving from the port [19]. An abstract model
of OpenFlow switch is depicted in Fig 4. Flow table con-
sists of flow entries, which decides how the packet will be
processed or forwarded of a particular flow. Each flow en-
tries in the table have three fields: match (header) field,
action field and statistics field [10].
Within an OpenFlow switch, basically the packets have gone
through a series of flow tables to find its exact match. For
every incoming packet, the switch make the forwarding de-
cision by looking into the flow table entries, starts from the
first table and ends either with a match in one of the ta-
bles or with a miss if no rule present for the packet. A flow
rule can be defined by combining different matching fields,
such as port number, source or the destination IPv4 address,
source or destination MAC address etc. which is illustrated

SDN COntroller

Rule Action Statistics

 Flow Entry

 Flow Entry

 Flow Entry

Packet in
Packet

Out

OpenFlow

Enabled Switch

OpenFlow Protocol

Figure 4: An abstract model of an OpenFlow switch.

Yes

NO

NO

Yes

Figure 5: Flowchart of execution sequence of a

packet in SDN.

in Fig 3. If there is no such entry in the flow tables for a flow,
the packet will be discarded. However, in case of unmatched
the switch sends the corresponding packet to the controller.
Sometimes the switch sends the unmatched packet to the
non-OpenFlow pipeline of the switch [23].
The associated actions pertain to each flow entry might be
packet forwarding to the outgoing port, forward to the con-
troller, packet forward to the next flow table for further pro-
cessing, drop the packet or send the packet for normal pro-
cessing. The packet might be forward to a physical port,
logical or reserved port of a specific flow entry. The third
field, i.e. the statistics field of the flow table, keep informa-
tion about the number of packets, number of bytes for each
flow and elapse time since flow initiation.

4.2 Working Principle of OpenFlow Switch
In OpenFlow switch, the flow rules in the forwarding ta-
bles are decided by the controller. The controller installs
each flow rules to the flow tables. For each incoming packet,
the flow tables are looked up and simultaneously the header
fields of the incoming packets are matched. If a match is
found, the corresponding decision will follow and if no match
is found, the packets are forwarded to the controller for ad-
ditional processing. The processing of packets in OpenFlow
protocol can be seen in a flowchart in fig 5.

4.2.1 Categorization of messages exchanged between
switch and a controller

There is three kinds of messages supported by the OpenFlow

OpenFlow

Controller
OpenFlow

Switch
Hosts

192.68.18.101/24

192.68.18.105/24

Packet_In

Packet_Out

Flow_Mod

Flow Expired

Port Status

Figure 6: Connection establishment between hosts

and the OpenFlow network.

protocol. These messages are: asynchronous, controller-to-
switch, and symmetric messages [20]. The controller-to-
switch messages are initiated by the controller and used to
examine the status and state of the flow table of the switches.
The asynchronous messages are sent from the switch to the
controller which is referred to as an event and designate a
change in the switch state or network state. Among many
events, Packet-in event has a noteworthy importance. This
event occurs when a packet does not have a matching en-
try in the flow table, Packet-in message is sent to the con-
troller which decide about the flow establishment for the
packet. Lastly, the symmetric messages are sent in either
direction. These messages are used to check the liveliness
of the controller. Checking of liveliness between controller
and switches can be done with the help of Hello and Echo
message.

4.2.2 Establishment of connection between switch and
controller

At the first time, when an Openflow enabled device tries to
configure, it first sends a TCP sync message to the controller
at the default TCP port i.e. 6633 [7]. A TCP handshake
takes place between the controller and switch by sending an
acknowledgment message from either end. The connection
establishment process is shown in the Fig.6. In the following,
the TCP handshake messages are concisely discussed [20].

• Hello : The controller sends its version number to the
OpenFlow switch through Hello message in turn the
switch replies its version number to the controller.

• Features Request: After getting the version, controller
seeks the available ports from the switch.

• Features Reply: In turn, the switch response with a list
options such as set of available ports, the port speeds
etc.

• Set Config: Set Config message signifies that the con-
troller wishes, the switch has to send flow expirations.

4.2.3 Connection between hosts on OpenFlow envi-
ronment

After a connection has established between the switch and
the controller, now the host can communicate with the net-
work. How a host connects to an OpenFlow network with
certain message exchange is depicted in Fig 6. Apart from
Packet in we discuss some other messages which are listed
below.

• Packet In: This message is sent by the switch when
any packet does not have any flow entry in any one of
the flow table.

• Packet Out: This message is sent out by the controller
when a packet has to send through a port of a switch.

• Flow Mod: This is a controller initiated message to the
switch. Through this control message, a switch adds a
particular flow to its flow table.

• Flow-Expired: This message is initiated by the switch
to the controller, when the flows got expired.

• Port Status: Port status such as addition, removal,
and modification are being notified to the controller
by the Switch.

5. CONTROLLER
Among the three layers of SDN architecture, controller re-
sides in the control layer. It is the main part of SDN that
works between network devices and various applications which
provide a programmatic interface to the network. An SDN
controller has the sole responsibility to manage the network
protocols, policies and establish the network path of a flow
by installing flow rules on the network devices.

5.1 Implementation Structure
An OpenFlow switch can establish a secured connection be-
tween a single controller and multiple controllers. The usage
of multiple controllers in SDN, basically addresses two major
issues: system failover and load balancing. In a typical SDN
network scenario the controller runs on a network-attached
server. The implementation structure of SDN controller
follows either centralized or distributed structure. Single
point of failure is a problem to the centralized structure;
hence to allow for the backup process, OpenFLow intro-
duced multiple controller connections for a single network
device. Thus the idea of Onix is to maintain a logically cen-
tralized but physically distributed control plane [9]. This
mechanism reduces the overhead of the local controllers but
the centralized view of the entire network can be achieved
through specific applications. Another type of hypervisor
called FlowVisor allow multiple logical controllers to SDN
to achieve network virtualization on an OpenFlow network
[18].

5.2 Flow-setup Mode
There is two flow set up modes i.e. proactive and reactive
modes are followed by the controller. In proactive flow setup
mode, the flow rules are installed in the flow table before the
processing of the packet of a flow start. The flow entries of
the table installed before the first packet of a flow arrive
to the switch. In proactive mode, since the flow rules are
pre-installed in the device, the flow setup delay and the con-
troller to the device is minimized. But the disadvantage is,
it may overflow the flow table since it does not require the
prior knowledge of the flow table size. On the other hand
in reactive flow setup, as soon as the first packet reaches to
the switch the flow rules are established in the flow table
by the controller. In a regular time interval, the flow rules
become inactive, hence drain out the previous rules from the
flow table is essential. Upon getting a flow setup request,
the controller checks the policies of the flow and takes the
decision what action has to be taken. Among many com-
mercially available controller, NOX was the first OpenFlow
based single threaded controller [5].
The controllers′ performance can be measured by testing the
number of flow request handled per second and time taken
to respond to these request. The Ethane controller was han-
dled upto 11,000 flow request and the response time was 1.5
ms. More advanced controller like NOX-MT can handle 1.6
million flow request with an average response time 1.5 ms

on a 8 core machine. Some available controllers and im-
plementation languages are given in the below Table 1 [6].

6. MAJOR BENEFITS OF SDN
The benefits of SDN are numerous to the organizations.
Here a list of benefits is being highlighted.

• Efficient use of resources: Resources in an NVE
can be efficiently utilized with the help of SDN. SDN
has the capability to distribute the workload among
the controller, which increase the speed and efficiency.

• Efficient network administration: SDN allows the
network administrator to change the characteristics of
the network remotely. An easy and efficient network
management possible by changing the network char-
acteristics based on the arrival of the workload in the
network.

• Cross Tenant data center optimization: Existing
cloud architecture does not support cross tenant func-
tionality. But the SDN can implement in a multitenant
environment such as data center and data clouds. The
coupled architecture and resource virtualization is well
suited for multitenant data center optimization.

• Programmability of the network: SDN has the
ability to control the entire network programmatically.
SDN facilitate not to deploy custom policies and pro-
tocols on each device separately in a network. Pro-
grammability is possible on the control plane itself,
through which the behavior of the specific device or
whole network can be changed. The controller can en-
hance the traffic engineering capabilities and reduces
the congestion in the network [15].

• Virtual and physical network management: Net-
work virtualization is the process of providing network
resources to end users through virtual network collec-
tion resources from multiple Infrastructure Providers.
Virtual network is the collection of virtual link and
nodes on the underlying physical network. SDN has
the ability to manage both physical and virtual net-
work by using a central management tool.

• Reduced cost: Most of the SDN products are open
source. Some products like VMwares NSX, Microsofts
Hyper V network virtualization required to pay only
the license fee for the SDN solution. On the other hand
since SDN support upto layer-3 , no need to purchase
expensive hardware by the enterprise which reduces
the CAPEX.

• Centralized network management: SDN allows
a centralized view of the entire network status that
makes easier to the network administrator to manage
the network device efficiently.

• Enhanced security: In a virtualized environment,
providing security to the VM is a very difficult task.
But SDN provides a fine-grained security to the end
devices [16].

7. CONCLUSIONS
This paper provides an overview of Software Defined Net-
work for researchers. We have provided a detailed architec-
ture of OpenFlow switch, controller, and Switch-controller
interaction along with discussed the benefits of SDN to the
industry. Several organizations have started working on

Table 1: Controller Classification.
Controller Developer Implementation Architecture

Beacon Stanford Java Centralized multi-threaded
Floodlight BigSwitch Java Centralized multi-threaded
Maestro Rice University Java Centralized multi-threaded
NOX Nicira Python/C++ Centralized

OpenDayLight Opendaylight Java Distributed
POX Nicira Python Centralized

RouteFlow CPqD C++ Distributed
Maestro Rice University Java Centralized multi-threaded

standardized the protocols of SDN aiming to provide better
SDN solutions. IETF, ONF, and ITU-T have been trying
to standardize OpenFLow. Despite of its popularity, it has
some issues which need to be explored. In our future work
we will focus and survey on various research challenges per-
tain to controller layer of SDN such as security challenges of
the controller, traffic engineering, and controller placement
problem.

8. REFERENCES
[1] K. Bakshi. Considerations for software defined

networking (sdn): approaches and use cases. In
Aerospace Conference, 2013 IEEE, pages 1–9. IEEE,
2013.

[2] A. Doria, J. H. Salim, R. Haas, H. Khosravi,
W. Wang, L. Dong, R. Gopal, and J. Halpern.
Forwarding and control element separation (forces)
protocol specification. Technical report, 2010.

[3] S. Fang, Y. Yu, C. H. Foh, and K. M. M. Aung. A
loss-free multipathing solution for data center network
using software-defined networking approach. In
APMRC, 2012 Digest, pages 1–8. IEEE, 2012.

[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. In ACM Sigplan
Notices, volume 46, pages 279–291. ACM, 2011.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: towards an
operating system for networks. ACM SIGCOMM
Computer Communication Review, 38(3):105–110,
2008.

[6] Y. Jarraya, T. Madi, and M. Debbabi. A survey and a
layered taxonomy of software-defined networking.
IEEE Communications Surveys & Tutorials,
16(4):1955–1980, 2014.

[7] V. Khatri. Analysis of openflow protocol in local area
networks. 2013.

[8] H. Kim and N. Feamster. Improving network
management with software defined networking. IEEE
Communications Magazine, 51(2):114–119, 2013.

[9] T. Koponen, M. Casado, N. Gude, and J. Stribling.
Distributed control platform for large-scale production
networks, Sept. 9 2014. US Patent 8,830,823.

[10] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, 2015.

[11] A. Lara, A. Kolasani, and B. Ramamurthy. Network
innovation using openflow: A survey. IEEE

Communications Surveys & Tutorials, 16(1):493–512,
2014.

[12] P. Lin, J. Bi, and Y. Wang. East-west bridge for sdn
network peering. In Frontiers in Internet Technologies,
pages 170–181. Springer, 2013.

[13] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[14] J. Reich, C. Monsanto, N. Foster, J. Rexford, and
D. Walker. Modular sdn programming with pyretic.
Technical Reprot of USENIX, 2013.

[15] K. S. Sahoo and B. Sahoo. Sdn architecture on fog
devices for realtime traffic management: A case study.
In International Conference on Signal, Networks,
Computing, and Systems (ICSNCS), New Delhi,
India. Springer, 2016.

[16] K. S. Sahoo, B. Sahoo, and A. Panda. A secured sdn
framework for iot. In 2015 International Conference
on Man and Machine Interfacing (MAMI), pages 1–4.
IEEE, 2015.

[17] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser,
D. Lake, J. Finnegan, N. Viljoen, M. Miller, and
N. Rao. Are we ready for sdn? implementation
challenges for software-defined networks. IEEE
Communications Magazine, 51(7):36–43, 2013.

[18] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Flowvisor:
A network virtualization layer. OpenFlow Switch
Consortium, Tech. Rep, pages 1–13, 2009.

[19] M.-K. Shin, K.-H. Nam, and H.-J. Kim.
Software-defined networking (sdn): A reference
architecture and open apis. In 2012 International
Conference on ICT Convergence (ICTC), pages
360–361. IEEE, 2012.

[20] O. S. Specification. Version 1.4. 0, october 14, 2013.

[21] T. Tsou, X. Shi, J. Huang, Z. Wang, and X. Yin.
Analysis of comparisons between openflow and forces.
Analysis, 2012.

[22] A. Voellmy, H. Kim, and N. Feamster. Procera: a
language for high-level reactive network control. In
Proceedings of the first workshop on Hot topics in
software defined networks, pages 43–48. ACM, 2012.

[23] L. Yang, R. Dantu, T. Anderson, and R. Gopal.
Forwarding and control element separation (forces)
framework. Technical report, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/309259552

